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Abstract: To carry out required aid operations efficiently and effectively after an occurrence of a
disaster such as an earthquake, emergency control centers must determine the effect of disasters
precisely and and in a timely manner. Different kinds of data-gathering techniques can be used to
collect data from disaster areas, such as sensors, cameras, and unmanned aerial vehicles (UAVs).
Furthermore, data-fusion techniques can be adopted to combine the data gathered from different
sources to enhance the situation awareness. Recent research and development activities on advanced
air mobility (AAM) and related unmanned aerial systems (UASs) provide new opportunities. Un-
fortunately, designing these systems for disaster situation analysis is a challenging task due to the
topological complexity of urban areas, and multiplicity and variability of the available data sources.
Although there are a considerable number of research publications on data fusion, almost none of
them deal with estimating the optimal set of heterogeneous data sources that provide the best effec-
tiveness and efficiency value in determining the effect of disasters. Moreover, existing publications
are generally problem- and system-specific. This article proposes a model-based novel analysis and
synthesis framework to determine the optimal data fusion set among possibly many alternatives,
before expensive implementation and installation activities are carried out.

Keywords: disaster situation awareness; UAVs and data sources; quality of data fusion; model-based
framework for determining optimal data fusion; domain model of data sources for earthquake
detection; automated synthesis for data fusion

1. Introduction

We define disaster situation awareness as the ability of the authorities to effectively
and efficiently detect the negative effects of disasters so that aid operations can be planned
and executed in a timely manner. In general, the objective is twofold: to understand the
type and magnitude of the damage caused and to determine the conditions and locations
of the persons that need help.

The concept of situation awarenesshas been studied extensively and applied in several
areas [1] such as disaster management [2]. Unmanned aerial vehicles (UAVs) (also known
as drones), for example, can be used to detect the effect of disasters [3]. UAVs flying over a
disaster area can take, compare and analyze images obtained before and after the disaster.
Although UAVs can be considered adequate for some purposes, they may fall short of
detecting certain facts such as the location of persons under rubble. Moreover, UAVs may
take a considerable amount of time before their missions are completed. Nevertheless,
during the last decade, we have observed the introduction of the concept of so-called
advanced air mobility (AAM) and its implementation by unmanned aerial systems (UASs),
where swarms of UAVs cooperate together for a common mission [4]. All these new
technologies help in creating more effective disaster management systems.
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Additionally to the use of UAVs, disaster-related data can be gathered from various
sources. For example, dedicated sensors can be attached to physical objects such as resi-
dences, bridges, and roads to detect if the corresponding structure is damaged [5]. Base
stations of mobile network providers may supply information about the location and use
of mobile phones [6]. Dedicated systems can be brought to the disaster area, such as
microwave radars to determine if there are living persons under rubble [7]. Official registra-
tion databases can be consulted to estimate the possible victims of the collapsed residences.
For brevity, in this article, such devices and systems are abstracted as data sources.

Emergency control centers aim at minimizing the negative effects of disasters by detect-
ing and monitoring disaster situations and by carrying out aid operations accordingly [8,9].
The success of these centers depends on the accuracy and timeliness of the gathered data.
There is a large set of possible data sources, each with its advantages and shortcomings.

Data fusion [10] is a promising technique to get the best out of multiple data sources.
Due to high investment costs, before designing and implementing data fusion systems, it
may be beneficial to estimate the optimal set of data sources that give the best combined
effectiveness, cost, and timing values of sensor fusion. This requires a set of tools for the
analysis and/or synthesis of heterogeneous data fusion systems before they are installed.
Implementation alternatives of data sources and fusion techniques are considered out of
the scope of this article.

Unfortunately, there are almost no publications devoted to analysis and synthesis
of prospective data fusion configurations in disaster/earthquake management. More-
over, most proposed solutions are problem- and/or system-specific. What is needed is a
framework which enables us to define models for a large category of data fusion alterna-
tives. These models can for example be formed manually by an expert or be computed
by synthesis algorithms. The framework should be extensible to introduce new models of
geographical elements, data sources, and analysis and synthesis algorithms.

The contributions/novelties of this article are as follows. First, to detect disaster
situations, a novel domain model is defined for representing the relevant data sources.
In this article, earthquakes are chosen as an example of disaster. Second, to represent
geographical areas, an object-oriented model is defined. In addition, dedicated queries are
introduced to create models of data fusion associated with a selected set of geographical
entities. Third, a model-based framework is introduced to specify the candidate data
sources for a given geographical area. Fourth, with the help of the framework, the effect
of various alternatives of data fusion can be estimated. Last, to synthesize the optimal
set of data sources within specified constraints, algorithms are defined. To the best of our
knowledge, such a framework has not been proposed by the research community before.

This article is organized as follows. The following Section 2 introduces the background
and related work. Section 3 presents the problem statement, the research questions, and
the method adopted. Section 4 describes the model base for data sources, presents the
domain model, and gives examples of a selected set of data sources. The architecture
of the framework and the associated object-oriented models are explained in Section 5.
Section 6 defines the objectives of data fusion and presents formulas to calculate a selected
set of quality values of the user-defined data fusion models. Two synthesis algorithms are
presented in Section 7. Section 8 describes how the proposed framework can be extended
to support UAS-based data fusion systems. Section 9 discusses the threats of validity
of the assumptions made in this article. Section 10 presents our research plans. Finally,
Section 11 gives the results and conclusions. The Appendices A and B present the estimated
characteristics of the data sources which are referred to in this article.

2. Background and Related Work
2.1. Situation Awareness

From a systems perspective, situation awareness can be defined as enabling systems to
sense, adapt, and react, based on the environment. During the last decades, within various
application domains, a considerable number of research publications has been presented on
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situation awareness such as military [11–13], disaster management of different kinds [2,14],
smart manufacturing [15], tourism [16], connected cars [17], and advanced aerial mobility
applications [18]. In [1], situation awareness is studied conceptually from the perspective
of human behavior.

The publications on situational awareness can be classified from several perspectives.
Although there are similarities, the application domain is the one of the determining factors
in the way a system with situation awareness is designed. Most publications on situation
awareness are, therefore, ‘problem specific’ [11–18]. For example, in [13], conceptual
models are presented to evaluate the quality of symbolic information, and to semantically
integrate heterogeneous and dynamic environments with cyberspace exploration. The
initiatives presented are interesting but are specific to defense and security domains. A
considerable effort may be needed to adapt the proposed techniques to reduce disaster
situation awareness problems.

Furthermore, the majority of publications propose a particular system and discuss
how the system accomplishes its design objectives. These publications are ‘system specific’.

Models for representing environments are considered important in the way data
are gathered and interpreted. In this context, for example, data fusion techniques are
evaluated [15]. Various analysis methods are proposed, for example, based on statistical
analysis [19], Bayesian networks [20], and ontology-based techniques [21]. Multiplicity
of data sources, such as crowd-sourcing, sensors, UAVs, and fusion of these are also
investigated [22].

2.2. The Disaster Situation Awareness Problem

The disaster situation awareness problem is a special case of the general situational
awareness problems discussed in the previous section. Immediate and accurate detection
of disaster situations is crucial for an effective and efficient response. Unfortunately,
depending on the kind, size, and intensity of disaster situations, emergency control centers
may have difficulties in obtaining the necessary information as needed. We termed this
problem the disaster situation awareness problem. There have been a considerable number
of research publications on earthquake prediction, but unfortunately, on-time prediction is
still a difficult problem [23]. Although this article focuses on the data sources necessary for
after an earthquake period, naturally, the necessary data fusion system must be planned,
designed, and installed before a disaster occurs.

When a disaster occurs, emergency control centers try to gather information from all
kinds of sources such as victimized persons, existing sensors, telephone calls, authority
reports, UAVs, and satellite images [24–26]. There are a considerable number of publications
on disaster/earthquake management [2,8,9,14,26]. To increase accuracy and efficiency of
disaster situational awareness, data obtained from more than one data source must be
fused and interpreted, preferably in an automated way.

One of the main problems in enhancing disaster situation awareness is the high
investment costs. Firstly, to improve the awareness, it may be necessary to install many
kinds and numbers of data sources within a large geographical area. Secondly, designing
such a large-scale data fusion system is a challenging task due to the topological complexity
of urban areas, and the multiplicity and variability of the available data sources. Therefore,
automated tools are needed.

