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A New Era of Modeling MOF-Based Membranes:
Cooperation of Theory and Data Science

Hakan Demir and Seda Keskin*

Membrane-based separation can offer significant energy savings over
conventional separation methods. Given their highly customizable and
porous structures, metal–organic frameworks- (MOFs) are considered as
next-generation membrane materials that can bring about high separation
performance and energy efficiency in various separation applications. Yet, the
enormously large number of possible MOF structures necessitates the
development and implementation of efficient modeling approaches to
expedite the design, discovery, and selection of optimal MOF-based
membranes via directing the experimental efforts, time, and resources to the
potentially useful membrane materials. With the recent developments in the
field of atomic simulations and artificial intelligence methods, a new era of
membrane modeling has started. This review focuses on the recent advances
made and key strategies used in the modeling of MOF-based membranes and
highlight the huge potential of combining atomistic modeling of MOFs with
machine learning to explore very large number of MOF membranes and
MOF/polymer composite membranes for gas separation. Opportunities and
challenges related to the implementation of data-driven approaches to extract
useful structure–property relations of MOF-based membranes and to produce
design principles for the high-performing MOF-based membranes are
discussed.

1. Background

Metal–organic frameworks (MOFs) are highly tailorable porous
structures thanks to the combinations of various metal nodes
and organic linkers creating voids of different shapes and sizes.
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Although the history of MOFs goes back
to 1950s,[1] the seminal works by Yaghi
et al.[2–4] in 1990s brought MOFs under the
spotlight as the experimentally proven ul-
trahigh and permanent porosity of MOFs
can offer solutions to the challenging prob-
lems in various fields including gas adsorp-
tion and separation, catalysis, biomedicine,
and sensing.[5–10] The early MOF synthe-
ses mostly relied on methods shaped by
trial-and-error approach and experimental-
ist experience through which synthesis con-
ditions (reaction time, temperature, reac-
tant ratio, etc.) were determined.[11,12] Over
the years, it was shown that many different
kinds of MOF design involving isoreticular
MOFs, MOFs with partitioned pores, open
metal sites, functionalized MOFs, and inter-
penetrated MOFs can be realized.[13,14] With
the advancement of rational MOF design
techniques, systematic synthesis routes
and targeted MOF screenings based on
structure–property trends, the number and
variety of synthesized MOFs have been sig-
nificantly expanded in a relatively short pe-
riod of time.[15] Today, the number of MOFs
deposited into the Cambridge Structural

Database (CSD)[16,17] has exceeded 100 000 and given the increas-
ing interest in synthesizing many more and diverse MOF struc-
tures, a much larger pool of synthesized MOFs can be expected
in the near future.[18]

Together with the acceleration of MOF synthesis, there
have been significant developments in generating hypothetical
(computer-generated) MOFs using different algorithms in the
last decade. The pioneering work by Wilmer et al.[19] showcased
the hypothetical generation of more than 100 000 MOFs by us-
ing a combinatorial technique where combinations of building
blocks extracted from the synthesized MOFs were linked together
subsequently like tinker toys until a MOF structure is formed.[20]

This bottom-up approach sparked much interest among com-
putational researchers as it allowed investigating properties of
MOFs at an unprecedented scale. Following the bottom-up ap-
proach, as an alternative, top-down approach was utilized to gen-
erate hypothetical MOFs where a topology is first selected and
combinations of building blocks are placed into the specified
network.[21–23] Through the use of hypothetical MOF generation
techniques, the diversity and number of hypothetical MOFs have
seen an unprecedented expansion.[24–26] Recently, new computa-
tional tools have been introduced by which MOFs with defects
and/or functional groups can be designed.[27,28] The expansion
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of such computational approaches for the design of novel MOFs
with different structural and chemical properties enabled gener-
ating thousands of materials quickly. A recent study[28] reported
trillions of computer-generated MOFs using automation show-
ing the vast possibilities of MOFs that can be realized. MOFs have
been computationally investigated to determine their various
properties including ion separation capability,[29] bandgaps,[30]

reaction barriers,[31,32] free energy of immersion,[33] which can
help identify the promising materials for ion extraction, conduc-
tivity, catalysis applications, and evaluate their thermodynamic
stability. For instance, MOF-based membranes can be used for
many kinds of ion separation applications including heavy metal
removal, desalination, and lithium extraction which can remedi-
ate various environmental problems.[29,34] The separation of ions
is typically performed via affinity differences caused by functional
groups, pore size sieving, and/or electrostatic repulsion.[34,35] The
use of MOF-based membranes in ion separation applications
could lead to high selectivity, sustainable, and facile operation
as well as relatively low capital cost.[29] To this end, water-stable
MOF-based membranes can be highly beneficial as many types
of ion separations are performed in aqueous environments.[29]

Recently, it has been demonstrated that a ZIF-based anion ex-
change membrane can promote the transport of target ion (Cl−)
while hindering that of multivalent anions (PO4

3−, SO4
2−), which

enables more efficient ion separation than that achieved through
a commercial anion exchange membrane.[35]

Yet, one of the most investigated applications of MOFs has
been their membrane-based gas separation performances as-
sessed via molecular simulations, which provide an atomic-level
understanding of their separation properties. Membrane-based
gas separation is renowned for its operational and economic
advantages over traditional methods such as low capital and
operation cost, ease of operation, and low footprint.[5] Indeed,
it has been envisioned that membrane-based separation can
cut down the energy costs by 90% compared to the currently
used conventional techniques such as absorption, and cryogenic
distillation.[36] Most of the current membranes are typically made
up of polymers due to their good mechanical strength, low cost,
and ease of processability, but they have a well-known trade-
off between membrane selectivity and gas permeability called
Robeson’s upper bound.[5,37–39] Both high gas permeability and
membrane selectivity are desired to achieve an economic and
efficient membrane-based gas separation as the former would
enable the construction of membranes with small surface ar-
eas while the latter would enable obtaining streams with high
purity.[40] Membrane separation processes rely on both the ad-
sorption and diffusion properties of the molecules desired to be
separated in the porous materials. As too strong or too weak ad-
sorption of the desired specie in the materials may not result in
high membrane separation performance due to slow diffusion
or low specie concentration, the features of membrane materi-
als should be optimized to provide an optimal medium for both
adsorption and diffusion. Thanks to their tailorable and highly
porous structures, MOFs can offer many advantages such as high
gas permeability and selectivity when used as membranes. Re-
garding the gas separations, the criteria used to assess mem-
brane materials may change depending on the separation needs
(e.g., separations requiring large volumes of streams to be sep-
arated and/or high-purity products), yet, for many applications,

one of the first targets is to achieve surpassing the Robeson’s
upper bounds of conventionally used polymer membranes.[38,39]

