Person:
KURTULUŞ, Asli

Loading...
Profile Picture

Email Address

Birth Date

WoSScopusORCID

Name

Job Title

First Name

Asli

Last Name

KURTULUŞ
Organizational Unit

Publication Search Results

Now showing 1 - 10 of 17
  • Placeholder
    ArticlePublication
    A computational workflow for rupture‐to‐structural‐response simulation and its application to Istanbul
    (Wiley, 2020-10) Zhang, W. Y.; Restrepo, D.; Crempien, J. G. F.; Erkmen, Bülent; Taborda, R.; Kurtuluş, Aslı; Taciroglu, E.; Civil Engineering; ERKMEN, Bülent; KURTULUŞ, Asli
    Scenario-based earthquake simulations at regional scales hold the promise in advancing the state-of-the-art in seismic risk assessment studies. In this study, a computational workflow is presented that combines (i) a broadband Green's function-based fault-rupture and ground motion simulation-herein carried out using the "UCSB (University of California at Santa Barbara) method", (ii) a three-dimensional physics-based regional-scale wave propagation simulation that is resolved at fmax=11.2 Hz, and (iii) a local soil-foundation-structure finite element analysis model. These models are interfaced with each other using the domain reduction method. The innermost local model-implemented in ABAQUS-is additionally enveloped with perfectly matched layer boundaries that absorb outbound waves scattered by the structures contained within it. The intermediate wave propagation simulation is carried out using Hercules, which is an explicit time-stepping finite element code that is developed and licensed by the CMU-QUAKE group. The devised workflow is applied to a 80x40x40 km3 region on the European side of Istanbul, which was modeled using detailed soil stratigraphy data and realistic fault rupture properties, which are available from prior microzonation surveys and earthquake scenario studies. The innermost local model comprises a chevron-braced steel frame building supported by a shallow foundation slab, which, in turn, rests atop a three-dimensional soil domain. To demonstrate the utility of the workflow, results obtained using various simplified soil-structure interaction analysis techniques are compared with those from the detailed direct model. While the aforementioned demonstration has a limited scope, the devised workflow can be used in a multitude of ways, for example, to examine the effects of shallow-layer soil nonlinearities and surface topography, to devise site- and structure-specific seismic fragilities, and for calibrating regional loss models, to name a few.
  • Placeholder
    ArticlePublication
    Influence of sensor density on seismic damage assessment: A case study for istanbul
    (Seismological Society of America, 2022-08) Cheng, Q.; Fei, Y.; Lu, X.; Liao, W.; Zhang, W.; Chen, P. Y.; Kurtuluş, Aslı; Ghahari, F.; Vela, V.; Taciroglu, E.; Civil Engineering; KURTULUŞ, Asli
    The strong ground motions (GMs) recorded by strong motion networks are significant to increase the accuracy of seismic damage assessment. However, the influence of sensor density on seismic damage assessment remains unclarified. Therefore, a workflow is proposed in this study to quantitatively analyze the influence of sensor density on seismic damage assessment. The scenario-based earthquake simulation method is first used to provide the time history of GM at each location as the ground truth of the analysis. Subsequently, a GM prediction method, namely the interpolation method, is adopted to predict GMs at locations without sensors using measuring data from the limited sensors. Finally, the building scale and region scale seismic damage under different sensor densities are compared to quantitatively analyze the influence of sensor density on seismic damage assessment. A detailed case study for Zeytinburnu District, Istanbul, Turkey, is performed to demonstrate the proposed methods. The findings of this study can provide an important reference for seismic damage assessment and the deployment of strong motion networks.
  • Placeholder
    Book ChapterPublication
    A simplified approach for site-specific design spectrum
    (Springer, 2018) Ansal, Mustafa Atilla; Tönük, G.; Kurtuluş, Aslı; Civil Engineering; Rupakhety, R.; Ólafsson, S.; ANSAL, Mustafa Atilla; KURTULUŞ, Asli
    The design acceleration spectrum requires site investigations and site-response analyses in accordance with the local seismic hazard. The variability in earthquake source and path effects may be considered using a large number of acceleration records compatible with the earthquake hazard. An important step is the selection and scaling of input acceleration records. Likewise, a large number of soil profiles need to be considered to account for the variability of site conditions. One option is to use Monte Carlo simulations with respect to layer thickness and shear wave velocity profiles to account for the variability of the site factors. The local seismic hazard analysis yields a uniform hazard acceleration spectrum on the bedrock outcrop. Site-specific response analyses also need to produce a uniform hazard acceleration spectrum on the ground surface. A simplified approach is proposed to define acceleration design spectrum on the ground surface that may be considered a uniform hazard spectrum.
  • Placeholder
    Book ChapterPublication
    Observations from geotechnical arrays in Istanbul
    (Springer, 2015-04-16) Kurtuluş, Aslı; Ansal, Mustafa Atilla; Tönük, G.; Çetiner, B.; Civil Engineering; KURTULUŞ, Asli; ANSAL, Mustafa Atilla
