Browsing by Author "Falotico, E."
Now showing 1 - 2 of 2
- Results Per Page
- Sort Options
ArticlePublication Open Access Emotion as an emergent phenomenon of the neurocomputational energy regulation mechanism of a cognitive agent in a decision-making task(Sage, 2021-02) Kırtay, M.; Vannucci, L.; Albanese, U.; Laschi, C.; Öztop, Erhan; Falotico, E.; Computer Science; ÖZTOP, ErhanBiological agents need to complete perception-action cycles to perform various cognitive and biological tasks such as maximizing their wellbeing and their chances of genetic continuation. However, the processes performed in these cycles come at a cost. Such costs force the agent to evaluate a tradeoff between the optimality of the decision making and the time and computational effort required to make it. Several cognitive mechanisms that play critical roles in managing this tradeoff have been identified. These mechanisms include adaptation, learning, memory, attention, and planning. One of the often overlooked outcomes of these cognitive mechanisms, in spite of the critical effect that they may have on the perception-action cycle of organisms, is “emotion.” In this study, we hold that emotion can be considered as an emergent phenomenon of a plausible neurocomputational energy regulation mechanism, which generates an internal reward signal to minimize the neural energy consumption of a sequence of actions (decisions), where each action triggers a visual memory recall process. To realize an optimal action selection over a sequence of actions in a visual recalling task, we adopted a model-free reinforcement learning framework, in which the reward signal—that is, the cost—was based on the iteration steps of the convergence state of an associative memory network. The proposed mechanism has been implemented in simulation and on a robotic platform: the iCub humanoid robot. The results show that the computational energy regulation mechanism enables the agent to modulate its behavior to minimize the required neurocomputational energy in performing the visual recalling task.Conference ObjectPublication Metadata only Sequential decision making based on emergent emotion for a humanoid robot(IEEE, 2017) Kirtay, M.; Vannucci, L.; Falotico, E.; Öztop, Erhan; Laschi, C.; Computer Science; ÖZTOP, ErhanCertain emotions and moods can be manifestations of complex and costly neural computations that our brain wants to avoid. Instead of reaching an optimal decision based on the facts, we find it often easier and sometimes more useful to rely on hunches. In this work, we extend a previously developed model for such a mechanism where a simple neural associative memory was used to implement a visual recall system for a humanoid robot. In the model, the changes in the neural state consume (neural) energy, and to minimize the total cost and the time to recall a memory pattern, the robot should take the action that will lead to minimal neural state change. To do so, the robot needs to learn to act rationally, and for this, it has to explore and find out the cost of its actions in the long run. In this study, a humanoid robot (iCub) is used to act in this scenario. The robot is given the sole action of changing his gaze direction. By reinforcement learning (RL) the robot learns which state-action pair sequences lead to minimal energy consumption. More importantly, the reward signal for RL is not given by the environment but obtained internally, as the actual neural cost of processing an incoming visual stimuli. The results indicate that reinforcement learning with the internally generated reward signal leads to non-trivial behaviours of the robot which might be interpreted by external observers as the robot's `liking' of a specific visual pattern, which in fact emerged solely based on the neural cost minimization principle.