2.3. UAVs and Data Fusion Techniques

UAVs can be defined as small aircraft that can be operated remotely by pilots or pro-
grammed to operate without the assistance of humans. UAVs were originally developed
for military purposes, but they are now a major focus of research in several disciplines.
The technical characteristics of UAVs play a significant role in their categorization, such
as technology used, level of autonomy, size, weight, and energy resources. UAVs are
often equipped with a variety of sensors, including radars, television cameras, global posi-
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tioning systems (GPS), satellite communications, image intensifiers, and infrared imaging
technology [27].

Nowadays, UAVs are used in many application domains, such as: precision agricul-
ture [28], construction and infrastructure inspection [29,30], and rescue of people [31] and
also in the same context of this article—disaster management. For example, a literature
review on the application of drones in the disaster management context is presented in [26].
The authors of that work have analyzed papers from 2009 to 2020 and classified them
into four categories: (1) mapping or disaster management; (2) searching and rescuing;
(3) transportation; and (4) training.

UAVs can be also prepared for specific missions such as face recognition. In [32], for
example, a deep neural network model is presented to improve the performance of face
detection and recognition tasks when photos are taken from high altitudes. However, in
the case of earthquakes, detecting living persons under the rubble is an important concern,
where no face information is available. Our article does not focus on the algorithms which
can be adopted in the implementation of data sources. Nevertheless, such techniques can
be adopted to improve the quality of data sources suitable for certain disaster types.

There are attempts to measure the concentration of gases and aerosols in the atmo-
sphere by installing the necessary equipment on board commercial airliners [33]. The
samples are collected with an inlet probe, which is connected to the equipment on board.
This allows accurate sampling of aerosol and chemical contents. The samples are analyzed
in ground-based laboratories. These data can be used, for example, in cases where forest
fires have to be monitored. Such techniques can be linked to other data sources such as
satellite data and to UASs ascending in situ.

It is stated that although there is a significant increase in the number of publications
on use of drones in disaster cases, a limited amount of research is observed to address
post-disaster healthcare situations especially with regards to disaster victim identification.

Another topic related to this paper is remote sensing [34], which is used to describe
information that is gathered from distant targets. This is usually done by satellites, aircraft,
and UASs. An interesting example of remote sensing using imagery taken from commercial
flights is presented by Mastelic et al. [35].

Data fusion techniques are introduced to enhance the accuracy and reliability of
multiple but related data sources [10,36,37]. In [37], for example, a survey of simultaneous
localization and mapping (SLAM) and data fusion techniques for object detection and
environmental scene perception in unmanned aerial vehicles (UAVs) is presented. The
analysis performed by the authors revealed that a combination of data fusion and SLAM
can assist in autonomous UAV navigation without having a predefined map. In this
approach, raw sensor data are directly provided as an input to the SLAM algorithms. The
data fusion process may be made more end-to-end using machine learning techniques.
These techniques are suitable in enhancing the effectiveness and efficiency of data detection
by UAVs, for example, to improve situation awareness.

Another related work is presented in [38], in which a survey on UAV orthoimage
generation technologies that focus on mainstream frameworks is presented. The authors
give a detailed comparison of the important algorithms by referring to their performances
and propose extending the frameworks with deep learning techniques. Our focus in this
article is more on the fusion of heterogeneous data sources but not on the techniques
adopted in the implementation of individual data sources.

In the literature, data fusion techniques are classified as signal fusion and informa-
tion/data fusion [39]. Signal fusion is used to combine information from multiple sources
that measure the same type of physical phenomena, but with different characteristics.
Information fusion combines data/information from multiple sources to provide a more
accurate understanding of a situation. This article adopts information fusion techniques.

Due to the progress in sensor technologies and related systems, in addition to UAVs, it
may be beneficial to adopt multiple data sources to enhance awareness of disaster situations.
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None of the publications, however, propose analysis and synthesis methods for the
purpose of determining the optimal set of data sources, before expensive design and
implementation activities are carried out. Moreover, model-based frameworks are in
general not supported, meaning that system architectures are fixed and when needed, they
can not be easily extended, for example, by introducing new geographical and data source
models, and different analysis and synthesis algorithms.

2.4. Advanced Air Mobility and Enhancing Disaster Situation Awareness

Recently, there has been considerable interest in the concept of advanced air mobility
(AAM), which aims to provide safe and reliable on-demand aerial transportation for
customers, cargo, and packages [4]. The UASs (unmanned aerial systems) may consist of
swarms of systems with multiple UAVs, ground-stations, various data sources, autonomous
vehicles, smart mobile devices, etc. [4,18,40].

Research topics include a combination of challenges from many disciplines, such as
design of UAVs, situation awareness from a broad perspective, autonomous navigation
and coordination, and safety and reliability issues.

UASs can bring additional opportunities for improving situation awareness for disas-
ter/earthquake management. Firstly, UAVs may not only function as data sources but also
as the possible data fusion nodes. Secondly, in addition to ground-based data sources, a
swarm of UAVs can dynamically cover a large area for better situation awareness. Thirdly,
UAVs can share certain responsibilities among each other in lifting some heavy equipment
such as radars and precision optical devices.

To the best of our knowledge, analysis/synthesis of UAS-based data fusion systems
for disasters/earthquakes have not been studied sufficiently in the research media. We will
elaborate on these opportunities later in this article as a future work.

3. Problem Statement and Approach

Based on the literature study, we observe that the current research proposals on
enhancing disaster situation awareness have one or more of the following shortcomings:

• There is a lack of a model-based framework where, with the help of model manage-
ment tools, a large category of data sources and geographical elements can be defined.

• A domain model of data sources for earthquake detection is missing.
• There is a lack of analysis tools to evaluate various prospective data source fusion

alternatives for the purpose of achieving higher effectiveness.
• A toolset for automated synthesis is lacking, which can help in finding out the best

data fusion alternative for a given set of constraints.

3.1. Research Questions

To address these shortcomings, the following four research questions are elaborated:

1. What is a suitable architectural style of the desired model-based framework? How
can this architecture be extended to deal with the (future) UASs?

2. How to define a domain model of the data sources suitable for detecting the effects of
earthquakes?

3. How to compute the combined effectiveness, cost, and timing values as a result of
data fusion? The algorithms for computation must be changeable and re-definable to
satisfy different needs.

4. What kind of algorithms can be defined for automated synthesis of the optimal
data fusion?

3.2. Method

Our approach adopts techniques from various disciplines such as software engineering,
model-driven engineering, programming techniques, and algorithm design [41].

• Based on software engineering principles, architectural styles [42] are adopted.



Drones 2023, 7, 565 6 of 27

• The proposed framework is inspired from model-driven engineering techniques [43].
Within this context, a domain analysis work is carried out and the ‘feature-model’
notation is adopted for representing the domain of data sources.

• From programming techniques and algorithm design, design patterns [44] are adopted.
Patterns provide flexibility to the proposed framework. In addition, object-oriented
programming and querying techniques are adopted for relating the candidate data
sources to the elements of a geographical area. As for algorithms, data fusion formu-
las and optimization algorithms are implemented for data fusion synthesis and for
computing the effectiveness, cost, and timing values of the fused data sources.

4. Domain Model for Data Sources

In this section, first a model of the domain of data sources which can be used for
detecting the effects of earthquakes is given. Second, a selected set of data sources is
described in more detail.

4.1. A General View of the Domain

To represent the relevant data sources in a diagram, we adopt the feature diagram
notation [45]. This notation was defined to visually express the features of the domain
of interest, and it consists of symbols to represent mandatory features, optional features,
group, alternative group, abstract features, and concrete features. The diagram is in fact a
visual representation of propositional logic formulas [46].

In Figure 1, depending on the attachment characteristics of the data sources, the
domain is divided into three branches. The first branch represents the data sources which
can be attached to geographical areas. The second branch represents the data sources which
can be attached to physical objects. The third branch represents the data sources which can
be transported to the locations where disasters have been effective.