    Few small earthquakes with local magnitude slightly larger than ML = 4 were recorded by geotechnical downhole arrays that have been recently deployed in the west side of Istanbul. Same events were also recorded by Istanbul Rapid Response Network (IRRN) which comprises of 55 surface strong motion stations in the European side of Istanbul. The strongest one of these earthquakes took place on 12/3/2008 in Çınarcık with local magnitude of ML = 4.8. Even though the observed PGAs were not exceeding 0.01 g, an effort is made to model the recorded response at the downhole array sites as well as the at the IRRN stations using the acceleration records obtained by the deepest sensors, i.e. on the engineering bedrock, at the downhole array sites as input bedrock motions. 1D equivalent linear site response analysis that is generally adopted for site-specific response analysis is used for modelling. Observations from the recorded response and results from 1D modelling of ground response have yielded in general good agreement between the observed and recorded soil response at the station sites.
  • Placeholder
    Book ChapterPublication
    Implications of site specific response analysis
    (Springer, 2018) Ansal, Mustafa Atilla; Tönük, G.; Kurtuluş, Aslı; Civil Engineering; Pitilakis, K.; ANSAL, Mustafa Atilla; KURTULUŞ, Asli
    Definition of design earthquake characteristics, more specifically uniform hazard acceleration response spectrum, on the ground surface is the primary component for performance based design of structures and assessment of seismic vulnerabilities in urban environments. The adopted approach for this purpose requires a probabilistic local seismic hazard assessment, definition of representative site profiles down to the engineering bedrock, and 1D or 2D equivalent or nonlinear, total or effective stress site response analyses depending on the complexity and importance of the structures to be built. Thus, a site-specific response analysis starts with the probabilistic estimation of regional seismicity and earthquake source characteristics, soil stratification, engineering properties of encountered soil layers in the soil profile. The local seismic hazard analysis would yield probabilistic uniform hazard acceleration response spectrum on the bedrock outcrop. Thus, site specific response analyses also need to produce a probabilistic uniform hazard acceleration response spectrum on the ground surface. A general review will be presented based on the previous studies conducted by the author and his co-workers in comparison to major observations and methodologies to demonstrate the implications of site-specific response analysis.
  • Placeholder
    ArticlePublication
    Influence of accelerometer type on uncertainties in recorded ground motions and seismic damage assessment
    (Springer, 2022-07) Liao, W.; Fei, Y.; Ghahari, F.; Zhang, W.; Chen, P. Y.; Kurtuluş, Aslı; Yen, C. H.; Cheng, Q.; Lu, X.; Taciroglu, E.; Civil Engineering; KURTULUŞ, Asli
    Strong motion data recorded by strong-motion networks are essential for preventing and mitigating earthquake disasters, such as earthquake early warning and earthquake emergency responses, and the type of accelerometer can significantly influence the quality of recorded ground motions (GMs) and the subsequent usage. Different types of accelerometers vary significantly in both the price and the quality of collected data, because cheap accelerometers generate non-negligible self-noise and reduce the quality of the collected GMs. However, the effects of the accelerometer type and spatial density on the accuracy of GM-based seismic damage assessment are still unknown. The present study attempts to quantify these effects comprehensively at a regional scale. First, a method to simulate recorded data from different quality sensors is devised, using characteristics of existing low-, medium-, and high-quality accelerometers. These simulations use input data from either the Pacific Earthquake Engineering GM database or from a high-fidelity fault rupture and regional wave propagation simulation. Subsequently, the simulated sensor data are used to assess the seismic damage to typical buildings at a city scale. The results indicate that low-quality sensors found in most smartphones are currently insufficient for assessing seismic damage. Medium-quality accelerometers (MEMS-based instruments), on the other hand, can provide feasible solutions for cost-effective city-scale deployment and may offer deployment options that are superior to sensor networks with high-quality accelerometers.
  • Placeholder
    ArticlePublication
    Interaction of a pile with layered-soil under vertical excitations: field experiments versus numerical simulations
    (Springer International Publishing, 2017-09) Seylabi, E. E.; Kurtuluş, Aslı; Stokoe II, K. H.; Taciroglu, E.; Civil Engineering; KURTULUŞ, Asli
    Data recorded during a field test involving an instrumented drilled shaft under vertical excitations are examined in order to (1) extract the soil–pile system’s dynamic impedance, and (2) to evaluate the small-strain shear stiffness and material damping properties of the surrounding soil. Numerical simulations of steady-state vibration tests with an axisymmetric finite element model are used for back-calculating the in-situ small-strain dynamic soil properties (i.e., shear stiffness and material damping ratio). Also, a numerically computed impedance function is compared with known analytical solutions and that obtained through direct processing of the field test data. These analyses revealed that the discrete numerical model can successfully reproduce the measured responses of the shaft-soil system, and yield its frequency-dependent impedance function as well as equivalent small-strain dynamic soil properties. The validated numerical model presented here offers a detailed view of the vertical dynamic responses of drilled shafts within the small-strain range, and can be used for design and analysis of future field tests.
