Natural and Mathematical Sciences
Permanent URI for this collectionhttps://hdl.handle.net/10679/313
Browse
Browsing by Author "Altintas, C."
Now showing 1 - 5 of 5
- Results Per Page
- Sort Options
ArticlePublication Open Access Computational investigation of dual filler-incorporated polymer membranes for efficient CO2 and H2 separation: MOF/COF/Polymer mixed matrix membranes(American Chemical Society, 2023-01-26) Aydın, S.; Altintas, C.; Fındıkçı, İlknur Eruçar; Keskin, S.; Mechanical Engineering; FINDIKÇI, Ilknur EruçarMixed matrix membranes (MMMs) composed of two different fillers such as metal-organic frameworks (MOFs) and covalent-organic frameworks (COFs) embedded into polymers provide enhanced gas separation performance. Since it is not possible to experimentally consider all possible combinations of MOFs, COFs, and polymers, developing computational methods is urgent to identify the best performing MOF-COF pairs to be used as dual fillers in polymer membranes for target gas separations. With this motivation, we combined molecular simulations of gas adsorption and diffusion in MOFs and COFs with theoretical permeation models to calculate H2, N2, CH4, and CO2 permeabilities of almost a million types of MOF/COF/polymer MMMs. We focused on COF/polymer MMMs located below the upper bound due to their low gas selectivity for five industrially important gas separations, CO2/N2, CO2/CH4, H2/N2, H2/CH4, and H2/CO2. We further investigated whether these MMMs could exceed the upper bound when a second type of filler, a MOF, was introduced into the polymer. Many MOF/COF/polymer MMMs were found to exceed the upper bounds showing the promise of using two different fillers in polymers. Results showed that for polymers having a relatively high gas permeability (≥104 barrer) but low selectivity (≤2.5) such as PTMSP, addition of the MOF as the second filler can have a dramatic effect on the final gas permeability and selectivity of the MMM. Property-performance relations were analyzed to understand how the structural and chemical properties of the fillers affect the permeability of the resulting MMMs, and MOFs having Zn, Cu, and Cd metals were found to lead to the highest increase in gas permeability of MMMs. This work highlights the significant potential of using COF and MOF fillers in MMMs to achieve better gas separation performances than MMMs with one type of filler, especially for H2 purification and CO2 capture applications.ArticlePublication Open Access Database for CO2 separation performances of MOFs based on computational materials screening(American Chemical Society, 2018-05-23) Altintas, C.; Avci, G.; Daglar, H.; Azar, A. N. V.; Velioglu, S.; Fındıkçı, İlknur Eruçar; Keskin, S.; Mechanical Engineering; FINDIKÇI, Ilknur EruçarMetal-organic frameworks (MOFs) are potential adsorbents for CO2 capture. Because thousands of MOFs exist, computational studies become very useful in identifying the top performing materials for target applications in a time-effective manner. In this study, molecular simulations were performed to screen the MOF database to identify the best materials for CO2 separation from flue gas (CO2/N-2) and landfill gas (CO2/CH4) under realistic operating conditions. We validated the accuracy of our computational approach by comparing the simulation results for the CO2 uptakes, CO2/N-2 and CO2/CH4 selectivities of various types of MOFs with the available experimental data. Binary CO2/N-2 and CO2/CH4 mixture adsorption data were then calculated for the entire MOF database. These data were then used to predict selectivity, working capacity, regenerability, and separation potential of MOFs. The top performing MOF adsorbents that can separate CO2/N-2 and CO2/CH4 with high performance were identified. Molecular simulations for the adsorption of a ternary CO2/N-2/CH4 mixture were performed for these top materials to provide a more realistic performance assessment of MOF adsorbents. The structure-performance analysis showed that MOFs with Delta Q(st)(0) > 30 kJ/mol, 3.8 angstrom < pore-limiting diameter < 5 angstrom, 5 angstrom < largest cavity diameter < 7.5 angstrom, 0.5 < phi < 0.75, surface area < 1000 m(2)/g, and rho > 1 g/cm(3) are the best candidates for selective separation of CO2 from flue gas and landfill gas. This information will be very useful to design novel MOFs exhibiting high CO2 separation potentials. Finally, an online, freely accessible database https://cosmoserc.ku.edu.tr was established, for the first time in the literature, which reports all of the computed adsorbent metrics of 3816 MOFs for CO2/N-2, CO2/CH4, and CO2/N-2/CH4 separations in addition to various structural properties of MOFs.ArticlePublication Open Access Effect of metal–organic framework (MOF) database selection on the assessment of gas storage and separation potentials of MOFs(Wiley, 2021-03-29) Dağlar, H.; Gulbalkan, H. C.; Avcı, G.; Aksu, G. O.; Altundal, O. F.; Altintas, C.; Fındıkçı, İlknur Eruçar; Keskin, S.; Mechanical Engineering; FINDIKÇI, Ilknur EruçarDevelopment of computation-ready metal–organic framework databases (MOF DBs) has accelerated high-throughput computational screening (HTCS) of materials to identify the best candidates for gas storage and separation. These DBs were constructed using structural curations to make MOFs directly usable for molecular simulations, which caused the same MOF to be reported with different structural features in different DBs. We examined thousands of common materials of the two recently