The first branch consists of three sub-branches: Airborne, Aerial trackers, and Regis-
tration database. The second branch has four sub-branches: Disaster detector, Smart-home
detector, Optical detector, and Smart utility meter. The third branch has three sub-branches:
Microphone, Carbon dioxide meter, and Microwave radar. The gray-colored rectangles
correspond to the concrete features. The white-colored rectangles must be refined into the
concrete ones.

The feature model can be used to create a concrete model by using the following strategy:

1. Starting from the root node, select the compulsory features, if any.
2. Decide if the optional features must be selected, if any.
3. By obeying the defined semantics, refine the features which are grouped together by

the logical operators of the feature model (for example OR, Alternative OR), if any.
4. Continue with this process from the abstract features towards the concrete ones until

no optional and/or abstract feature is left unresolved.

In this strategy, it is assumed that all leaf features are concrete and no cross-tree
constraints are specified. In Figure 1, the compulsory features are ‘Attached to geographic
area’ and ‘Registration database’, since registration of inhabitants is generally enforced
by law.

The model given in Figure 1 can be extended by adding new data sources or refining
the existing abstract features. Additionally, there may be many commercially available data
sources in the market with varying characteristics. These can be added to the figure as the
leaves of the tree structure. We will now elaborate on these data sources in more detail.
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Figure 1. Feature model representing the domain of data sources for detecting the effect
of earthquakes.

4.2. Data Sources Which Can Be Attached to Geographical Areas

Airborne data sources: UAVs, airplanes, and satellites [3,25] are considered in this
context. They can be used to observe a large area by sending images or videos of the
disaster area via a communication link to a ground station.

In this diagram, we consider three data sources for UAVs: Camera, Sonic, and IR. Opti-
cal cameras are especially relevant for estimating the effect of disasters such as earthquakes.
They can have a high probability of detection especially during a daytime surveillance
mission. Ultrasonic sensors (Sonic) can be used at low altitudes, for example, to measure
the level of floods. Infrared sensors (IR) can be used to detect living creatures and moving
targets such as vehicles from altitudes of 1 to 5 km.

Cameras and infrared sensors can also be attached to satellites and airplanes. It is
assumed that the gathering time with airplanes is higher than that of UAV. The response
time of a satellite depends on many factors, for example, whether it is geosynchronous or
not, the location of the satellite, the availability of online tracking by the base station, etc.
For brevity, the sub-features of satellites and airplanes are not shown in the figure.

Aerial trackers: Within this context, we consider GPS trackers [47], mobile phone
applications [48], and base-stations [6]. These data sources are relevant for estimating the
coordinates of persons. The accuracy of detection of positions of persons depends on where
the tracked persons are located. A GPS tracker is useful in tracking position, direction, and
time of movements. Mobile phone applications are also based on GPS; however, they use
the internal sensors of a mobile phone and track position through an application. Base
stations track positions based on online information about the registered mobile phones.

Registration database: Every well-organized municipality has a well-maintained list
of inhabitants per location. This information can be used to estimate the existence of
persons under the rubble after the occurrence of earthquakes. However, the probability
of detection depends on many factors. In addition to a normal living pattern, a person
may be living in multiple addresses, temporarily away from home, or even not living at
that address at all. The probability may also depend on night- or day-time occurrences of
the disaster.
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4.3. Data Sources Which Can Be Attached to Physical Objects

Collapse Detector: The purpose of this data source is to determine whether a structure
has been broken or not. A motion sensor detects the movement of an object at a given
location. A beam sensor can measure whether the surface of a structure is straight or not.

Seismic Sensor: It may detect ground oscillation, and accordingly outputs a signal
as a waveform [49]. This sensor can be useful in estimating the effect of earthquakes. It
can accurately measure the intensity of an earthquake. However, to determine whether the
structure has been damaged or not, one needs precise information about the robustness of
the corresponding structure and the ground mechanics of the location.

Smart home detectors: These sensors are commonly used in households for the
purpose of protecting the inhabitants from incidents such as water and gas leakage, smoke
and fire, and burglary [50]. The usefulness of these data sources depends on the type of
smart home detector. For example, consider the following sensors:

Carbon Monoxide sensor is designed to warn the user of any unusual build-up of
CO in where it is located. Smoke sensor measures the presence of smoke and detects fire
by sensing small particles in the air. Fire sensor detects fire according to the occurrence
of flames by sensing light beams. Motion sensor is used for detecting motion around the
sensor. Camera can detect motion, record, and give a warning.

Motion and camera detectors can be useful in estimating the presence of persons.
One important issue with these sensors is that adopting them for disaster detection may
interfere with the privacy of the inhabitants. We therefore assume that unless permission
is given, these sensors can only be attached to open areas such as schools, shopping
centers, hospitals.

Optical detectors: In this context, we consider face recognition systems [51] and
people counters [52]. Face recognizer is a way of confirming an individual’s identity
using an online face image. To this aim, images of the persons to be identified must be
pre-recorded by the system. With the help of pattern recognition algorithms, the online
image is classified according to the recorded images. These systems may hep in estimating
the locations of persons. In addition, the camera that is used for face recognition may
also function as a disaster detector, if programmed accordingly. People counters are used
to count the number of persons entering or leaving a location. This sensor can help in
estimating the presence of persons.

Utility meters: In this context, smart electricity, water, and gas meters are consid-
ered [53]. These meters record information about the consumption of electrical energy,
water, and/or gas. The gathered data can be used to infer the living patterns within a
location and as such, they can help in estimating if anyone is present in a location just
before the occurrence of an earthquake.

4.4. Data Sources Which Can Be Transported to Certain Locations

Microphone, carbon dioxide meter, and microwave radar: These data sources are
generally used after earthquakes by transporting them to the location of the disaster. Mi-
crophones are brought under the rubble to detect any meaningful sounds. Carbon dioxide
meters measure the breathing of living creatures [54]. Similarly, microwave radars [7]
detect movements of persons and breathing of lungs. All these data sources are relevant
for estimating the location of persons. Microwave radars are quite accurate and effective;
however, they are much more expensive than the other two sensors.

Other data sources:For brevity, this article mainly focuses on data sources that can
be used for earthquake detection. There are of course many more data sources which
can be used for various purposes. For example, barometers and compasses are mainly
used by the flight control systems of UAVs; such data sources are considered out of the
scope of this article. The adoption of a mobile analysis laboratory in situ is a promising
approach which is likely to be more often used in detecting the effects of disasters including
earthquakes [33].
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5. Architecture of the Framework

This section describes the framework that is designed for the analysis and synthesis
of the prospective data fusion alternatives. The intention of this section is not to explain
the implementation of the system in detail, but rather provide an architectural view and
abstract technical description so that the reader may gain an insight into its structure and
the working of it.

A symbolic representation of the architecture is given in Figure 2, using the ‘UML
component diagram’ notation. Three stakeholders are shown in the figure: Analyst, Data
source modeler, and Geographical area digital-twin modeler in ‘actor’ notation. The stakeholder
Designer of the system, who is in charge of designing and implementing the framework, is
not shown here. With the help of the component UI, the Analyst analyzes or synthesize
the prospective sensor fusion alternatives. To this aim, Data source modeler defines the
models of the available data sources using the feature-modeling tool, as explained in the
previous section. Geographical area digital-twin modeler is responsible for creating a model
of the geographical area that is considered. The UI component retrieves data from the
components Feature-modeling tool and OO database. The component OO database, in turn,
accesses the component Digital-twin model of Geographical-area. An external GIS database
provides the necessary data for this purpose. The component UI utilizes the functions
offered by the component Model evaluator for the analysis and synthesis operations. The
component Algorithms offers the necessary algorithms for both analysis and synthesis. For
dynamic menu generation, the components Simulator and OO database use the services of
the component UI.

Figure 2. A symbolic representation of the architecture of the model-based framework.

The proposed architecture is ‘model-based’. Without modifying the system, data
source and geographic information system models can be defined and introduced into the
system with the help of model management tools. In addition, UI menus, analysis and
synthesis algorithms, and most system functionalities are designed as plug-ins; they can be
replaced after the installation of the system without re-compilations.

The model of the geographic area is based on CityGML [55], which is an extensible
Geographic Information System (GIS) specification. The models and meta-models of
CityGML can be extended by subclassing the existing classes. However, it is claimed that
the current models of CityGML are not expressive enough to represent the data structures
required by disaster management systems, and to this aim, an extension of CityGML is
proposed [56]. In this article, we adopt the proposed extension, where a rich set of element
types are supported, such as Bridge, Factory, Financial Center, Firefighter Station, Historical
Buildings, Hospital, Logistic Center, Residence, Restaurant, Road, School, and Shopping
Center. In addition, disaster-specific data types are defined such as Emergency Control
Center, Collapse, Fire, Flood, Landslide, and Tsunami.
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Figure 3 shows a snippet of class Residence. The attributes of class Residence are
grouped in three categories marked with the stereotypes constant, dynamic, and derived.

The attributes tagged with the stereotype «constant» are those whose values are set
during the instance creation phase, when a digital-twin model [57] of an urban area is
defined. Regarding the attribute robustnessFactor, it is defined by experts depending on
the earthquake resilience properties of the construction and the ground mechanics of the
construction site [58] . The value of this attribute can be set as ‘undefined’, or be defined
within the range of 0 to 5.

The dynamic attributes are those whose values may change in time. For example, the
attribute nOfPersons can be estimated, set, or modified by a simulator, or it can be based on
an estimated number, derived from the relevant data sources.

The dynamic attributes whose names begin with the word attached, are responsible for
storing the data sources that are attached to the corresponding instance of class Residence.
As we are dealing with a modeling environment, the values of these attributes are objects
that represent the data sources. They are also used for calculating the effectiveness, timing,
and cost factors of the corresponding instance.

The dynamic attribute queries contain a set of ‘command-query objects’ which can
be executed on the instances of this class. Each element class, such as class Residence,
may have a dedicated set of queries, which can be stored and retrieved by calling on the
corresponding ‘setter and getter’ methods. This provides run-time extensibility in the kinds
of queries a class may provide.

Figure 3. An excerpt of the attributes and methods of class Residence.

The Analysis Process

The analyst may utilize the system, for example, in the following way:

1. Let us assume that a number of instances of class Residence has been created which
represents a selected set of actual residences of an urban area under consideration. In
this process, the constant attributes of these instances have been initialized as well.

2. Additionally, for the instances of class Residence, a set of dedicated ‘command-query
objects’ has been defined and stored in the attribute queries.

3. At this stage, these instances are now ready for use to analyse a model of a prospective
sensor fusion system. First, a fusion model must be defined.

4. With the help of the user interface (UI), the analyst observes these queries, which are
displayed at the UI as menu items. An implementation of Command pattern [44]
provides a dynamic menu generation mechanism.
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5. To simulate the attachment of the prospective data sources, an appropriate query is
selected by activating the corresponding menu item. The data source objects are also
selected by using the feature-modeling tool as defined in Section 4.

6. With the help of an object-oriented database, and depending on its definition, the
selected query item is executed over one or more instances of class Residence.

7. While executing the query, the database calls on the necessary ‘setter methods’ of
the corresponding instances. To this aim, class Residence provides the necessary
method interface.

8. Depending on the query, the selected data source objects are stored in one or more
instances of class Residence.

In contrast to the constant attributes, the derived attributes are computed. Consider
the following process as a follow-up step of the previous example:

9. When the data source objects are stored in an instance of class Residence, the method
calculateEffectiveness() is called on ‘self’.

10. This method retrieves the properties of the stored data source objects, and by using
the formulas presented in this article, it computes the values of the derived attributes.

11. If a new set of data source objects is stored, the derived attributes are computed in the
same way again.

12. Now assume that the analyst executes another menu item for attaching a UAV as a
data source on the corresponding geographical area.

13. In our system, a geographical area is represented as an instance of class Geographi-
cArea. The method notifyAttach() is automatically called on the corresponding in-
stances of class Residence, when a data source, such as a UAV is attached to the
corresponding geographical area. An implementation of Observer pattern [44] pro-
vides an ‘event propagation’ mechanism.

14. When called, this method reads the characteristics of this new data source, regis-
ters its identity, and calculates the derived attributes again. Similarly, the method
notifyDetach() is used when the corresponding data source is removed from the
geographical area.

The other implementation-related attributes and methods of class Residence are not
shown for brevity. Of course, the process given in this section has the intention to clarify a
possible usage of the instances of class Residence. In the implementation phase, depending
on the language adopted, different coding alternatives may be used.

Class Residence is not the only modelled element in the system. All physical objects
share certain properties such as constant, dynamic and derived attributes, a number of
‘setter and getter’ methods, methods to calculate the derived attributes, and methods which
are used for notification purposes. Adopting a standard interface for all physical objects
enables interfacing with the object-oriented database smoothly. The query objects per
class may differ considerably from each other. Nevertheless, these objects have a uniform
interface with the UI and the database. For brevity, we do not show the other class diagrams
in this article.

Example 1. Assume that the prospective data sources for sensor fusion are selected as follows:

• Face recognizer: This is attached to the corresponding physical instance.
• Collapse detector: This is attached to the corresponding physical instance.
• UAV camera: This is attached to the corresponding geographical area.

The data sources Face Recognizer and Collapse Detector are attached to the instances
of class Residence using the following queries:

• Q1 ATTACH_ENTRANCE WHERE
physical_object == ‘Residence’ AND data_source == ‘FaceRecognizer’
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• Q2 ATTACH_BASEMENT WHERE
physical_object == ‘Residence’ AND data_source == ‘CollapseDedector’

• Q3 ATTACH_ENTRANCE WHERE
physical_object == ‘Residence’ AND data_source == ‘FaceRecognizer’
AND physical_object.id == ‘instance’

• Q4 ATTACH_ENTRANCE WHERE
physical_object == ‘Residence’ AND data_source == ‘FaceRecognizer’
AND physical_object.robustness_factor ‘<3’

• Q5 ATTACH WHERE
physical_object == ‘GeographicRegion’
AND physical_object.coordinates == ‘coordinates’
AND data_source == ‘UAV-camera’)

In Q1, ‘ATTACH_ENTRANCE WHERE’ is the query command, ‘physical_object’
denotes to one or more target objects of the query, and ‘data_source’ specifies the data
source to be attached. This query selects all the instances of class Residence. Q2 is similar
to Q1; however, as a data source, ‘CollapseDedector’ is attached. In Q3, with the help of
the statement “physical_object.id == ‘instance”’ only one instance is selected. The word
‘instance’ here is used as a pseudo variable and must be replaced with a real instance
defined in the simulation environment. Q4 selects all the instances of class Residence
provided that their robustness factors are less than 3. Q5 selects a geographical region
identified with the specified coordinate values and attaches a UAV camera as a data source.

The query specifications Q1 to Q5 are so-called ‘write’ queries. The system also
supports ‘read’ queries which are embedded into certain menu items. These queries are
called in the implementation of the menu items for analysis purposes, for example, to
display the effectiveness, cost, and timing values of certain data fusion compositions. For
brevity, these are not shown here.

6. Objectives and the Effects of Data Fusion

This section first defines the objectives of data fusion under five items. Second, based
on the objectives, the combined effect of data fusion is presented.

6.1. Quality Objectives of Data Fusion

This section delineates the calculation of the individual effectiveness, cost, and timing
values of the data sources that are introduced in the previous section.

In the Cambridge dictionary [59], effectiveness is defined as “achieving the result that
you want”. In our context, the effectiveness value is considered from the perspective of the
following three objectives:

• Objective 1: The accuracy of estimating the effects of disasters is represented as a
probabilistic variable. This value must be sufficiently high for a given purpose;

• Objective 2: The accuracy of estimating the horizontal coordinates of a (living) person
after a disaster as a probabilistic variable. This value must be sufficiently high for a
given purpose;

• Objective 3: The accuracy of estimating the vertical coordinates of a (living) person
after a disaster as a probabilistic variable; this value must be sufficiently high for a
given purpose.

For each data source, the effectiveness values can be taken from the related prod-
uct catalogs and/or computed by experimentation. The effectiveness values must be
computed per objective and assumed to be between 0 and 1, where 1 is the maximum
possible effectiveness.

For each objective, different data sources can be selected and used. In case of adoption
of multiple data sources for a given objective, the total effectiveness value is computed
according to the data fusion formulas, which are given in Section 6.2.

The cost and timing values are considered by the objectives 4 and 5:
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• Objective 4: The estimated cost value of a data fusion per element which is rep-
resented as a probabilistic distribution function. This value must not exceed the
budgeting constraints;

• Objective 5: The estimated timing value of a data fusion per element which is rep-
resented as a probabilistic distribution function. This value must not exceed the
deadline constraints.

In Appendix A, three tables are defined that contain the estimated parameters for the
effectiveness, cost, and timing values of the prospective data sources.

6.2. Calculating the Effect of Data Fusion

The estimated effect of fusion of a set of data sources depends on the contribution of
each data source if they are attached to the same element. The effect must be estimated
according to one of the objectives defined in the previous section.

For determining the effectiveness values, depending on the characteristics of the geo-
graphical elements, prospective data sources, and the size and structure of the fusion, one
may use different models of computation. Arithmetical formulas, statistical methods [19],
Bayesian networks [20], Markov models, [60] etc., are typical examples. We observe, how-
ever, three determining factors: First, the model of computation must match the physical
properties of the fusion. Second, it must be computationally efficient since these computa-
tions may need to be carried out many times especially during a synthesis process. Third, a
library of alternative algorithms must be available if desired. This will give flexibility to the
user in deciding the best algorithm for a particular case.

In this article, the unit of calculation is based on one of the element types within a
geographical area such as a residence.

Basically, there are two cases:

1. Effectiveness of fusion of data sources with no contribution to each other. In this
case, the effectiveness value of the data source with the highest value is considered.
For example, in Appendix B Table A4, it is estimated that the data sources of UAV
cameras, motion-based collapse detectors, seismic detectors, and cameras of the face
recognizers have no contribution to a GPS tracker.

2. Effectiveness of fusion of data sources with some contribution two each other. The
effectiveness value of the fusion must be computed.

In the following, we define three alternative formulas; Weak, Average, and
Strong Contributions:

• Weak contribution: Per effectiveness objective, the selected N data sources are ranked
according to their effectiveness value from 1..N, where 1 represents the data source
with the highest effectiveness value and N is the lowest. The effectiveness of data
fusion of the element k ∈ K which is denoted as Ek with respect to objective j ∈ J
which is denoted as Oj is calculated using the following formula:

EF(Ek, Oj) = e1 +
N

∑
n=2

n−1

∏
m=1

(1− em)
2 · en

2 (1)

where, EF(Ek, Oj) is the estimated effectiveness value of the data fusion computed as
a series of contributions of the ranked data sources, e1 is the effectiveness value of the
first data source in ranking, em and en are the effectiveness values of the mth and nth
data sources in ranking, respectively.
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• Medium contribution: This formula uses the same parameters as the Equation (1).
The only difference is, in Equation (2), (1 − em) the component of the formula is
not squared.

EF(Ek, Oj) = e1 +
N

∑
n=2

n−1

∏
m=1

(1− em) · en
2 (2)

• Strong contribution: This formula uses the same parameters as the Equation (2). The
only difference is, in Equation (3), the en component of the formula is not squared.

EF(Ek, Oj) = e1 +
N

∑
n=2

n−1

∏
m=1

(1− em) · en (3)

The effects of the three formulas are illustrated in the Figure 4. Here, the green, orange,
and blue lines display the weak, medium, and strong contributions, respectively. This
figure is drawn with the assumption that every additional data source has the effectiveness
value 0.5. It can be seen that green contribution has an upper bound of approximately 0.6.

Figure 4. Effectiveness comparison between weakly, averagely, strongly related data sources.

Example 2. Let us assume that the following data sources are to be considered for the residence R:

• A UAV-camera is dispatched to the geographical area.
• There is a base station in the geographical area.
• One collapse detector is installed at the ground floor.
• There exists a registration database.
• There is a face recognizer at the entrance of the building.
• The camera of the face recognizer is used also as a collapse detector.

Based on Appendices A and B , the objective values are computed as follows:

Objective 1 (effectiveness): To estimate the effectiveness value for this objective, using
the Tables A1 and A2 from Appendix A and based on the mean values of the distribution
functions, the data sources under consideration are ranked:

1. Collapse detector (0.7).
2. UAV-camera (0.7).
3. The camera of the face recognizer (0.65).
4. Base station (0).
5. Registration database (0).
6. Face recognizer (0).

The data sources 4, 5, and 6 do not contribute to the considered effectiveness objective.
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The data sources 1, 2, and 3 contribute strongly to each other.
The estimated effectiveness value of the residence R with respect to objective 1 can be

computed using Equation (3):

EF(ER, O1) = 0.7 + (1− 0.7)× (0.7) + (1− (1− 0.7)× 0.7)× (0.65) = 0.9685

Objective 2 (effectiveness): To calculate the estimated effectiveness value of this
objective, using the Tables A1 and A2 and based on the mean values of the distribution
functions, the data sources under consideration are ranked:

1. Face recognizer (0.75).
2. Registration database (0.55).
3. Collapse detector (0).
4. UAV-camera (0).
5. The camera of the face recognizer (0).
6. Base station (0).

The data sources 3, 4, 5, and 6 do not contribute to the considered effectiveness objective.
The data sources 1 and 2 strongly contribute to each other.

The estimated effectiveness value of the residence R with respect to objective 2 can be
computed using Equation (3):

EF(ER, O2) = 0.75 + (1− 0.75)× (0.55) = 0.8875

Objective 3 (effectiveness): This estimated effectiveness value of objective 3 is the
same as the one of objective 2.

Objective 4 (total cost value): The total cost value is estimated by adding up the cost
values of the attached data sources for each element. Assuming the following five data
sources are utilized:

1. Face recognizer: 12.5 K .
2. Collapse detector: 5.5 K.
3. UAV-camera: This cost value is not included.
4. Base station: This cost value is not included.
5. Registration database: This cost value is not included.

Total cost of (R) = 18 K
Objective 5 (total timing value): The total timing value is estimated as follows: As-

suming the following five data sources are utilized, the data sources are ranked according
to their timing values:

1. Face recognizer: 0.55.
2. Collapse detector: 0.55.
3. Registration database: 0.55.
4. Base station: 10.5.
5. UAV-camera: 8.5 K.

Compared to the UAV, the timing values of the other data sources are negligible. As
depicted in the following Figure 5, the estimated timing value, for example, with respect to
objective 1, is computed in two steps:
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Figure 5. Estimated effectiveness value of the example with respect to objective 1.

7. Algorithms for Synthesizing the Optimal Data Fusion Configuration

The proposed approach in this article consists of two phases:

1. Forming a model of a geographical area with a set of data sources attached.
2. Calculating the effectiveness, cost, and timing properties of the model.

In the previous sections, forming a model is exemplified as a set of manual actions
carried out by the analyst. Although manual steps may be feasible in small scales, it may
become intractable if the model becomes too large. This article proposes two algorithms for
automated synthesis: Best-fit and Optimal-fit [41].

7.1. Best-Fit

This is a ‘greedy’ algorithm that builds up a search space of possible element/data-
source compositions step by step. At each step, the data source which has the best effective-
ness value is kept. The other alternatives are discarded. This process terminates until all
prospective data sources are considered and/or the cost and timing constraints are violated.
According to this approach, the data sources which are selected until the termination phase
give the optimal composition for fusion.

The Algorithm 1 is implemented by the function CALCULATE_BEST_FIT. The pa-
rameters used in this algorithm are instance, time_limit, and cost_limit, which represent an
instance of a physical object, timing and cost constraints, respectively. Lines (2) to (4) are
used to create the initial setting of the search tree, which represents the possible alternatives
of the data sources attached to a given instance. Here, instance represents a geographical
element such as an instance of class Residence. Selecting the best data source at each
step is realized by calling on the function BEST_APPLICABLE_SOURCE in line (5). This
function returns the best data source at a given step. This data source is appended to the
design tree as a mode. The total cost and timing values are calculated and updated. This
process continues until the time or cost limits are violated or all data sources are considered
(line 12).

The function BEST_APPLICABLE_SOURCE searches for all possible data sources for
the given context of the instance and the related tree structure. It accepts the parameters
ds-_tree, instance, time_limit, and cost_limit and returns the data source that has the maxi-
mum contribution to the effectiveness value. The function CALCULATE_EFFECTIVENESS
implements the formulas given in Section 6.2.