  • Placeholder
    ArticlePublication
    Regional-scale seismic fragility, loss, and resilience assessment using physics-based simulated ground motions: An application to istanbul
    (Wiley, 2023-05) Zhang, W.; Chen, P. Y.; Crempien, J. G. F.; Kurtuluş, Aslı; Arduino, P.; Taciroglu, E.; Civil Engineering; KURTULUŞ, Asli
    Using results from 57 large-scale physics-based fault-rupture and wave propagation simulations, this research aims to evaluate the seismic risk, loss, and resilience of more than 16,000 reinforced concrete buildings in the Zeytinburnu district of Istanbul, Turkey. For each building and under each earthquake scenario, the spatially varying site-specific simulated ground motions were used for performing three-dimensional nonlinear time-history analyses. The resulting structural responses—such as peak story drift ratios (PSDR) and peak floor accelerations (PFAs)—were utilized to conduct three region-scale tasks: (i) building- and site-specific seismic fragility analysis for both structural and nonstructural components of each building; (ii) intensity-based seismic loss assessment using the FEMA P58 methodology and Monte Carlo simulations; and (iii) resilience evaluation based on the expected time of recovery predicted through FEMA P58. Moreover, both inertial and kinematic soil–structure interaction (SSI) effects were considered using a substructuring method for all three tasks. Site-specific soil properties were utilized to compute the coefficients of soil springs and dashpots, as well as the foundation input motions. The SSI effects were investigated by comparing the fragility, loss, and resilience indices obtained with and without considering SSI.
  • Placeholder
    Conference paperPublication
    Microzonation with respect to ground shaking intensity
    (CRC Press, 2019) Ansal, Mustafa Atilla; Tönük, G.; Kurtuluş, Aslı; Civil Engineering; Silvestri, F.; Moraci, N.; ANSAL, Mustafa Atilla; KURTULUŞ, Asli
    Seismic microzonation is conducted to assess the seismic hazard on the ground surface with respect to ground shaking intensity. A probabilistic seismic hazard study is conducted to define earthquake characteristics on the rock outcrop. A grid system is generated to divide the investigation area into cells according to geological and geotechnical data. Site characterizations are based on available information to define soil profiles for each cell with soil stratifications and shear wave velocities extending down to the engineering bedrock. Site-specific 1D site response analyses are carried out for all soil profiles, based on the engineering properties of encountered soil layers, selection and scaling of the sufficient number of input acceleration time histories compatible with the regional seismicity and earthquake source characteristics. The microzonation study carried out for Zeytinburnu town on the European side of Istanbul with respect to ground shaking intensity is presented. The importance of the selection of the microzonation parameters for assessing ground shaking intensity is discussed.
  • Placeholder
    ArticlePublication
    A cost-benefit analysis of sensor quality and spatial density for rapid regional post-event seismic damage assessment: Application to Istanbul
    (Elsevier, 2022-12) Cheng, Q.; Liao, W.; Fei, Y.; Tian, Y.; Lu, X.; Zhang, W.; Ghahari, F.; Kurtuluş, Aslı; Taciroglu, E.; Civil Engineering; KURTULUŞ, Asli
    A quantitative evaluation of the influence of sensor quality and spatial density on the results of rapid regional seismic damage evaluations of buildings can provide an important reference for the deployment of a strong-motion network. However, the influence of sensor quality and spatial density on seismic damage assessment is still unclear. Therefore, a cost-benefit analysis framework of sensor quality and spatial density for rapid regional post-event seismic damage assessment is proposed. In this framework, a simulation method for sensor-recorded ground motions and an interpolation-based ground motion field refinement method are used to consider the influence of the quality and density of the sensor network. The accuracies of seismic damage assessments with different sensor layout schemes were compared using the time-history analysis-based regional seismic damage assessment method, through which the influence of sensor quality and spatial density on the seismic damage assessment can be quantitatively evaluated. Finally, the Zeytinburnu district of Istanbul was selected as an example for illustrating the proposed framework. The main conclusions are as follows: (1) the spatial density of the sensors used is more significant for improving the accuracy of a seismic damage assessment than the quality of the sensors used; (2) the influence of population density can be considered using the proposed framework; and (3) the proposed framework can quantitatively consider the influence of sensor quality and spatial density on the rapid regional seismic damage assessment of buildings, which provides an important reference for the deployment of a strong-motion network for a given budget.