updated, very widely used MOF DBs to reveal how structural discrepancies affect simulated CH4, H2, CO2 uptakes and CH4/H2 separation performances of MOFs. Results showed that DB selection has a significant effect on the calculated gas uptakes and ideal selectivities of materials at low pressure. A detailed analysis on the curated structures was provided to isolate the critical elements of MOFs determining the gas uptakes. Identification of the top-performing materials for gas separation was shown to strongly depend on the DB used in simulations.ArticlePublication Open Access An extensive comparative analysis of two MOF databases: high-throughput screening of computation-ready MOFs for CH4 and H2 adsorption(Royal Society of Chemistry, 2019-04-28) Altintas, C.; Avci, G.; Daglar, H.; Azar, A. N. V.; Fındıkçı, İlknur Eruçar; Velioglu, S.; Keskin, S.; Mechanical Engineering; FINDIKÇI, Ilknur EruçarComputation-ready metal-organic framework (MOF) databases (DBs) have tremendous value since they provide directly useable crystal structures for molecular simulations. The currently available two DBs, the CoRE DB (computation-ready, experimental MOF database) and CSDSS DB (Cambridge Structural Database non-disordered MOF subset) have been widely used in high-throughput molecular simulations. These DBs were constructed using different methods for collecting MOFs, removing bound and unbound solvents, treating charge balancing ions, missing hydrogens and disordered atoms of MOFs. As a result of these methodological differences, some MOFs were reported under the same name but with different structural features in the two DBs. In this work, we first identified 3490 common MOFs of CoRE and CSDSS DBs and then performed molecular simulations to compute their CH4 and H-2 uptakes. We found that 387 MOFs result in different gas uptakes depending on from which DB their structures were taken and we identified them as problematic' MOFs. CH4/H-2 mixture adsorption simulations showed that adsorbent performances of problematic MOFs, such as selectivity and regenerability, also significantly change depending on the DB used and lead to large variations in the ranking of materials and identification of the top MOFs. Possible reasons of different structure modifications made by the two DBs were investigated in detail for problematic MOFs. We described five main cases to categorize the problematic MOFs and discussed what types of different modifications were performed by the two DBs in terms of removal of unbound and bound solvents, treatment of missing hydrogen atoms, charge balancing ions etc. with several examples in each case. With this categorization, we aimed to direct researchers to computation-ready MOFs that are the most consistent with their experimentally reported structures. We also provided the new computation-ready structures for 54 MOFs for which the correct structures were missing in both DBs. This extensive comparative analysis of the two DBs will clearly show how and why the DBs differently modified the same MOFs and guide the users to choose either of the computation-ready MOFs from the two DBs depending on their purpose of molecular simulations.ReviewPublication Metadata only Metal-organic framework-based materials for the abatement of air pollution and decontamination of wastewater(Elsevier, 2022-09) Daglar, H.; Altintas, C.; Fındıkçı, İlknur Eruçar; Heidari, G.; Zare, E. N.; Moradi, O.; Srivastava, V.; Iftekhar, S.; Keskin, S.; Sillanpää, M.; Mechanical Engineering; FINDIKÇI, Ilknur EruçarDeveloping new and efficient technologies for environmental remediation is becoming significant due to the increase in global concerns such as climate change, severe epidemics, and energy crises. Air pollution, primarily due to increased levels of H2S, SOx, NH3, NOx, CO, volatile organic compounds (VOC), and particulate matter (PM) in the atmosphere, has a significant impact on public health, and exhaust gases harm the natural sulfur, nitrogen, and carbon cycles. Similarly, wastewater discharged to the environment with metal ions, herbicides, pharmaceuticals, personal care products, dyes, and aromatics/organic compounds is a risk for health since it may lead to an outbreak of waterborne pathogens and increase the exposure to endocrine-disrupting agents. Therefore, developing new and efficient air and water quality management systems is critical. Metal-organic frameworks (MOFs) are novel materials for which the main application areas include gas storage and separation, water harvesting from the atmosphere, chemical sensing, power storage, drug delivery, and food preservation. Due to their versatile structural motifs that can be modified during synthesis, MOFs also have a great promise for green applications including air and water pollution remediation. The motivation to use MOFs for environmental applications prompted the modification of their structures via the addition of metal and functional groups, as well as the creation of heterostructures by mixing MOFs with other nanomaterials, to effectively remove hazardous contaminants from wastewater and the atmosphere. In this review, we focus on the state-of-the-art environmental applications of MOFs, particularly for water treatment and air pollution, by highlighting the groundbreaking studies in which MOFs have been used as adsorbents, membranes, and photocatalysts for the abatement of air and water pollution. We finally address the opportunities and challenges for the environmental applications of MOFs.