Browsing by Author "Roo, A. de"
Now showing 1 - 3 of 3
- Results Per Page
- Sort Options
ArticlePublication Metadata only Composing domain-specific physical models with general-purpose software modules in embedded control software(Springer Science+Business Media, 2014-02) Roo, A. de; Sözer, Hasan; Akşit, M.; Computer Science; SÖZER, HasanA considerable portion of software systems today are adopted in the embedded control domain. Embedded control software deals with controlling a physical system, and as such models of physical characteristics become part of the embedded control software. In current practices, usually general-purpose languages (GPL), such as C/C++ are used for embedded systems development. Although a GPL is suitable for expressing general-purpose computation, it falls short in expressing the models of physical characteristics as desired. This reduces not only the readability of the code but also hampers reuse due to the lack of dedicated abstractions and composition operators. Moreover, domain-specific static and dynamic checks may not be applied effectively. There exist domain-specific modeling languages (DSML) and tools to specify models of physical characteristics. Although they are commonly used for simulation and documentation of physical systems, they are often not used to implement embedded control software. This is due to the fact that these DSMLs are not suitable to express the general-purpose computation and they cannot be easily composed with other software modules that are implemented in GPL. This paper presents a novel approach to combine a DSML to model physical characteristics and a GPL to implement general-purpose computation. The composition filters model is used to compose models specified in the DSML with modules specified in the GPL at the abstraction level of both languages. As such, this approach combines the benefits of using a DSML to model physical characteristics with the freedom of a GPL to implement general-purpose computation. The approach is illustrated using two industrial case studies from the printing systems domain.ArticlePublication Metadata only MOO: An architectural framework for runtime optimization of multiple system objectives in embedded control software(Elsevier, 2013-10) Roo, A. de; Sözer, Hasan; Bergmans, L.; Akşit, M.; Computer Science; SÖZER, HasanToday's complex embedded systems function in varying operational conditions. The control software adapts several control variables to keep the operational state optimal with respect to multiple objectives. There exist well-known techniques for solving such optimization problems. However, current practice shows that the applied techniques, control variables, constraints and related design decisions are not documented as a part of the architecture description. Their implementation is implicit, tailored for specific characteristics of the embedded system, tightly integrated into and coupled with the control software, which hinders its reusability, analyzability and maintainability. This paper presents an architectural framework to design, document and realize multi-objective optimization in embedded control software. The framework comprises an architectural style together with its visual editor and domain-specific analysis tools, and a code generator. The code generator generates an optimizer module specific for the given architecture and it employs aspect-oriented software development techniques to seamlessly integrate this module into the control software. The effectiveness of the framework is validated in the context of an industrial case study from the printing systems domain.ArticlePublication Metadata only Verification and analysis of domain-specific models of physical characteristics in embedded control software(Elsevier, 2012-12) Roo, A. de; Sözer, Hasan; Akşit, M.; Computer Science; SÖZER, HasanContextA considerable portion of the software systems today are adopted in the embedded control domain. Embedded control software deals with controlling a physical system, and as such models of physical characteristics become part of the embedded control software.ObjectiveDue to the evolution of system properties and increasing complexity, faults can be left undetected in these models of physical characteristics. Therefore, their accuracy must be verified at runtime. Traditional runtime verification techniques that are based on states/events in software execution are inadequate in this case. The behavior suggested by models of physical characteristics cannot be mapped to behavioral properties of software. Moreover, implementation in a general-purpose programming language makes these models hard to locate and verify. Therefore, this paper proposes a novel approach to perform runtime verification of models of physical characteristics in embedded control software.MethodThe development of an approach for runtime verification of models of physical characteristics and the application of the approach to two industrial case studies from the printing systems domain.ResultsThis paper presents a novel approach to specify models of physical characteristics using a domain-specific language, to define monitors that detect inconsistencies by exploiting redundancy in these models, and to realize these monitors using an aspect-oriented approach. We complement runtime verification with static analysis to verify the composition of domain-specific models with the control software written in a general-purpose language.ConclusionsThe presented approach enables runtime verification of implemented models of physical characteristics to detect inconsistencies in these models, as well as broken hardware components and wear and tear of hardware in the physical system. The application of declarative aspect-oriented techniques to realize runtime verification monitors increases modularity and provides the ability to statically verify this realization. The complementary static and runtime verification techniques increase the reliability of embedded control software.