Example 3. Let us assume that the best data fusion composition must be found for an instance of
class Residence. The following characteristics are assumed:

• The cost limit is 15 K in unit of currency.
• The time limit is 3.6 K in seconds.
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Algorithm 1 CALCULATE_BEST_FIT(instance, time_limit, cost_limit) returns list of
data sources

1: function CALCULATE_BEST_FIT(instance, time_limit, cost_limit)
2: time← 0
3: cost← 0
4: ds_tree← empty tree
5: time, cost← ds_tree.add_root(BEST_APPLICABLE_SOURCE(ds_tree, instance,

time_limit, cost_limit))
6: while constraints are met do
7: t, c← ds_tree.add_child(prev_element, BEST_APPLICABLE_SOURCE(ds_tree,

instance, time_limit, cost_limit))
8: if new data_source attached then
9: time += t

10: cost += c
11: else
12: break
13: end if
14: end while
15: return ds_tree
16: end function

17: function BEST_APPLICABLE_SOURCE(ds_tree, instance, time_limit, cost_limit)
18: best_data_source← empty data_source object
19: f ound← false
20: data_sources← available data sources for the instance, length N
21: e f f ectiveness_values← empty list with length N used for comparison
22: for index from 0 to N do
23: e f f ectiveness, time, cost ← CALCULATE_EFFECTIVENESS(ds_tree,

data_sources[N])
24: if time < time_limit and cost < cost_limit then
25: e f f ectiveness_values[index]← e f f ectiveness
26: f ound← true
27: end if
28: end for
29: if found then
30: best_data_source← data_sources[argmax(e f f ectiveness_values)]
31: end if
32: return best_data_source
33: end function

The effectiveness values of the available data sources are estimated as follows:

1. Smart home (e = 0.717);
2. Face recognizer (e = 0.5);
3. Collapse detector (e = 0.233);
4. Camera of face recognizer(e = 0.22);
5. Seismic detector (e = 0.133);
6. People counter (e = 0.133).

For brevity, the cost and timing values of these data sources are not shown here. In the
first iteration, smart home is selected since it has the highest estimated effectiveness value.
The total cost is calculated as 2.5 K units of currency and the total time value is 0.1 s. In the
second iteration, the contributions of the remaining data sources are calculated. The face
recognizer is selected because it has the highest contribution value: (0.717 + (1− 0.717)×
0.5 = 0.8585).
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The total cost is estimated as 15 K and the total time as 0.655 s. The algorithm reaches
its cost limit and therefore terminates.

In this example, we assume that only one data source of the same type can be attached
to an residence. For illustration purposes, to explain the algorithm, a relatively simple
example is chosen. In a real case, however, there may be many geographical elements to be
considered with a large number of alternatives and variations of data sources.

The running time of the algorithm can be calculated as follows: If the number of data
sources in the output is N, and the number of available data sources is M, then the running
time can be computed by (4), where t represents the running time in each allocation step
(corresponds to the function BEST_APPLICABLE_SOURCE).

Tbest = t× (
M

∑
k=1

M− k + 1)

Tbest = t× N × (M− N +
1
2
)

(4)

7.2. Optimal-Fit

Similar to the previous one, this Algorithm 2 builds up a search space of possible
element/data-source compositions step by step. Contrary to the previous one, at each step,
for all data source compositions, the effectiveness, time, and cost values are calculated
and the alternatives with higher effectiveness values are appended to the search tree. This
process terminates if all data sources are considered or the timing and cost constraints are
violated. The branch with the highest effectiveness value is considered as the optimal data
source composition.

The Algorithm 2 is implemented by the function CALCULATE_OPTIMAL_FIT.
The parameters used in this algorithm, same as the previous Algorithm 1, are instance,
time_limit, and cost_limit, which represent an instance of a physical object, timing and
cost constraints, respectively. In line (2), the function OPTIMAL_APPLICABLE_SOURCES
is called, which returns a tree whose leaves refer to a set of data source alternatives that
have the maximum contribution to the effectiveness on their path with respect to timing
and cost constraints.

In the specification of the function OPTIMAL_APPLICABLE_SOURCES, two functions
play an important role: The function GET_MAX_N implements the formulas defined
in Section 6.2. For each leaf node, the function GETPATH searches for the paths to the
root node and calculates the total effectiveness, cost, and timing values of the branch.
According to this approach, the path that has the highest effectiveness value is selected as
the representation of the optimal data fusion.

The running time of the algorithm can be calculated as follows: If the tree length
in the output is L, and the number of available data sensors is M, and the number of
children nodes created is C = 3, then the running time is lower than the value showed
in (5). Here, t represents the running time in each allocation step (corresponds to the func-
tion OPTIMAL_AVAILABLE_SOURCES). An exact running time cannot be calculated,
because the level of leaf nodes is variable depending on the cost limit.

Toptimal ≤ t× [M + CL−1
C

∑
k=1

M− k−L+ 2], L > 1

Toptimal ≤ t× [M + CL(M−L+
C + 5

2
)], L > 1

(5)
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Algorithm 2 CALCULATE_OPTIMAL_FIT(instance, time_limit, cost_limit) returns list of
data sources

1: function CALCULATE_OPTIMAL_FIT(instance, time_limit, cost_limit)
2: candidate_trees← OPTIMAL_APPLICABLE_SOURCES(empty_tree, instance,

time_limit, cost_limit)
3: while constraints are met do
4: candidate_trees← OPTIMAL_APPLICABLE_SOURCES(candidate_trees,

instance, time_limit, cost_limit)
5: if each leaf of candidate_trees is end_lea f then
6: break
7: end if
8: end while
9: best_path← empty_tree

10: for each leaf in candidate_trees do
11: path, e f f ectiveness← GETPATH(candidate_trees, lea f ) . returns subtree
12: if e f f ectiveness > best_path.e f f ectiveness then
13: best_path← path
14: end if
15: end for
16: return best_path
17: end function

18: function OPTIMAL_AVAILABLE_SOURCES(ds_trees, instance, time_limit, cost_limit)
19: available_data_sources← GET_AVAILABLE_SOURCES(ds_trees, instance) . 2D

list that returns available data sources for each subtree
20: for all lea f in ds_trees do
21: expanded← false
22: path, e f f ectiveness← GETPATH(ds_trees, lea f )
23: selected_data_sources← GET_MAX_N(path, available_data_sources, 3) . Get

N maximum effectiveness values
24: for all data_source in selected_data_sources do
25: subtree.addchild(data_source)
26: expanded← true
27: end for
28: if not expanded then
29: subtree.lea f .type← end_node
30: end if
31: end for
32: return ds_trees
33: end function

Example 4. Consider the following data sources where the optimal data fusion option must
be determined:

• The cost limit is 15 K in unit of currency.
• The time limit is 3.6 K in seconds.

The effectiveness values of the available data sources are estimated as follows:

1. GPS trackers (e = 0.433);
2. Mobile phone apps (e = 0.433);
3. Base station (e = 0.367);
4. Registration database (e = 0.333);
5. UAV-camera (e = 0.233).

In this example, we only consider the effectiveness values. In the first iteration step,
the data sources with highest effectiveness values are (GPS trackers, mobile phone apps,
and base stations). In the second iteration, the best three data sources must be found for
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each data source that has been selected in the previous step. The result of the second
iteration is given below:

• GPS Trackers −→Mobile Phones, Base Stations, Registration Database;
• Mobile Phone apps −→ GPS Trackers, Base Stations, Registration Database;
• Base Stations −→ GPS Trackers, Mobile Phones, Registration Database.

Here, the sign −→ denotes to appended sub-nodes. Assume that the algorithm is now
terminated. The final step is to determine the best path from the nine paths. There are two
paths with the same value: (e = 0.679). The data sources in each path are: {GPS Trackers,
Mobile Phone apps} and {Mobile Phone apps, GPS Trackers}.

8. Generalization of the Analysis and Synthesis Approach to UAS-Based Data Fusion

In Section 2.4, it was stated that the concept of AAM and its implementation as UAS can
bring new opportunities for improving situation awareness in disaster/earthquake management.

