Browsing by Author "Lustbader, J."
Now showing 1 - 2 of 2
- Results Per Page
- Sort Options
Conference ObjectPublication Metadata only Comparison of synthetic and steady air jets for impingement heat transfer over vertical surfaces(IEEE, 2012) Arık, Mehmet; Sharma, R.; Lustbader, J.; He, X.; Mechanical Engineering; ARIK, MehmetNatural convection air cooling is the method of choice for many low-power electronics applications due to cost, availability, and reliability considerations. This method is not only limited to low-power applications, but is also constrained by the buoyancy dependence of the flow. Therefore, further enhancement of natural convection is needed. Enhanced natural convection allows higher heat dissipation while maintaining the simplicity of passive cooling. Synthetic jet devices operating on the microfluidics principle provide unique cooling advantages for local cooling with high coefficients of performance. Synthetic jets used in the current study are piezoelectrically driven, small-scale, pulsating devices capable of producing highly turbulent jets formed by periodic entrainment and expulsion of the fluid through an orifice. The compactness of the jet actuator coupled with the high exit air velocities can significantly reduce the size of thermal management systems. In this paper, we present experimental results for impingement heat transfer for both steady and unsteady jets over a Reynolds number range of 100 to 3,000. A range of nozzle-to-plate surface distances is discussed. To mimic a comparable electronics component, we used a 25.4-mm square heated surface.ArticlePublication Metadata only Steady and unsteady air impingement heat transfer for electronics cooling applications(ASME, 2013) Arık, Mehmet; Sharma, R.; Lustbader, J.; He, X.; Mechanical Engineering; ARIK, MehmetThis paper focuses on two forced convection methods—steady jet flow and pulsating flow by synthetic jets—that can be used in applications requiring significant amounts of heat removal from electronics components. Given the dearth of available data, we have experimentally investigated steady jets and piezoelectrically driven synthetic jets that provide pulsating flow of air at a high coefficient of performance. To mimic a typical electronics component, a 25.4-mm × 25.4-mm vertical heated surface was used for heat removal. The impingement heat transfer, in the form of Nusselt number, is reported for both steady and unsteady jets over Reynolds numbers from 100 to 3000. The effect of jet-to-plate surface distance on the impingement heat transfer is also investigated. Our results show that synthetic jets can provide significantly higher cooling than steady jets in the Reynolds number range of 100 to 3000. We attribute the superior performance of synthetic jets to vortex shedding associated with the unsteady flow.