These bounds have been exceeded by many synthesized and hy-
pothetical MOFs examined using experiments and molecular
simulations.[41–46] Given their high potential, the number of stud-
ies on MOF-based membranes has exploded in the last decade
exceeding 3800 publications as of early 2023 (based on a Web
of Science search using the keywords of metal–organic frame-
work and membrane in article topics), implying that further im-
provement in membrane-based gas separations with MOFs is
very likely.[5,47] While it may take time to see the use of MOF-
based membranes in the industry, some of the MOFs already
showed much success at the laboratory scale.[48,49] Thin film
MOF membranes were initially generated in the lab, but difficul-
ties regarding their scalable and defect-free fabrication prompted
the synthesis of alternative MOF-based membranes.[50] One of
the most advantageous types of membranes in terms of afford-
able cost, facile processability, and high performance is mixed-
matrix membranes (MMMs), where MOFs are dispersed as fillers
in the polymer matrix.[50] Thanks to their broad physical and
chemical properties, MOF-based membranes hold the promise
to offer unprecedented opportunities for various gas separation
applications. Yet, experimental investigation of all viable MOF-
based membranes would be a never-ending task due to the sheer
number of MOF building block combinations. To accelerate the
discovery of high-performing MOF-based membranes, the cou-
pling of various modeling and simulation tools and data science
techniques is highly warranted through which information can
be supplied to experimentalists. Taking MOF-based membranes
from the lab to practical use will take effort and time, however,
this process can only be carried out efficiently through the com-
bined use of experimental, theoretical knowledge, and big-data
science.

Figure 1 shows an overview of the different methodological ap-
proaches for the investigation of MOF-based membranes. While
studies on MOFs were intensified after 1990s following the syn-
thesis of MOFs with large surface areas,[4] the syntheses of MOF
membranes have been reported in 2000s, for example, Mn for-
mate MOF membrane in 2006,[51] HKUST-1 (CuBTC) mem-
brane in 2007.[52] Since then, the total number of MOF mem-
branes synthesized and tested for different gas separations has
expanded considerably. Yet, most of the experimental studies still
typically focus on the synthesis, characterization, and testing of
a single or a few MOF membranes due to the large time, effort,
and resource requirements of making robust membranes from
new crystalline materials.[7] Examining the computational side,
one of the first MOF membrane modeling studies appeared in
2007 where CO2/CH4 separation performance of a MOF-5 mem-
brane was investigated by combining theoretical models and ear-
lier GCMC and MD simulation results.[53,54] Ever since, high-
throughput computational screening (HTCS) studies investigat-
ing gas separation performances of hundreds (or more) of dif-
ferent types of MOF membranes have become more common
as discussed below. Currently, molecular simulation studies of
MOF membranes mostly employ generic force fields that were
not specifically derived for MOFs, and with the development and
use of specialized force fields such as the first principles-based
force fields, it is possible to obtain more accurate computational
predictions for MOF membranes. For instance, it was shown that
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Figure 1. An overview of different methodologies used to study MOF-based membranes summarizing typical analysis time of MOF-based membranes,
number of MOF-based membranes that can be probed, and potential challenges/prospects.

ab initio force fields derived for CO2 adsorption in M-MOF-74
could provide adsorption loadings in better agreement with ex-
periments than those obtained using a generic force field.[55–58]

Similarly, the widely adopted assumption of rigid frameworks
could be relaxed by employing flexible force fields that can reveal
drastic differences in adsorption and diffusion properties across
simulations using rigid and flexible frameworks. For instance,
comparing simulation results where rigid and flexible structures
were employed, it was concluded that both Henry’s constants
and/or gas loadings at high pressures in MOFs could be consider-
ably different where flexibility effects were typically more impor-
tant for large adsorbates.[59,60] Similarly, it was previously demon-
strated that the self-diffusivities of CH4 in UiO-66 could differ
significantly across frameworks modeled rigid and flexible where
the self-diffusivities obtained using flexible force field were much
closer to experimental values.[61] Recent works that developed
force fields describing intramolecular interactions in ZIFs, MIL-
88B demonstrated that using density-functional theory (DFT) cal-
culations, accurate flexible force fields could be derived.[62–64] So
far, one of the less probed areas in the simulation studies of the
MOF structures is stability/phase transition, which is anticipated
to attract more interest in the near future as many studies pin-
pointed potentially high-performing MOF membranes that can
find use in practical separation applications.[65–69]

With the expansion of computational resources, generating
computational data for large number of materials has become a
much faster process enabling investigation ofthousands of MOFs
for a particular gas separation of interest. Machine learning (ML)
has recently appeared as a strong computational tool to make ac-
curate predictions for the properties and performances of a large
variety of materials. One of the earliest ML studies on MOF mem-
branes, to the best of our knowledge, was about D2/H2 separation
where the large-scale MOF data were used to generate ML mod-

els to identify the promising MOF membranes in terms of ideal
selectivity showing the potential of ML models for the categoriza-
tion of high- and low-performing MOF membranes.[70] Later, ML
models predicting the separation performances of MOF mem-
branes were developed for various gas separations.[71–75] For in-
stance, Orhan et al.[74] calculated the Henry’s constants, uptakes,
and self-diffusivities of O2 and N2 in MOFs and subsequently de-
veloped ML models to predict selectivities of MOF membranes
at infinite dilution conditions and 1 bar, 298 K.

