Browsing by Author "Ciraci, S."
Now showing 1 - 3 of 3
- Results Per Page
- Sort Options
Book PartPublication Metadata only Guiding architects in selecting architectural evolution alternatives(Springer Science+Business Media, 2011) Ciraci, S.; Sözer, Hasan; Aksit, M.; Computer Science; SÖZER, HasanAlthough there exist methods and tools to support architecture evolution, the derivation and evaluation of alternative evolution paths are realized manually. In this paper, we introduce an approach, where architecture specification is converted to a graph representation. Based on this representation, we automatically generate possible evolution paths, evaluate quality attributes for different architectural configurations, and optimize the selection of a particular path accordingly. We illustrate our approach by modeling the software architecture evolution of a crisis management system.ArticlePublication Metadata only Hydrogenated carbon monolayer in biphenylene network offers a potential paradigm for nanoelectronic devices(American Chemical Society, 2022-09-15) Demirci, S.; Gorkan, T.; Çallloǧlu, Ş.; Özçelik, Veli Ongun; Barth, J. V.; Aktürk, E.; Ciraci, S.; Natural and Mathematical Sciences; ÖZÇELİK, Veli OngunA metallic carbon monolayer in the biphenylene network (specified as C ohs) becomes an insulator upon hydrogenation (specified as CH ohs). Patterned dehydrogenation of this CH ohs can offer a variety of intriguing functionalities. Composite structures constituted by alternating stripes of C and CH ohs with different repeat periodicity and chirality display topological properties and can form heterostructures with a tunable band-lineup or Schottky barrier height. Alternating arrangements of these stripes of finite size enable one to also construct double barrier resonant tunneling structures and 2D, lateral nanocapacitors with high gravimetric capacitance for an efficient energy storage device. By controlled removal of H atom from a specific site or dehydrogenation of an extended zone, one can achieve antidoping or construct 0D quantum structures like antidots, antirings/loops, and supercrystals, the energy level spacing of which can be controlled with their geometry and size for optoelectronic applications. Conversely, all these device functions can be acquired also by controlled hydrogenation of a bare C ohs monolayer. Since all these processes are applied to a monolayer, the commensurability of electronically different materials is assured. These features pertain not only to CH ohs but also to fully hydrogenated Si ohs.Conference ObjectPublication Metadata only A run-time verification framework for smart grid applications implemented on simulation frameworks(IEEE, 2013) Ciraci, S.; Sözer, Hasan; Tekinerdogan, B.; Computer Science; SÖZER, HasanSmart grid applications are implemented and tested with simulation frameworks as the developers usually do not have access to large sensor networks to be used as a test bed. The developers are forced to map the implementation onto these frameworks which results in a deviation between the architecture and the code. On its turn this deviation makes it hard to verify behavioral constraints that are described at the architectural level. We have developed the ConArch toolset to support the automated verification of architecture-level behavioral constraints. A key feature of ConArch is programmable mapping for architecture to the implementation. Here, developers implement queries to identify the points in the target program that correspond to architectural interactions. ConArch generates runtime observers that monitor the flow of execution between these points and verifies whether this flow conforms to the behavioral constraints. We illustrate how the programmable mappings can be exploited for verifying behavioral constraints of a smart grid application that is implemented with two simulation frameworks.