Publication:
Ensemble Learning based on Regressor Chains: A Case on Quality Prediction

dc.contributor.authorDemirel, Kenan Cem
dc.contributor.authorŞahin, Ahmet
dc.contributor.authorAlbey, Erinç
dc.contributor.departmentIndustrial Engineering
dc.contributor.ozuauthorALBEY, Erinç
dc.contributor.ozugradstudentDemirel, Kenan Cem
dc.contributor.ozugradstudentŞahin, Ahmet
dc.date.accessioned2024-03-12T12:33:23Z
dc.date.available2024-03-12T12:33:23Z
dc.date.issued2019
dc.description.abstractIn this study we construct a prediction model, which utilizes the production process parameters acquired from a textile machine and predicts the quality characteristics of the final yarn. Several machine learning algorithms (decision tree, multivariate adaptive regression splines and random forest) are used for prediction. An ensemble method, using the idea of regressor chains, is developed to further improve the prediction performance. Collected data is first segmented into two parts (labeled as “normal” and “unusual”) using local outlier factor method, and performance of the algorithms are tested for each segment separately. It is seen that ensemble idea proves its competence especially for the cases where the collected data is categorized as unusual. In such cases ensemble algorithm improves the prediction accuracy significantly. Copyright © 2019 by SCITEPRESS – Science and Technology Publications, Lda. All rights reserveden_US
dc.identifier.doi10.5220/0007932802670274en_US
dc.identifier.endpage274en_US
dc.identifier.isbn978-989758377-3
dc.identifier.scopus2-s2.0-85072958872
dc.identifier.startpage267en_US
dc.identifier.urihttp://hdl.handle.net/10679/9294
dc.identifier.urihttps://doi.org/10.5220/0007932802670274
dc.identifier.wos000570730200030
dc.language.isoengen_US
dc.publisherSciTePressen_US
dc.relation.ispartofDATA 2019 - Proceedings of the 8th International Conference on Data Science, Technology and Applications
dc.relation.publicationcategoryInternational
dc.rightsinfo:eu-repo/semantics/restrictedAccess
dc.subject.keywordsEnsemble methodsen_US
dc.subject.keywordsIndustry 4.0en_US
dc.subject.keywordsMulti-target regressionen_US
dc.subject.keywordsQuality predictionen_US
dc.subject.keywordsRegression chainsen_US
dc.subject.keywordsTextile manufacturingen_US
dc.titleEnsemble Learning based on Regressor Chains: A Case on Quality Predictionen_US
dc.typeConference paperen_US
dspace.entity.typePublication
relation.isOrgUnitOfPublication5dd73c02-fd2d-43e0-9a23-71bab9ae0b6b
relation.isOrgUnitOfPublication.latestForDiscovery5dd73c02-fd2d-43e0-9a23-71bab9ae0b6b

Files

License bundle

Now showing 1 - 1 of 1
Placeholder
Name:
license.txt
Size:
1.45 KB
Format:
Item-specific license agreed upon to submission
Description: