Publication:
Optimal stiffness tuning for a lower body exoskeleton with spring-supported passive joints

dc.contributor.authorYıldırım, Mehmet Can
dc.contributor.authorŞendur, Polat
dc.contributor.authorSoliman, Ahmed Fahmy
dc.contributor.authorUğurlu, Regaip Barkan
dc.contributor.departmentMechanical Engineering
dc.contributor.ozuauthorŞENDUR, Polat
dc.contributor.ozuauthorUĞURLU, Regaip Barkan
dc.contributor.ozugradstudentYıldırım, Mehmet Can
dc.contributor.ozugradstudentSoliman, Ahmed Fahmy
dc.date.accessioned2019-03-06T07:39:41Z
dc.date.available2019-03-06T07:39:41Z
dc.date.issued2018-10-09
dc.description.abstractThis paper presents a framework to optimally tune the stiffness values of spring-supported passive joints that are included in lower body exoskeletons. First, a dynamic model of a combined human-exoskeleton system was created in MSC.ADAMS software. Second, a gradient-descent based algorithm was used to find the optimum value to minimize the ZMP for a range of ankle stiffness values. In order to corroborate the proposed method, simulation experiments were conducted by considering three cases in which different body mass and heights were assigned to the combined human-exoskeleton system. The simulation results indicate that the proposed methodology is effective in order to find the optimum ankle stiffness for the combined human-exoskeleton systems, resulting in reductions in ZMP variations and therefore increasing the balancing ability. As a consequence, it may be possible to reduce the number of active joints in exoskeletons that aim crutch-free 3-D walking motion support.en_US
dc.description.sponsorshipTÜBİTAK ; COST Actions Inclusiveness Target Countries (ITC)
dc.description.versionPost print
dc.identifier.doi10.1109/BIOROB.2018.8487685en_US
dc.identifier.endpage536en_US
dc.identifier.isbn978-153868183-1
dc.identifier.issn2155-1774en_US
dc.identifier.scopus2-s2.0-85056592001
dc.identifier.startpage531en_US
dc.identifier.urihttp://hdl.handle.net/10679/6189
dc.identifier.urihttps://doi.org/10.1109/BIOROB.2018.8487685
dc.identifier.volume2018en_US
dc.identifier.wos000852956200086
dc.language.isoengen_US
dc.publicationstatusPublisheden_US
dc.publisherIEEEen_US
dc.relationinfo:eu-repo/grantAgreement/TUBITAK/1001 - Araştırma/215E138
dc.relation.ispartof2018 7th IEEE International Conference on Biomedical Robotics and Biomechatronics (Biorob)
dc.relation.publicationcategoryInternational
dc.rightsopenAccess
dc.subject.keywordsSolid modelingen_US
dc.subject.keywordsHipen_US
dc.subject.keywordsExoskeletonsen_US
dc.subject.keywordsLegged locomotionen_US
dc.subject.keywordsOptimizationen_US
dc.subject.keywordsMathematical modelen_US
dc.subject.keywordsTrajectoryen_US
dc.titleOptimal stiffness tuning for a lower body exoskeleton with spring-supported passive jointsen_US
dc.typeconferenceObjecten_US
dspace.entity.typePublication
relation.isOrgUnitOfPublicationdaa77406-1417-4308-b110-2625bf3b3dd7
relation.isOrgUnitOfPublication.latestForDiscoverydaa77406-1417-4308-b110-2625bf3b3dd7

Files

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
Optimal stiffness tuning for a lower body exoskeleton with spring-supported passive joints_Post print.pdf
Size:
712.9 KB
Format:
Adobe Portable Document Format
Description:

License bundle

Now showing 1 - 1 of 1
Placeholder
Name:
license.txt
Size:
1.45 KB
Format:
Item-specific license agreed upon to submission
Description: