Browsing by Author "Akba, Tufan"
Now showing 1 - 6 of 6
- Results Per Page
- Sort Options
Conference paperPublication Metadata only Design methodology of a concentrating solar volumetric receiver(ASME, 2023) Akba, Tufan; Baker, D.; Mengüç, Mustafa Pınar; Mechanical Engineering; MENGÜÇ, Mustafa Pınar; Akba, TufanA volumetric receiver design process is proposed to respond wide range of power, outlet temperature, or mass flow rate needs. In the receiver model, concentrated solar radiation hits the inner surface cavity and heats the gaseous fluid passing through the porous media assembled between the cavity and the insulator. Porous media properties and receiver geometry are coupled in the design process to determine the best possible option. A two-step process starts with a parameter sweep to create a surrogate model. Then, gradient-based design optimization is performed using two different surrogate models to maximize the outlet air temperature for bounded design variables in receiver volume and outer surface temperature constraints. The proposed design process has the advantage of exploring more design options faster using the surrogate model and more accurate results using the base model in the plant-level simulations. The methodology is discussed by comparing the surrogate models and the model validation shows that over 95% accuracy is obtained using both surrogate models. Surrogate-based design optimization is compared as in solution time and the final results are compared with respect to the base receiver model.ArticlePublication Metadata only Geometric design of micro scale volumetric receiver using system-level inputs: An application of surrogate-based approach(Elsevier, 2023-09-15) Akba, Tufan; Baker, D. K.; Mengüç, Mustafa Pınar; Mechanical Engineering; MENGÜÇ, Mustafa Pınar; Akba, TufanConcentrating solar thermal power is an emerging renewable technology with accessible storage options to generate electricity when required. Central receiver systems or solar towers have the highest commercial potential in large-scale power plants because of reaching the highest temperature. With the increasing solar chemistry applications and new solar thermal power plants, various receiver designs require in micro or macro-scale, in materials, and temperature limits. The purpose of the article is computing the geometry of the receiver in various conditions and provide information during the conceptual design. This paper proposes a surrogate-based design optimization for a micro-scale volumetric receiver model in the literature. The study includes creating training data using the Latin Hypercube method, training five different surrogate models, surrogate model validation, selection procedure, and surrogate-based design optimization. Selected surrogates have over 98% R2 fit and less than 4% root mean square error. In final step, optimization performance compared with the base model. Because of the model complexity, surrogate models reached better objective values in a significantly shorter time.ArticlePublication Metadata only Gradient-based optimization of micro-scale pressurized volumetric receiver geometry and flow rate(Elsevier, 2023-02) Akba, Tufan; Baker, D.; Mengüç, Mustafa Pınar; Mechanical Engineering; MENGÜÇ, Mustafa Pınar; Akba, TufanThis study focuses on the design optimization of a micro-scale pressurized volumetric receiver by changing geometry and flow rate constrained by the volume, outlet air temperature, and outer surface temperature. The pressurized volumetric receiver model is replicated from an existing model, which assumes constant air pressure and neglects the convection loss from the cavity. The existing model is revised from a solver to a design optimizer. The replicated model is restructured using OpenMDAO (Open-source MultiDisciplinary Analysis and Optimization) framework, and analytical derivatives are implemented for efficient derivative calculation to increase optimization performance. The replicated model is verified, and the maximum outlet air temperature difference is less than 0.05%. Optimization performance, selection of optimizers, the effect of the domain size, and radiative methods are discussed. The combined impact of the design variables is observed by selecting SLSQP (Sequential Least SQuares Programming) and trust-region optimizers. Optimization performance is tested in different domain sizes and compared with a design of experiments analysis. For testing the impact of radiative heat transfer methods to design optimization, the Rosseland approximation, and P1 method are selected. Depending on the design domain, a solution methodology is suggested for future receiver design optimizations applicable for macro-scale pressurized volumetric receivers.ArticlePublication Metadata only Modeling, transient simulations and parametric studies of parabolic trough collectors with thermal energy storage(Elsevier, 2020-03-15) Akba, Tufan; Baker, D.; Yazicioglu, A. G.For investigating the system response of parabolic trough collector heat generating system, a plant with parabolic trough collector field and two-tank molten salt thermal energy storage model with component-level control algorithm is developed for managing various working conditions. The model is transient inside the components and responds with hourly weather and demand data. The main purpose of this work is providing an alternative design methodology that focuses on the collector field, and storage size by investment, location, and load type. Using a simple economic model, the plant parameters are calculated, which contains only initial investment costs of the parabolic trough collector field and thermal energy storage costs. Depending on the economic model, various sizes of collector field and storage combinations are created at fixed initial investment costs in the mathematical model. A parametric study is performed by using the economic model simulating at several initial investment costs, two different locations in Turkey, and four different load profiles. As a result of the parametric study, maximum solar fraction cases are selected and the generalized trend is observed. The effect of thermal energy storage on the solar fraction is discussed and the change in thermal energy storage with optimum plant size is investigated. After the optimum investment, the linear increment trend of dispatchability is disappearing and increases asymptotically by increasing the plant and/or storage size. Later in this work, the significance of the load profile is emphasized, which should be one of the major design parameters for solar-powered energy systems.PhD DissertationPublication Metadata only Off-design performance of micro-scale solar Brayton cycleAkba, Tufan; Mengüç, Mustafa Pınar; Mengüç, Mustafa Pınar; Önal, Mehmet; Güler, M. G.; Department of Mechanical EngineeringA novel methodology to design a micro-scale, solar-only Brayton cycle and assess its on- and off-design performance is presented. The method is applied to generate and assess six thermodynamic layouts over a range of solar irradiation levels. All plants have the same on-design requirements to create a baseline to compare their off-design performance. PyCycle, a thermodynamic cycle modeling library to model jet engine performance, is revised to transform the jet engine performance modeling to solar thermal plant performance modeling and used to create a volumetric receiver component. Initially, a gradient-based receiver design methodology is proposed. Even, gradient calculation is the longest step in this methodology and compared to the design of experiment study, 77% fewer designs are iterated in gradient-based optimization. The final result is 6% more efficient receiver design compared to 62% efficient, the best design of experiment result. For an efficient receiver design process, surrogate model algorithms are tested, and using the design of experiment results as training data and surrogate-based design optimizations are performed. Then a response surface surrogate model of the receiver is selected for design optimization to maximize the component-level efficiency. Because of the surrogate simplicity, the optimization process was completed with fewer designs in a shorter time and reached a better objective than the gradient-based optimization of the base model. For the plant design phase, the compressor and turbine maps are scaled for the balance of the plant. Off-design efficiency, mass flow rate, operation range, turbomachinery maps, and maximum power output are presented. Since the methodology can be adapted to all plant sizes, the results are normalized to on-design condition. The outcome of this study demonstrates the impact of the thermodynamic configuration on off-design performance and provides a methodology to design plants that are more robust across a range of solar irradiation levels and can be operated in a more flexible manner. For given design conditions in thesis, the solar radiation operation envelope can be extended 5%, with 6% less mass flow, and operates more efficiently than the benchmark case over 85% of the operating regime.ArticlePublication Metadata only Off-design performance of micro-scale solar brayton cycle(Elsevier, 2023-08-01) Akba, Tufan; Baker, D. K.; Mengüç, Mustafa Pınar; Mechanical Engineering; MENGÜÇ, Mustafa Pınar; Akba, TufanA novel methodology to design a micro-scale, solar-only, air-breathing, open Brayton cycle and assess its on- and off-design performance. The methodology is applied to generate and assess six thermodynamic layouts over a range of solar irradiation levels. All plants have the same on-design requirements to create a baseline to compare their off-design performance. PyCycle, a thermodynamic cycle modeling library to model jet engine performance, is revised to transform the jet engine performance modeling to solar thermal plant performance modeling and used to create a volumetric receiver component. A response surface surrogate model of the receiver is created for design optimization to maximize the component-level efficiency. The compressor and turbine maps are scaled for the balance of the plant. Off-design efficiency, mass flow rate, operation range, turbomachinery maps, and maximum power output are presented. Since the methodology can be adapted to all plant sizes, the results are normalized to on-design condition. The outcome of this study demonstrates the impact of the thermodynamic configuration on off-design performance and provides a methodology to design plants that are more robust across a range of solar irradiation levels and can be operated in a more flexible manner. Compared to single shaft configuration, solar radiation operation range is improved by 5%, with 6% less mass flow, and operates more efficiently than the benchmark case over 85% of the operating regime.