A UAV, together with many other system components such as ground-based stations
and data sources of many kinds, provides much better coverage. They can form all
together so-called systems of systems, in which swarm of UAVs or even swarm UASs can
dynamically exchange data and information, and cooperate with each other for a common
set of goals. In addition to generic ones, UASs can also be designed for specific missions
such as disaster management. They may also share the heavy load such as radars and
precision optical devices.

Such a geography-based system consisting of static and dynamic parts can offer
effective decision making. In addition, life data can be provided to emergency con-
trol centers. UASs, in short, offer the perspective of creating a more dynamic and self-
adapting and responsive system architecture for the purpose of dealing with the unforeseen
disaster conditions.

In the following, we therefore elaborate on the possibilities of extending our analysis
and design framework for supporting UASs.

AAM-based data fusion systems can be introduced to the analysis and synthesis
framework in the following way:

1. UAV must be introduced as an element of a geographical model. If necessary, a new
class must be introduced in CityGML.

2. A set of queries must be defined for UAVs so that data sources can be attached for
fusion. In this case, an instance of a UAV can function as a data source and and as a
fusion node (element of a geographical area).

3. In addition to cost and timing values, a new quality attribute weight must be introduced.
4. The analysis and synthesis algorithms must take care of this new attribute as well.
5. UAVs may cooperate together during their mission by sharing some of their tasks.
6. To analye and synthesize models with cooperating UAVss, the computation of the

efficiency values must take care of a group of elements. In addition, time-dependent
properties of UAVs must be taken into account. The analysis and synthesis algorithms
must be defined accordingly, possibly by using network-based evaluation models.

The steps described in this section illustrate how the framework can be adapted to
cope with substantial change demands. These are our future plans for research.

9. Discussion

This section elaborates on the following conditions which may violate the assumptions
made in this article:

• Data sets and incorrect assumptions of the effectiveness, cost, and timing values
of data sources: The data sets used in the examples of this article are based on the
characteristics of the data sources in Appendices A and B. Each value is expressed as
a probabilistic variable of uniform distribution within a certain range.
Although carefully defined, these values may differ considerably from some of the
commercially available data sources in the market. Moreover, with the advancement
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of technology, new products are introduced frequently. It is therefore advisable to
consider concrete products instead of their abstract representations. In case of adoption
of concrete products, the accuracy of the estimations can be improved by consulting
to the catalogues, and if necessary, by carrying out dedicated experiments. If sufficient
data are available, machine learning techniques can be adopted to improve these
values as well. Nevertheless, the methods and techniques introduced in this article do
not depend on the data values presented in Appendices A and B; the data values are
used for illustration purposes and in the examples only.

• Inaccurate data fusion formulas: The data fusion formulas presented in Section 6.2
are based on the following assumptions: (a) The relevancy factor of a data fusion for
the objectives 1 to 3 is a probabilistic variable defined in the range of 0 to 1. (b) Attach-
ing a new data source cannot degrade the effectiveness factors of the already attached
data sources. (c) If a newly added data source contributes to the considered objec-
tive, the effectiveness function is a monotonously increasing function asymptotically
approaching 1 or a value less than 1. We consider these assumptions reasonable.
The formulas used for weak, medium, and strong contributions can be adapted to the
needs, or new formulas can be introduced as plug-ins. A limitation to this approach is
that data fusion is assumed to be realized at a geographical element only. In Section 8,
more general fusion possibilities are discussed.
New formulas can be defined in various ways, as long as they do not violate the
assumptions made. The contribution factors of the data sources to each other as
presented in Appendix B can be improved by experimentation. In addition, if suf-
ficient data are available, machine learning techniques can be adopted to improve
these values.

• Extensibility of the framework: Due to evolution of the needs and technologies,
it may be necessary to introduce new elements and/or data sources. The model-
based architectural style as described in Section 5 provides flexibility. For example, to
introduce a new geographical element, the following actions must be carried out: (1) A
new class representing the element must be introduced in the GIS model, possibly by
subclassing the existing classes. (2) The attributes of the instances of the class must be
initialized including the command objects for the relevant queries. The menu items
of the user interface can be automatically generated from the command objects by
using the Command design pattern [44]. If a new data source is to be introduced, the
following steps must be carried out: (1) The feature-model must be edited to introduce
the new feature, which represents the new data source. (2) A new set of command
objects must be added to the relevant element instances to enable attaching of the
new data source, if necessary. (3) The tables used in computing the effectiveness, cost,
and timing values must be updated. Changes to computations can be introduced as
plug-ins.

• Complexity of automatic synthesis of data fusion: If the number of possible data
sources which can be attached to a selected element is large and if this element offers
a large number of alternatives for data sources, the search space of the optimization
algorithm can be too large to handle.
In this article, we adopt a heuristic rule based on the following: First, data sources are
ranked according to their effectiveness values. Second, the search space is formed by
starting from the alternatives with the highest effectiveness values. Gradually, other
alternatives are considered according to their ranking order. The process continues
until the whole search space is constructed or the cost and/or timing constraints are
violated. It is also possible to limit the size of the search space while constructing it.
The heuristic rule reduces the state space considerably. This algorithm may not find
the optimal fusion if many data sources with fewer effectiveness values give in total a
better result than a few but more effective data sources. However, in practice due to
physical restrictions, it may be impractical to attach too many data sources at a given
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geographical area even if their total effectiveness value is high. The adopted heuristic
rule is therefore considered preferable for most cases.
The algorithms presented in this article adopts a single objective optimization strategy,
meaning that the quality attribute effectiveness is the main objective of the search for
the optimal solution. The other attributes, cost and timing values, are the restricting
constraints. One can also adopt multi-objective-based optimization algorithms, such as
Pareto optimization [61], to consider all relevant quality factors. From the perspective
of this article, the effectiveness of earthquake damage detection is the main objective
and the other two attributes are only taken into account as limiting constraints.

10. Future Work

The article presents part of our ongoing activities on disaster management. We are
currently extending the proposed approach in various ways. First, we are setting up a
laboratory to measure the actual parameters of commercially available data sources. By
this way, the data values will be determined more precisely for a given set of products. In
our current approach, data fusion is realized at certain predetermined physical locations.
This approach will be extended to UAS-based data Ffsion. In this way, it will be possible to
analyze and synthesize the models with a cooperating swarm of UAVs. Finally, the analysis
and synthesis algorithms will be investigated for this dynamically changing topology of
data-fusion systems.

11. Results and Conclusions

After the occurrence of a disaster such as an earthquake, emergency control centers
need to accurately and promptly determine the effect of the disaster so that aid operations
can be carried out effectively. To this aim, a data fusion system consisting of multiple data
sources must be designed and installed before a disaster occurs. Unfortunately, designing a
cost-effective system for this purpose is a challenging task. Firstly, the kinds of possible
data sources can be too large. Secondly, each data source may have its relative advantages
and shortcomings. Moreover, in case of data fusion, mutual effects of data sources on
each other must be considered. Finally, data sources may need to be installed in a large
geographical area.

We will now elaborate on this article from the perspective of the contributions/novelties
by referring to the research questions formulated in Section 3.

A novel model-based analysis and synthesis framework is introduced to address
the research questions ‘What is a suitable architectural style of the desired model-based
framework?’ and ‘How can this architecture be extended to deal with the (future) UAS?’.
In Section 8, we have outlined an approach for extending the proposed framework so that
it can be utilized in designing UASs.

Through an extensive domain analysis work and by organizing the identified domain
concepts under a feature diagram, a new domain model is proposed to address the research
question ‘How to define a domain model of the data sources suitable for detecting the
effects of earthquakes?’. Furthermore, a detailed specification of the relevant data sources
from the perspective of data fusion is presented in Appendices A and B.

A novel set of extensible object-oriented models and queries is introduced to give an
answer to the research question ‘How to compute the combined effectiveness, cost and
timing values as a result of data fusion?’. These can be used for simulating the prospective
data fusion alternatives. In addition, formulas are defined to determine whether the quality
objectives are fulfilled or not.

Novel automatic synthesis algorithms for data fusion are proposed to address the
research question ‘What kind of algorithms can be defined for automated synthesis of the
optimal data fusion?’.