This review specifically highlights the current state-of-the-
art in the computational modeling of MOF-based membranes
to identify the promising membrane materials and structure–
property correlations, which can facilitate the design of high-
performing membranes. We specifically focused on the very re-
cent developments in fusing molecular simulation techniques
and ML methods to unlock the potential use of MOF-based mem-
branes in various gas separations. After reviewing the use of gas
permeation models, atomistic-level simulations, process model-
ing, stability, and cost analysis of membranes, we discussed the
integration of data science techniques and molecular simulations
for predicting gas separation performances of MOF membranes
and MOF/polymer composite membranes. We finally addressed
the challenges listed in Figure 1 which can lead to great oppor-
tunities for the joint experimental/theoretical/data-driven efforts
to generate new, robust, and high-performing MOF-based mem-
branes.

2. Current State-of-the-Art in Modeling of MOF
Membranes

MOF-based membrane modeling studies mainly focus on the
determination of the two key membrane performance metrics
(gas permeability and membrane selectivity), which are typically
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obtained using force field-based classical molecular simulations.
In these simulations, the intermolecular interactions are mostly
represented by the combination of van der Waals and Coulom-
bic interactions whose accuracies rely on multiple factors includ-
ing but not limited to gas models, and partial charge assignment
methods.[40] Among computational MOF-based membrane stud-
ies, the most commonly utilized techniques are grand-canonical
Monte Carlo (GCMC), equilibrium molecular dynamics (EMD)
and nonequilibrium molecular dynamics (NEMD), transition-
state theory (TST), and DFT.[50] GCMC simulations have become
a standard tool to determine the gas adsorption properties (i.e.,
gas uptakes or gas affinities) of MOF membranes while the gas
diffusion properties in MOF membranes can be acquired via MD
simulations or TST approach. Once the gas adsorption amounts
and gas diffusivities are calculated, permeability and membrane
selectivity (i.e., ratio of gas permeabilities) can be determined
based on the solution-diffusion model.[76]

In the initial stages of modeling of MOFs, the crystallographic
information of the experimental MOF structures was dispersed
in the literature requiring manual/automated scraping of struc-
tures of interest. Today, more than 100 000 MOF structures have
been deposited into the CSD[16] with reference codes for easy
identification.[18] One of the first publicly available collections of
experimental MOF structures aimed to collect and curate struc-
tures (MOFs without framework disorders and/or other complex-
ities such as the presence of solvents) from the CSD to provide
“computation-ready” structures that can ideally be used in molec-
ular simulations without any modification.[77] The availability
of computation-ready experimental MOF structures streamlined
the investigation of hundreds/thousands of MOF membranes via
GCMC and MD simulations for various gas separations such as
CO2/N2,[78,79] and CO2/N2/CH4.[65] The success of computation-
ready MOF database prompted its recent expansion, which now
includes more than 12 000 structures furthering the investigation
of membrane-based separation performances of experimentally
reported MOF structures.[80,81] Similarly, a recent effort has led to
the creation of a curated CSD MOF subset with more than 60 000
structures that is regularly updated.[15] The introduction of hypo-
thetical MOF databases enabled scrutiny into not yet synthesized
MOFs that can elucidate the potential performance gains over the
synthesized ones.[19,23–25] While some of these MOF databases
were computationally screened for the membrane-based sep-
aration of H2/CH4,[41] CO2/N2,[79,82] CO2/CH4,[66,83] H2/N2,[84]

CO2/H2,[67] H2S/CH4,[66] CO2/N2/H2O,[78] and CO2/N2/CH4,[42]

the number of hypothetical structures and types of gas mixtures
that have not been investigated yet constitute a rich domain, sug-
gesting that there is a lot of room for studying MOF membranes
using computational methods. Given the even larger number of
structures that can be obtained through integrating MOFs with
other porous materials and constructing mixed ligand structures,
the opportunities for gas separation using MOF-based mem-
branes are almost endless.[85–87]

Figure 2a displays the typical HTCS approach where structures
of interest are first collected from MOF database(s) based on user-
specified criteria such as the pore size of the MOFs and interac-
tions between the gas molecules and MOF atoms in molecular
simulations are defined through either quantum chemical cal-
culations or force fields. As the separation performance is the
key factor for the selection of a membrane material, in general,

HTCS studies have mostly investigated gas adsorption and diffu-
sion properties of MOF structures.

Among the three main approaches (EMD, NEMD, and TST)
to investigate the gas diffusion in MOF membranes, EMD is
the most popular one whose results have been combined with
GCMC results to obtain permeability of various gases (e.g.,
CO2, N2, CH4) in MOFs.[50] Figure 2b shows the results of an
HTCS where about 3806 MOF membranes were investigated
for CO2/N2 separation under infinite dilution condition using
GCMC and MD simulations. Almost 80% of the studied MOFs
were found to surpass the Robeson’s upper bound[78] because of
their very high CO2 permeabilities, showing the high potential
of MOF membranes to replace the conventional polymer mem-
branes in flue gas separation.

2.1. Modeling Permeation in MOF Membranes

Almost all HTCS of MOF membranes have computed gas ad-
sorption and diffusion in a single MOF crystal via molecular sim-
ulations and the gas permeability computed through a single
MOF crystal was used to describe the separation performance
of a MOF membrane. To mimic the practical membrane-based
gas separation, forming a MOF surface and computing gas per-
meation through the MOF layer can be useful, however, this may
computationally be more demanding. NEMD approach was used
to simulate gas permeation through MOF membranes since this
simulation technique is ideally suited to represent an experimen-
tal membrane system in which an external driving force, such as
pressure gradient, is applied to a membrane. Figure 2c shows
an example of H2 and CH4 mixture permeation through a ZIF-
8 membrane constructed in the NEMD simulation.[88] NEMD
typically requires significantly longer simulation times than the
computational approach that combines GCMC and EMD simu-
lations to predict gas permeability, however, implementation of
NEMD instead of EMD can provide more realistic results and
better agreement with the experimentally measured gas perme-
ations since it takes into account mass transfer resistance at
the pore mouth of the membranes.[88] Ozcan et al.[89] developed
a new NEMD method called concentration-gradient-driven MD
(CGD-MD) and demonstrated that experimental gas permeabil-
ity trend can be reproduced for hydrocarbons including methane,
ethane, and ethylene and for the separation of an equimolar ethy-
lene/ethane mixture in a ZIF-8 membrane.

