Browsing by Author "Daglar, H."
Now showing 1 - 4 of 4
- Results Per Page
- Sort Options
ArticlePublication Open Access Computer simulations of 4240 MOF membranes for H2/CH4 separations: insights into structure–performance relations(Royal Society of Chemistry, 2018-04-14) Altintas, C.; Avci, G.; Daglar, H.; Gülçay, Ezgi; Fındıkçı, İlknur Eruçar; Keskin, S.; Mechanical Engineering; FINDIKÇI, Ilknur Eruçar; Gülçay, EzgiDesign of new membranes having high H2/CH4 selectivity and high H2 permeability is strongly desired to reduce the energy demand for H2 production. Metal organic frameworks (MOFs) offer a great promise for membrane-based gas separations due to their tunable physical and chemical properties. We performed a high-throughput computational screening study to examine membrane-based H2/CH4 separation potentials of 4240 MOFs. Grand canonical Monte Carlo (GCMC) and molecular dynamics (MD) simulations were used to compute adsorption and diffusion of H2 and CH4 in MOFs. Simulation results were then used to predict adsorption selectivity, diffusion selectivity, gas permeability and membrane selectivity of MOFs. A large number of MOF membranes was found to outperform traditional polymer and zeolite membranes by exceeding the Robeson's upper bound for selective separation of H2 from CH4. Structure–performance analysis was carried out to understand the relations between MOF membranes' selectivities and their pore sizes, surface areas, porosities, densities, lattice systems, and metal types. Results showed that MOFs with pore limiting diameters between 3.8 and 6 Å, the largest cavity diameters between 6 and 12 Å, surface areas less than 1000 m2 g−1, porosities between 0.5 and 0.75, and densities between 1 and 1.5 g cm−3 are the most promising membranes leading to H2 selectivities >10 and H2 permeabilities >104 Barrer. Our results suggest that monoclinic MOFs having copper metals are the best membrane candidates for H2/CH4 separations. This study represents the first high-throughput computational screening of the most recent MOF database for membrane-based H2/CH4 separation and microscopic insight provided from molecular simulations will be highly useful for the future design of new MOFs having extraordinarily high H2 selectivities.ArticlePublication Open Access Database for CO2 separation performances of MOFs based on computational materials screening(American Chemical Society, 2018-05-23) Altintas, C.; Avci, G.; Daglar, H.; Azar, A. N. V.; Velioglu, S.; Fındıkçı, İlknur Eruçar; Keskin, S.; Mechanical Engineering; FINDIKÇI, Ilknur EruçarMetal-organic frameworks (MOFs) are potential adsorbents for CO2 capture. Because thousands of MOFs exist, computational studies become very useful in identifying the top performing materials for target applications in a time-effective manner. In this study, molecular simulations were performed to screen the MOF database to identify the best materials for CO2 separation from flue gas (CO2/N-2) and landfill gas (CO2/CH4) under realistic operating conditions. We validated the accuracy of our computational approach by comparing the simulation results for the CO2 uptakes, CO2/N-2 and CO2/CH4 selectivities of various types of MOFs with the available experimental data. Binary CO2/N-2 and CO2/CH4 mixture adsorption data were then calculated for the entire MOF database. These data were then used to predict selectivity, working capacity, regenerability, and separation potential of MOFs. The top performing MOF adsorbents that can separate CO2/N-2 and CO2/CH4 with high performance were identified. Molecular simulations for the adsorption of a ternary CO2/N-2/CH4 mixture were performed for these top materials to provide a more realistic performance assessment of MOF adsorbents. The structure-performance analysis showed that MOFs with Delta Q(st)(0) > 30 kJ/mol, 3.8 angstrom < pore-limiting diameter < 5 angstrom, 5 angstrom < largest cavity diameter < 7.5 angstrom, 0.5 < phi < 0.75, surface area < 1000 m(2)/g, and rho > 1 g/cm(3) are the best candidates for selective separation of CO2 from flue gas and landfill gas. This information will be very useful to design novel MOFs exhibiting high CO2 separation potentials. Finally, an online, freely accessible database https://cosmoserc.ku.edu.tr was established, for the first time in the literature, which reports all of the computed adsorbent metrics of 3816 MOFs for CO2/N-2, CO2/CH4, and CO2/N-2/CH4 separations in addition to various structural properties of MOFs.ArticlePublication Open Access An extensive comparative analysis of two MOF databases: high-throughput screening of computation-ready MOFs for CH4 and H2 adsorption(Royal Society of Chemistry, 2019-04-28) Altintas, C.; Avci, G.; Daglar, H.; Azar, A. N. V.; Fındıkçı, İlknur