Publication: On the volume of the shrinking branching Brownian sausage
Institution Authors
Authors
Journal Title
Journal ISSN
Volume Title
Type
article
Access
openAccess
Publication Status
Published
Abstract
The branching Brownian sausage in R-d was defined in [4] similarly to the classical Wiener sausage, as the random subset of R-d scooped out by moving balls of fixed radius with centers following the trajectories of the particles of a branching Brownian motion (BBM). We consider a d-dimensional dyadic BBM, and study the large-time asymptotic behavior of the volume of the associated branching Brownian sausage (BBM-sausage) with radius exponentially shrinking in time. Using a previous result on the density of the support of BBM, and some well-known results on the classical Wiener sausage and Brownian hitting probabilities, we obtain almost sure limit theorems as time tends to infinity on the volume of the shrinking BBM-sausage in all dimensions.
Date
2020
Publisher
The Institute of Mathematical Statistics and the Bernoulli Society