We further discuss several important aspects related to the
modeling of MOF membranes, since these issues may sig-
nificantly change the studies’ conclusion about the separation
performances and material rankings. For example, there can be
significant disparities across experimental and simulated gas
separation performances of MOF membranes, which can be in
part attributed to the presence of defects affecting gas adsorption
and diffusion.[37] Kim et al.[37] performed preliminary screening
of >800 MOF membranes for the separation of H2/CH4 mixture
based on the Henry’s constants (K0

H) and self-diffusivities of
gases computed at infinite dilution (D0). It was shown that
both adsorption and diffusion-related properties (K0

H, D0, per-
meability, membrane selectivity) could be significantly altered
due to the presence of defects and different defect concentra-
tions resulting in differently ranked top MOFs based on the
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Figure 2. a) Representation of HTCS approach for computational screening of MOF-based membranes. b) CO2/N2 selectivity and CO2 permeability of
3806 MOF membranes computed by combining GCMC and MD simulations at infinite dilution at 298 K. Adapted with permission.[78] Copyright 2018,
American Chemical Society. c) NEMD snapshot showing the feed side of the ZIF-8 membrane for CH4 (red symbols) and H2 (black symbols) mixture
permeation. Adapted with permission under the terms of the CC BY-NC 3.0 license.[88] Copyright 2019, The Authors, published by Royal Society of
Chemistry. d) CO2/N2 selectivity and CO2 permeability of over 1 million MOF/polymer MMMs computed by combining molecular simulations and the
Maxwell model. Adapted with permission.[79] Copyright 2019, Royal Society of Chemistry.

membrane selectivity. Combining the gas separation perfor-
mance analyses of defective and pristine MOF membranes
could be beneficial to estimate overall separation performances
(over the initial and prolonged operation cycles) as pristine
MOFs could start degrading over cycles.[37] Kallo and Lennox[90]

constructed defective and defect-free 2D CuBDC MOFs and
used external force NEMD simulations for CO2/CH4 mixture
separation. Comparing the flux ratios, it was shown that 2D
CuBDC had higher performances over bulk CuBDC across a
large pressure drop range where strongly adsorbing CO2 could
block the passage of CH4 leading to a pore blocking separation
mechanism. While the defect-free structure was selective toward

CO2, the presence of missing linkers could lead to having nons-
elective or CH4 selective membranes depending on the missing
linker concentration, attributed to weakened pore blocking
due to created cavities. This implies that identifying promising
membranes through computations needs to be complemented
with the synthesis of membranes identical to computational
models to observe the desired performance in practical use.

Another important aspect regarding the MOF membranes
is the role of the MOF functionalization on membrane sep-
aration performance. By carrying out dual-force zone NEMD
simulations for H2/CH4 separation in bare and functionalized
IRMOF-1 membranes, Wang et al.[91] demonstrated that the
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incorporation of functional groups can lead to higher or lower
gas permeabilities depending on the gas and functional group
type. Wu et al.[92] also computationally investigated CO2/CH4 and
CO2/N2 membrane separation performances of pristine UiO-66
and ─(COOH)2 functionalized UiO-66 using GCMC and EMD
methods. It was shown that the incorporation of ─(COOH) func-
tional groups could dramatically raise the permeation selectivity
of pure MOF membrane for both separations surpassing selec-
tivities of many other commonly studied MOFs such as Cu-BTC.

While most of the studies focus on dry gas mixtures, in prac-
tice, there exists water vapor at different levels in the gas mixtures
to be separated that can degrade the MOFs. Chen et al.[93] investi-
gated the degradation of a Zn-based MOF due to water adsorption
through MC simulations, which unveiled that the MOF degrada-
tion could happen due to the initial water uptake at defect sites
followed by the water molecule clustering. This signifies the im-
portance of considering potential differences across experimen-
tal samples and ideal models and incorporating such structural
differences in modeling as they can help elucidate the experimen-
tal observations. Daglar and Keskin[78] investigated humidity ef-
fect on flue gas separation performances of MOF membranes
using GCMC and EMD simulations by comparing CO2/N2 and
CO2/N2/H2O mixture simulation results and showed that the
presence of water molecules in flue gas mixture could hamper
the CO2 permeability and CO2/N2 membrane selectivity.

One of the most widely studied gases for membrane-based
separation is CO2 due to its environmental and energetic rele-
vance. Studying membrane separation of molecules with strong
quadrupole such as CO2 using the force field-based molecular
simulations requires accurate partial charge assignments to the
membranes. It is known that the use of different atomic par-
tial charge assignment methods may lead to drastically different
adsorption and/or diffusion properties.[94] Ongari et al.[95] com-
pared highly accurate DFT-based density-derived electrostatic
and chemical charge method (DDEC3)[96,97] charges with several
other variants of charge assignment methods including Qeq,[98]

EQeq,[99] MEPO-Qeq[100] and demonstrated that the latter can be
systematically different than the former charges influencing ad-
sorption of several gases (i.e., CO2) in MOFs. This implies that
the membrane-based separation performances of MOFs can also
be influenced by the charge assignment schemes since they are
governed by not only diffusion properties but also adsorption
properties. Altintas et al.[94] employed different partial charge as-
signment methods for MOFs, DDEC3 as a DFT-based method
and Qeq as an approximate method, to determine their role on
the CO2/CH4 separation performances of MOF membranes. Re-
sults showed that depending on the gas mixture conditions, MOF
rankings based on separation metrics calculated with DDEC3
and Qeq charges could be highly correlated. Yet, there were dis-
crepancies in the top MOF lists underlining that approximate
charges may not be sufficient to identify all the top performing
MOFs and ab initio based accurate charges would be more appro-
priate for studies aiming not to miss any of the top-performing
MOF membranes. It can be envisioned that determining pure
MOF membrane performances through simulations would be
more relevant for practical purposes as the progress in the fab-
rication of ultrathin MOF membranes can unlock the realization
of more MOF membranes in the lab.[101]