Eruçar; Velioglu, S.; Keskin, S.; Mechanical Engineering; FINDIKÇI, Ilknur EruçarComputation-ready metal-organic framework (MOF) databases (DBs) have tremendous value since they provide directly useable crystal structures for molecular simulations. The currently available two DBs, the CoRE DB (computation-ready, experimental MOF database) and CSDSS DB (Cambridge Structural Database non-disordered MOF subset) have been widely used in high-throughput molecular simulations. These DBs were constructed using different methods for collecting MOFs, removing bound and unbound solvents, treating charge balancing ions, missing hydrogens and disordered atoms of MOFs. As a result of these methodological differences, some MOFs were reported under the same name but with different structural features in the two DBs. In this work, we first identified 3490 common MOFs of CoRE and CSDSS DBs and then performed molecular simulations to compute their CH4 and H-2 uptakes. We found that 387 MOFs result in different gas uptakes depending on from which DB their structures were taken and we identified them as problematic' MOFs. CH4/H-2 mixture adsorption simulations showed that adsorbent performances of problematic MOFs, such as selectivity and regenerability, also significantly change depending on the DB used and lead to large variations in the ranking of materials and identification of the top MOFs. Possible reasons of different structure modifications made by the two DBs were investigated in detail for problematic MOFs. We described five main cases to categorize the problematic MOFs and discussed what types of different modifications were performed by the two DBs in terms of removal of unbound and bound solvents, treatment of missing hydrogen atoms, charge balancing ions etc. with several examples in each case. With this categorization, we aimed to direct researchers to computation-ready MOFs that are the most consistent with their experimentally reported structures. We also provided the new computation-ready structures for 54 MOFs for which the correct structures were missing in both DBs. This extensive comparative analysis of the two DBs will clearly show how and why the DBs differently modified the same MOFs and guide the users to choose either of the computation-ready MOFs from the two DBs depending on their purpose of molecular simulations.ReviewPublication Metadata only Metal-organic framework-based materials for the abatement of air pollution and decontamination of wastewater(Elsevier, 2022-09) Daglar, H.; Altintas, C.; Fındıkçı, İlknur Eruçar; Heidari, G.; Zare, E. N.; Moradi, O.; Srivastava, V.; Iftekhar, S.; Keskin, S.; Sillanpää, M.; Mechanical Engineering; FINDIKÇI, Ilknur EruçarDeveloping new and efficient technologies for environmental remediation is becoming significant due to the increase in global concerns such as climate change, severe epidemics, and energy crises. Air pollution, primarily due to increased levels of H2S, SOx, NH3, NOx, CO, volatile organic compounds (VOC), and particulate matter (PM) in the atmosphere, has a significant impact on public health, and exhaust gases harm the natural sulfur, nitrogen, and carbon cycles. Similarly, wastewater discharged to the environment with metal ions, herbicides, pharmaceuticals, personal care products, dyes, and aromatics/organic compounds is a risk for health since it may lead to an outbreak of waterborne pathogens and increase the exposure to endocrine-disrupting agents. Therefore, developing new and efficient air and water quality management systems is critical. Metal-organic frameworks (MOFs) are novel materials for which the main application areas include gas storage and separation, water harvesting from the atmosphere, chemical sensing, power storage, drug delivery, and food preservation. Due to their versatile structural motifs that can be modified during synthesis, MOFs also have a great promise for green applications including air and water pollution remediation. The motivation to use MOFs for environmental applications prompted the modification of their structures via the addition of metal and functional groups, as well as the creation of heterostructures by mixing MOFs with other nanomaterials, to effectively remove hazardous contaminants from wastewater and the atmosphere. In this review, we focus on the state-of-the-art environmental applications of MOFs, particularly for water treatment and air pollution, by highlighting the groundbreaking studies in which MOFs have been used as adsorbents, membranes, and photocatalysts for the abatement of air and water pollution. We finally address the opportunities and challenges for the environmental applications of MOFs.