The utility of the proposed approach is illustrated by a set of examples.
Overall, the proposed approach may eliminate the risks of designing and installing

irrelevant or less effective data fusion systems. We consider that the research questions
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presented in Section 3 are adequately addressed within the limits of the assumptions, as
discussed in the previous section.
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Appendix A. Estimated Parameters of Data Sources

None of the algorithms of this article are dependent on the data values presented in
this appendix. Data values are estimated based on the characteristics of some selected
products available in the market. Since technology is rapidly evolving, detection accuracy,
price, and response time of the presented data sources may vary in due time. When
applying the method and techniques presented in this article, the data values must be
obtained from the catalogs of the data sources to be purchased. Moreover, for brevity, not
all the possible data source types are represented in Appendices A and B.

Appendix A.1. Data Sources Attached to Geographical Areas

Table A1 is used to document the estimated characteristics of data sources that can be
attached to geographical areas. Here, the first column lists the considered data sources. The
remaining columns list the individual characteristics of these data sources with respect to
the five objectives presented in Section 4. The objectives are abbreviated as Obj<i> where the
index i is defined between 1 to 5. The min and max columns refer to the estimated range of
the characteristics per objective. From Obj1 to Obj3, the values in cells indicate the estimated
effectiveness values of data sources. These are expressed as probabilistic variables, where
the corresponding min and max columns indicate their ranges.The columns Obj4 and Obj5
refer to the cost and timing characteristics of the data sources, respectively. These are
expressed as probability distribution functions, where the corresponding min and max
columns refer to their ranges.

Table A1. The Estimated Parameters of a Selected Set of Relevant Data Sources

Data Source Obj1 *
min.

Obj1 *
max.

Obj2 *
min.

Obj2 *
max.

Obj3 *
min.

Obj3 *
max.

Obj4 ^
min.

Obj4 ^
max.

Obj5 +
min.

Obj5 +
max.

UAV (Camera) 0.5 & 0.9 & 0 0 0 0 - - 1.8 K 18 K

GPS trackers 0 0 0.4 0.9 0.4 0.9 8 K 20 K 0.01 0.5

Mobile phones 0 0 0.4 0.9 0.4 0.9 - - 0.01 0.5

Base stations 0 0 0.3 0.8 0.3 0.8 - - 1 20

Registration database 0 0 0.3 0.8 0.1 ** 0.8 ** - - 0.1 1

* Probability of effectiveness: uniform distribution. ^ Probability of cost value: uniform distribution in units of
currency. The cost of UAVs, Base stations, and Registration databases are neglected in our calculations per physical
object. Due to the high cost values of airborne data sources, they must be budgeted separately. + Probability of
timing value: uniform distribution in units of seconds. ** These values depend on day or night time, and on
holiday periods. & Largely dependent on weather conditions.
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Appendix A.2. Data Sources Attached to Physical Objects

Table A2 is used to document the estimated characteristics of data sources that can
be attached to physical objects. The definitions of the columns and rows are similar to the
ones of Table A1.

Table A2. The Estimated Parameters of a Selected Set of Relevant Data Sources

Data Source Obj1 *
min.

Obj1 *
max.

Obj2 *
min.

Obj2 *
max.

Obj3 *
min.

Obj3 *
max.

Obj4
^ min

Obj4
^ max.

Obj5 +
min.

Obj5 +
max.

Motion-based collapse detector 0.6 0.8 0 0 0 0 1 K 10 K 0.1 1

Seismic detector 0.2 ** 0.6 ** 0 0 0 0 500 2 K 0.01 0.5

Smart-home detectors 0.8 ^^ 0.9 ^^ 0.4 0.9 0.4 0.9 1 4 K 0.01 0.2

Face recognizer 0 0 0.6 ++ 0.9 ++ 0.6 ++ 0.9 ++ 5 K 20 K 0.1 1

Camera of the face recognizer 0.5 0.8 0 0 0 0 0 0 0.1 1

People counter & 0 0 0.1 0.3 0.1 0.3 500 1 K 1 10

* Probability of effectiveness: uniform distribution. ^ Probability of cost value: uniform distribution in units of
currency. + Probability of timing value: uniform distribution in units of seconds. ** If the earthquake resistance
factor of physical elements can be estimated accurately. Otherwise, we assume the values of 0.1 to 0.4. ^^ Except
the status of collapse, which is assumed to be zero. ++ If the disaster occurs after a certain time of detection, the
detected persons can be assumed outside of the vicinity or at their residences. & Can only estimate the number of
persons in the building.

Appendix A.3. Data Sources Transported to the Locations of Disaster Areas

Table A3 is used to document the estimated characteristics of data sources that can be
transported to disaster areas. The definitions of the columns and rows are similar to the
ones of Table A1.

Table A3. The Estimated Parameters of a Selected Set of Relevant Data Sources

Data Source Obj1 *
min.

Obj1 *
max.

Obj2 *
min.

Obj2 *
max.

Obj3 *
min.

Obj3 *
max.

Obj4 ^
min

Obj4 ^
max.

Obj5 +
min.

Obj5 +
max.

Microphone 0 0 0.05 0.1 0.1 0.4 1 K 10 K 600 3.6 K

Carbon dioxide meter 0 0 0.1 0.4 0.05 0.1 500 2 K 600 3.6 K

Microwave radar 0 0 0.8 0.9 0.8 0.9 2 M 4 M 600 3.6 K

* Probability of effectiveness: uniform distribution. ^ Probability of cost value: uniform distribution in units of
currency. The cost of microwave radar is neglected in our calculations per physical objects. Due to their high cost
values, they must be budgeted separately. + Probability of timing value: uniform distribution in units of seconds.
The transportation time of these data sources can be considerably high. Further, for microphones and carbon
dioxide meters, it may be necessary to drill holes, which also takes extra time.

Appendix B. Estimated Parameters of the Effectiveness of Fusion of Multiple Sources

Table A4 is used to document the estimated characteristics of the mutual effects of data
sources to each other in case of data fusion. The first column and row list the considered
data sources. The first row refers to the data sources symbolically, expressed as (a) to (n).
These symbols refer to the data sources listed in the first column. For example, (a) refers
to UAV cameras. The number “0” in a cell indicates that there is no contribution of the
related data sources to each other. The values “1” and “2” indicate weak and strong
contributions, respectively. For brevity, medium contribution values are not shown. The
semantic meanings of the degree of contributions are defined by the formulas in Section 6.2.
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Table A4. Estimated parameters of selected instances of data sources, transported to the locations
of disasters.

(a) (b) (c) (d) (e) (f) (g) (h) (i) (j) (k) (l) (m) (n)

UAV-camera (a) 1 + 0 0 0 0 2 1 2 ^ 0 2 0 0 0 0

GPS trackers (b) 0 0 2 2 2 * 0 0 2 * 2 * 0 1 1 2 2

Mobile phones (c) 0 2 0 2 2 * 0 0 2 * 2 * 0 1 1 2 2

Base stations (d) 0 2 2 1 2 0 0 2 * 2 * 0 1 1 2 2

Registration database (e) 0 2 * 2 * 2 0 0 0 0 2 * 0 0 1 2 2

Motion-based collapse detector (f) 2 0 0 0 0 2 2 0 0 2 0 0 0 0

Seismic detector (g) 1 0 0 0 0 2 0 0 0 2 0 0 0 0

Smart home detectors (h) 2 ^ 2 * 2 * 2 * 0 0 0 2 2 * 0 0 0 0 0

Face recognizer (i) 0 2 * 2 * 2 * 2 * 0 0 2 * 0 0 0 2 2 2

Camera of the face recognizer (j) 2 0 0 0 0 2 2 0 0 0 1 0 0 0

People counter (k) 0 1 1 1 0 0 0 0 0 1 0 0 0 0

Microphone (l) 0 1 1 1 1 0 0 0 2 0 0 2 2 2

Carbon dioxide meter (m) 0 2 2 2 2 0 0 0 2 0 0 2 2 2

Microwave radar (n) 0 2 2 2 2 0 0 0 2 0 0 2 2 2

0 Data sources with no contribution to each other. 1 Data sources with weak contribution to each other. 2 Data
sources with strong contribution to each other. + If additional UAV-camera has a surveillance mission in a better
weather condition. ^ Disasters, other collapse conditions; we assume that smart home detectors do not detect
collapses. * If a person is detected and his/her identity is known.
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