2.2. MOF/Polymer MMM Modeling

Pure MOF membranes have been extensively studied yet, the
challenges regarding the fabrication of pure, thin film MOF
membranes such as creation of defects and prohibitive cost trig-
gered the search for alternative membranes that can perform
on par or better than the former. In this regard, MMMs have
emerged as alternative and efficient membranes since the ease of
fabrication of polymer matrices and high permeability/selectivity
of MOF fillers can be capitalized on. As the unit cells of MOFs
typically have in the order of 100 atoms, their fully atomistic
modeling for gas adsorption and diffusion is rather straightfor-
ward. However, once MOFs are combined with polymer ma-
trices (whose models could involve many more atoms than
MOFs) to construct composite membranes (MMMs), performing
fully atomistic simulations to determine gas permeabilities be-
comes computationally expensive. In such cases, generally, the-
oretical permeation models (e.g., Maxwell,[102] Bruggeman,[103]

Felske[104]) are utilized to estimate gas permeabilities in MMMs.
These models are built upon different assumptions and thus in-
volve different levels of complexity (e.g., presence of defects, in-
terfacial voids). They couple gas permeabilities in MOFs acquired
by atomic simulations and gas permeability in polymer, which
is generally collected from experimental literature. Thus, once
gas adsorption and diffusion properties of MOFs are determined,
permeabilities of MMMs in which MOFs are used as fillers could
be obtained without any further simulations. However, as in all
models, the success of permeation models relies on several as-
sumptions such as fully dispersed and symmetric filler particles,
no interaction between fillers, no agglomeration, ideal interface
compatibility, etc.[105]

Initial computational studies utilized different permeation
models to characterize the gas permeabilities of MOF/polymer
MMMs.[106] In 2010, the estimation of CO2, CH4, H2, and N2 per-
meation in MOF/polymer MMMs via two mathematical models
(i.e., Maxwell and Bruggeman) using simulated gas loadings and
diffusivities in the MOF sparked much interest as the estima-
tions were close to the experimental data, despite many simplify-
ing assumptions.[106] Since then, several groups have probed the
separation of CO2/CH4,[83] O2/N2,[107] and CO2/N2,[79] in ≈60,
80 000, and 1 000 000 MOF/polymer MMMs, respectively. As
an example, Figure 2d represents CO2/N2 selectivity and CO2
permeability of over 1 million MOF/polymer MMMs computed
by combining molecular simulations mimicking infinite dilution
conditions and the Maxwell permeation model.[79] It was shown
that MOF/polymer MMMs can offer higher membrane selectiv-
ity and/or CO2 permeability than the corresponding neat poly-
mers and most of these MMMs could surpass the Robeson’s
upper bound hinting that the limitations of polymeric mem-
branes can be overcome by incorporating MOF fillers. Recently,
Daglar et al.[108] investigated more than 180 000 synthesized
MOF/polymer MMMs using GCMC and MD simulations and
the Maxwell model to study the separation of 11 different gas
separations at 1 bar, 298 K where it was demonstrated that gas
permeabilities could be improved upon MOF incorporation into
different polymers, which can be attributed to the high perme-
ability of largely porous MOF structures. By contrast, the selec-
tivities of MMMs mostly remained in the ballpark of those of neat
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polymers hinting that permeability enhancements upon MOF in-
corporation into polymers were comparable for both gases in the
gas mixture. Similar to the observations made for pure pristine
and functionalized MOF membranes, the presence of function-
alized MOFs in MMMs could provide membrane separation per-
formance benefits over MMMs with pristine MOFs. For instance,
Anjum et al.[109] experimentally demonstrated that the presence
of amine-functionalized linkers in NH2-UiO-66/polyimide (PI)
MMM lead to both higher CO2/CH4 selectivity and CO2 perme-
ability compared to the unfunctionalized UiO-66/PI MMM. This
suggests that similar enhanced membrane separation perfor-
mances upon functionalization may be observed in many other
MOF membranes that can be computationally investigated.

One caveat that should be noted for such HTCS studies on
MOF/polymer MMMs is the neglect of MOF/polymer incom-
patibility, which can affect the separation performances of the
MMMs. Depending on the polymer rigidity, and affinity between
the MOF and the polymer, irregularities at MOF/polymer inter-
face could occur influencing porous structure of the MMM in
turn affecting separation performance.[110,111] To investigate such
nonideal morphological effects on membrane performance, Oz-
can et al.[112] established a MOF/polymer MMM model by com-
bining a DFT optimized ─OH and ─H terminated ZIF-8 [011]
surface and polymer of intrinsic microporosity (PIM-1) mem-
brane obtained using an in silico polymerization approach.[113]

ZIF-8/PIM-1 composite membrane was equilibrated using sev-
eral MD simulations after which the ZIF-8 model was sand-
wiched between duplicated polymer slabs. They demonstrated
that H2/CH4 separation performance of ZIF-8/PIM-1 MMM was
lower than those of its constituents as the interfacial voids in-
duced selectivity losses. Similarly, Fan et al.[114] addressed the ef-
fect of MOF/polymer interface on the CO2/N2 and CO2/CH4 sep-
aration performances of MMMs using several simulation tech-
niques including quantum chemical calculations, force field-
based MC, and MD (both EMD and NEMD) simulations. As a
case study, a MMM composed of NUS-8(Zr) as the filler and
PIM-1 as the polymer was constructed using DFT and MD sim-
ulations, which was determined to have interfacial void region.
NEMD simulations resulted in comparable permeabilities and
selectivities with the experimental ones.[115] CO2/N2 selectivity
of the MMM was found to be identical with that of the polymer
suggesting that not all interfacial voids are detrimental to selec-
tivity, even though potential negative effect of the interfacial voids
was mentioned earlier.[112] While atomically detailed simulations
can provide high-fidelity results, they are computationally expen-
sive computations.[116] As a computationally efficient alternative,
Yuan and Sarkisov[116] described gas permeability in MMMs us-
ing lattice models and dynamic mean field theory. Unlike macro-
scopic models neglecting interfacial effects, the developed model
can suggest that gas transport may be hindered due to pore block-
age at the interface. While the model predictions are not at the
resolution of molecular simulations for multiple reasons involv-
ing the omission of long-range interactions, such models could
be used as a preliminary screening tool to investigate diffusion
in many MOF-based MMMs followed by detailed molecular sim-
ulations for candidate MMMs identified.

