Browsing by Author "Altok, Ceren"
Now showing 1 - 1 of 1
- Results Per Page
- Sort Options
Master ThesisPublication Metadata only A revised approach to cryptocurrency portfolio optimization using advanced Q-learning and policy iteration frameworksAltok, Ceren; Albey, Erinç; Albey, Erinç; Önal, Mehmet; Güler, M. G.; Department of Data ScienceDespite all the factors that cause concern among investors, such as volatility and de centralization of crypto world, the popularity of cryptocurrencies continues to grow steadily. The cryptocurrency market still holds its allure for many investors due to the high profit levels it has experienced in the past. With the entrance of numerous alt coins into the market, portfolio management becomes much more challenging. In the literature, we come across numerous studies proposing efficient portfolio management techniques for cryptocurrencies. This study presents proposed models developed based on policy iteration and Q-learning algorithms. Under Q-learning, three distinct sub-models are introduced: Deep Q-Network (DQN), Double Deep Q-Network (DDQN), and Double Dueling Q Network (DDDQN). All of these models are trained using 6-month training periods and compared using 10 different training and testing periods. Additionally, to eval uate both of proposed policy iteration and Q-learning models, baseline models were created for each algorithm, and the performance of the proposed models was assessed against these baseline models. The results indicate that among Policy Iteration models, the proposed model has the highest average ROI value of 3%, making it the top-performing model. Similarly, among Q-learning models, the proposed DQN model surpasses both baseline models and other Q-learning models, with an average ROI value of 2%. Considering all the models, the proposed Policy Iteration model achieves the highest average ROI value, while the proposed DQN and the proposed DDDQN model demonstrates the lowest volatility in terms of ROI standard deviations.