There are several ways to adjust the MOF/polymer compatibil-
ity including introduction of noncovalent/covalent bonds, gener-
ation of MOF defects, etc. As the hydrogen bonding between the

MOF fillers and polymer matrix can enhance the MOF/polymer
interface compatibility, MOFs with functional groups that can
form hydrogen bonds with polymers (e.g., ─NH2) can be promis-
ing candidates to be blended with polymeric membranes to form
selective MMMs.[117] In this respect, Ma and Urban[118] have
shown that UiO-66 functionalized with ─NH2 group could have
good interfacial compatibility with 6FDA-DAM:DABA matrix
and the resulting MMM could achieve high CO2/CH4, H2/CH4,
and H2/N2 separation performances surpassing Robeson’s up-
per bounds. Similarly, it has been shown that ─CN functional-
ized ZIF-8/PIM-1 MMM has better compatibility and superior
C3H6/C3H8 separation performance than pristine ZIF-8/PIM-1
MMM.[119] In this context, the atomically detailed simulations
(e.g., force field-based MD simulations, DFT calculations) can
reveal the formation of noncovalent/covalent bonds between
MOF and polymer that can provide guidance for the selection of
MOF/polymer pairs that can lead to good interfacial compatibil-
ity and high gas separation performance. For instance, Sadeghi
and Howe[120] have employed DFT to investigate adsorption of
polymer fragments (Kapton and 6FDA-Durene) on MOF surface
models (ZIF-8 and Co-BDC) and unraveled that unsaturated sites
could lead to good MOF/polymer compatibility while the lack of
undercoordinated surface species may result in poor adhesion of
MOF and polymer where dispersion forces dominate.

Along with the presence/absence of defects, the type of de-
fects in the MOF can also influence the MOF/polymer compat-
ibility as exemplified by An et al.[121] where MD simulation re-
sults suggested ZIF-8 with Zn-alkyl amine point defects had bet-
ter compatibility with 6FDA-DAM than ZIF-8 with Zn-OH point
defects. Interestingly, it was found that Zn-alkyl amine defective
sites hindered the framework flexibility and shrank the window
size thereby increasing C3H6/C3H8 selectivity of MMM over that
of MMM with ZIF-8 having Zn-OH point defects. The foregoing
studies imply that there is much room for computations to re-
veal effects of MOF properties on MOF/polymer MMM interface
compatibility and separation performance. Currently, the num-
ber of computational studies focusing on MOF/polymer compat-
ibility at atomic detail is relatively less, however, its expansion
will be of high value as it would facilitate the design of high-
performing membranes.

2.3. Cost Analysis

Obtaining a specific property–performance relation for MOF-
based membranes is important to understand the limits in which
membranes could operate. However, the decisive factor for their
use in practical applications would eventually be operation and
capital costs. As part of efforts to determine the carbon capture
cost, Budhathoki et al.[79] carried out techno-economic analyses
of MOF/polymer MMMs for post-combustion carbon capture
process where information gathered from atomistic simulations
(e.g., gas diffusivity, Henry’s constant) were linked with process
models to obtain cost of carbon capture (CCC) in $/tonne CO2
removed. The separation performances of both synthesized and
hypothetical MOFs (>2000 synthesized MOFs and >110 000 hy-
pothetical MOFs) were investigated using MC and EMD simula-
tions. Combining the simulation results with the Maxwell model,
CO2/N2 separation performances of MOF/polymer MMM were
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estimated. To estimate CCC, a three-stage process configura-
tion with sweep was employed in process models where mem-
brane area, pressure, temperature, and flowrate were optimized
for different membranes to obtain the lowest electricity cost.
Their analysis showed that while the overwhelming portion of
MOF/polymer MMMs could provide lower CCC than that of pure
polymer ($64 (tonne CO2)−1), several MOF/polymer MMMs (in-
volving MOFs with lower permeability or selectivity than that of
polymer membrane) exhibit higher CCC values. This suggests
that selecting not sufficiently selective or permeable MOFs for
MMM construction may not provide any economic benefit. One
interesting finding of their work was that the lowest CCC val-
ues were not obtained by the MMMs with the most permeable
or selective MOFs but rather by MMMs with MOF/polymer se-
lectivity ratio larger than MOF/polymer permeability ratio by a
factor of 10. These inferences about the selection of MOFs for
cost-effective MMM construction are highly valuable, yet they rely
on several factors including the use of generic force field, par-
tial atomic charges based on empirical parameters, rigid MOFs,
Maxwell permeation model, and a three-stage membrane-based
capture process. With the use of specialized force fields, more
accurate simulation results can be obtained. Similarly, rather
than using a generic process configuration model, configurations
optimized for materials could be considerably different than
generic models and provide more economic benefits.[122] Thus,
using a combination of material-specific force fields and process
configurations could reveal new conclusions for constructing
cost-effective MOF/polymer MMMs compared to those obtained
through generic models. For instance, modeling flexible struc-
tures, using ab initio-based force fields and DFT-based methods
for partial charge assignment, incorporating MOF/polymer in-
terface effects through atomistic modeling, and refined process
modeling could provide different correlations between gas sepa-
ration performances and CCC.

3. Data-Driven Applications for MOF Membranes

To reduce the computational cost and allocate computational re-
sources efficiently, the development of ML models has recently
become a hot topic in the field of MOFs. Figure 3a depicts a
typical workflow for the ML model development where a col-
lection of input data (e.g., structure files) is first transformed
into representations in different formats including but not lim-
ited to scalars, vectors, and strings to bring about ML model de-
scriptors (e.g., structural, chemical, energetic, topologic proper-
ties of materials). Some of these descriptors could be obtained
through crystallographic file parsing (e.g., enumerating atom
types, numbers), geometric calculations, and/or molecular sim-
ulations. Ideally, these descriptors should be rapidly calculable
quantities rather than those obtained via computationally expen-
sive calculations, especially for large data sets. To this end, novel
methods providing faster calculations of descriptors would be
highly desired for faster ML model development. For instance, a
recently introduced method to calculate adsorption enthalpy has
been shown to be two orders of magnitude quicker than the con-
ventional method, which can help widen the adoption of an ener-
getic descriptor, adsorption enthalpy, in ML models for large data
sets.[123] Once material representations are obtained (either from
experimental or computational data), ML models (e.g., kernel-

based, neural network based) are developed mainly for two tasks,
classification and regression.[124] The regression tasks are mostly
about predicting their separation performance metrics (e.g., per-
meability, selectivity).

In the cases where regression models are not accurate enough
due to several factors such as insufficient data, lack of physi-
cally relevant features, classification models could be used to cat-
egorize membranes (e.g., high-performing, low-performing). Be-
sides, classification models could be of high use where the aim
is to correctly label materials in terms of a specific property (e.g.,
stability) rather than provide exact figures. Based on the classifi-
cation/regression model outputs, the identification of candidate
MOF-based membranes could be expedited.

In principle, ML models can be developed based on experi-
mental data, computational data, or a combination of both. How-
ever, due to the large time and cost requirements of experiments
and immense computational power available to researchers to-
day, many of the current ML studies use simulation data rather
than experimental data. For instance, Bai et al.[71] first performed
an HTCS of pure MOFs taken from computation-ready experi-
mental (CoRE) MOF database[80] for membrane-based H2 sepa-
ration (from CH4, N2, H2S, O2, CO2, He) and developed eight dif-
ferent ML models based on the generated computational data to
predict H2 permeability. ML models were also able to accurately
estimate another performance metric of membranes, trade-off
multiple selectivity and permeability (TMSP). While many fea-
tures could be used to train accurate ML models for H2 perme-
ability and TMSP predictions, models with similar prediction ac-
curacies were obtained using only two structural features, pore
limiting diameter and porosity of MOFs. Figure 3b shows that
most of the MOF membranes have relatively low H2 permeabili-
ties (<103 Barrer) and Gaussian process regression-based (GPR-
based) ML model could provide H2 permeability predictions close
to the simulated values where the error between ML predictions
and simulations can be more pronounced for more H2 perme-
able MOF membranes.[71]

Accurate ML models for the separation performance predic-
tions of pure MOF membranes are highly encouraging, which
sparks the question whether similarly accurate ML models could
be established for MOF-based composite membranes. To this
end, for the CO2/N2 (15/85) separation at ambient conditions,
Zhang et al.[73] computationally prepared 8167 ionic liquid-
incorporated (IL-incorporated) MOF composites (IL@MOF) by
placing an IL, [NH2-Pmim][Tf2N], into MOFs taken from CoRE
MOF database[80] via MC trials after which GCMC and MD sim-
ulations were performed to determine membrane selectivity and
gas permeability. ML models were developed using the combina-
tion of structural and chemical features including density, pore
limiting diameter, accessible surface area to make predictions
for CO2/N2 selectivity and CO2 permeability. Figure 3c demon-
strates that ML-predicted CO2 permeability of IL@MOF mem-
branes are close to the simulated values for many membranes
but there can also be significant overpredictions in permeabili-
ties at low-medium permeabilities (<2 × 106 Barrer). The best
IL@MOF composites were identified using the product of mem-
brane selectivity and permeability based on simulation results.
Given the high CO2/N2 separation performance of IL@ZIF-
67 based on molecular simulations, [NH2-Pmim][Tf2N]@ZIF-67
composite was synthesized and incorporated into PIM-1. This
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Figure 3. a) A general representation of ML model development workflow for high-performing membrane discovery. Comparisons of ML model predic-
tions with simulation results for b) H2 permeabilities of pure MOF membranes. Adapted with permission.[71] Copyright 2022, Elsevier. c) CO2 permeabil-
ities of IL@MOF membranes. Adapted with permission.[73] Copyright 2022, Elsevier. d) He, H2 permeabilities of MOF/polymer MMMs. Adapted under
the terms of the CC BY 4.0 license.[72] Copyright 2022, American Chemical Society. e) CH4 and N2 permeabilities of MOF/polymer MMMs. Adapted
under the terms of the CC BY 4.0 license.[72] Copyright 2022, American Chemical Society. Blue (red) symbols in (d) and (e) denote the training (test) set.
He, H2, CH4, and N2 permeabilities were shown for MMMs composed of combinations of 677, 2715, 5215, and 5224 MOFs, respectively, with indicated
polymers. Note that many data points resembling different MOF/polymer MMMs lie on each other.

MMM offered higher CO2/N2 selectivity and CO2 permeability
than both pristine PIM-1 and ZIF-67/PIM-1 composite, surpass-
ing the Roupper bound.[125] Those results obtained from the com-
bination of HTCS and ML suggested that IL@MOF composites
with favorable separation performances could serve as good filler
materials for the fabrication of high-performing MMMs.

Identification of such high-performing MOF composite fillers
through molecular simulations and ML algorithms is also vital
to abandon the trial-and-error approach and adopt a data-driven
approach for the design of MOF/polymer MMMs. In fact, consid-
ering the very large number of available MOFs and polymers, ML
has a huge power to guide the experimental efforts and time to
the best MOF-polymers pairs that can yield to high-performance
MMMs. Daglar and Keskin[72] performed GCMC and MD sim-

ulations to calculate membrane selectivity and permeability of
5249 MOF membranes and 31 494 MOF/polymer MMMs for
many gas separations including He/H2, He/N2, He/CH4, H2/N2,
H2/CH4, and N2/CH4 at ambient conditions. This large simula-
tion data was then used to train ML models employing physi-
cal, chemical, and energetic features of MOFs and these mod-
els were employed to predict the gas separation performances of
pure MOFs and MOF/polymer MMMs. As shown in Figure 3d,e,
ML-predicted selectivities of MOF/polymer MMMs for several
gas separations agreed with the simulated selectivities where the
agreement was stronger for MMMs involving polymers with low
or medium gas permeability (polypropylene, PBOI-2-Cu+).[72]

Comparing the predictions of ML models, results of molecu-
lar simulations and experimentally measured gas permeabilities

Macromol. Mater. Eng. 2023, 2300225 2300225 (9 of 15) © 2023 The Authors. Macromolecular Materials and Engineering published by Wiley-VCH GmbH
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Figure 4. Comparison of experimental, simulated, and ML-predicted gas permeabilities in a) MOF membranes and b) MOF/polymer MMMs. Blue lines
refer to the experimental gas permeabilities at (a) 1 bar, 298 K in MOF membranes and (b) 0.5–5 bar, 298–308 K in MOF/polymer MMMs. Values in
parentheses in panel (b) denote the MOF filler volume fraction. * and ** designate MOF(s) in the test and training sets, respectively. Adapted under
the terms of the CC BY 4.0 license.[72] Copyright 2022, The Authors, published by American Chemical Society.

of MOF membranes and MOF/polymer MMMs is critical to de-
velop and use accurate and efficient models that can direct the ex-
periments. Figure 4a exhibits such a comparison for MOF mem-
branes where the experimental gas permeabilities in the MOF
membranes of interest were generally overestimated by molec-
ular simulations and ML models, which could be attributed to
the assumptions made for the molecular simulations including
defect-free, and rigid framework, which might not be experimen-
tally valid. Figure 4b displays the gas permeability benchmarks
of experiments, simulations, and ML model predictions for the
MOF/polymer MMMs where all three permeabilities were gener-
ally in good agreement. This hints that, despite the underlying as-
sumptions, the simulation-based permeability could be closer to
experimental permeability for MOF/polymer MMMs, compared
to pure MOF membranes, which in turn enables ML models to
predict values in agreement with experimental values. Such com-
putational study combining HTCS and ML has the potential to
discover promising MOF membranes and MOF/polymer MMMs
that have not been synthesized before.

The foregoing examples show that molecular simulations
could be employed to generate large-scale data for various types
of membranes, which can be subsequently used for ML model
development. Since obtaining experimental data could be more
cumbersome and less time-efficient, the scale of experimental
data is typically much more limited than computational data, es-
pecially in open sources. Yet, accurate ML models could still be
developed after scraping the experimental data from the litera-
ture. For instance, Guan et al.[75] demonstrated one of the first
examples of ML models purely based on the experimental data to
predict the membrane-based CO2/CH4 separation performances
of MMMs involving MOFs. The polymer type, the pore size of
the MOF, and the loading of the MOF in the MMM (pure poly-
mer selectivity, pure polymer permeability, and MOF loading in
the MMM) were found to be the most important descriptors for
permeability (selectivity) predictions, in agreement with the the-
oretical models as their estimations rely on the foregoing factors
as well. ML models predicted that MOFs having pore sizes >10
Å and surface areas ≈800 m2 g−1 could perform well in terms
of CO2 permeability and CO2/CH4 selectivity. Following these
guidelines, two Cu-based MOFs (Cu-THQ and Cu-CAT-1) were

synthesized and incorporated into polymers (PIM-1 and Pebax
2533) to fabricate MMMs where Cu-CAT-1/PIM-1 MMM could
surpass the upper bound. It was shown that ML predictions for
selectivity and permeability were in line with the experimental
data of MMMs based on those two MOFs demonstrating the suc-
cess of ML predictions for the fabrication of high-performing
membranes.

In general, computationally expensive simulations (e.g., pro-
longed MD runs) are performed only for a small subset of MOFs
investigated, which may hinder revealing structure–property cor-
relations and establishing ML models from large data. Lever-
aging transfer learning (TL) techniques can help quickly ac-
quire MOF membranes’ properties for which performing com-
putations can be expensive. For example, TL approach was re-
cently used to derive ML models for predicting CO2/CH4 sepa-
ration performances of MOF/polymer MMMs and then CO2/N2
separation performance predictions were made based on these
models.[75] The TL predictions were shown to be on par or bet-
ter than direct learning predictions hinting that rather than de-
riving ML models from scratch for each gas separation of inter-
est, knowledge transfer could be highly useful, especially in the
cases where there is limited (experimental) data. Similarly, Lim
and Kim[126] demonstrated that using the knowledge from a pre-
trained deep neural network model with computed CH4 loadings
in MOFs as the source data, the prediction accuracy (R2 score)
of CH4 diffusion coefficients of MOFs can be enhanced by up
to 25% compared to direct learning predictions. This suggests
that using a large set of computationally more affordable calcu-
lations (CH4 uptake in >20 000 MOFs), prediction accuracies for
small sets of computationally more expensive self-diffusion coef-
ficients (for <500 MOFs) can be considerably boosted alleviating
the problem of not having access to large data sets for some ML
tasks.

While there can be many MOFs in the databases offering
efficient solutions to modern-day energy and environmental
challenges, a nontargeted simulation-based investigation of mil-
lions/billions of MOFs would be computationally too expensive.
This brings up the subject of efficiency in MOF design, which
can be addressed by adopting inverse-design techniques where
desired material properties are fed into a workflow to design
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materials. For example, Lim et al.[127] used a genetic algorithm
(GA) to construct MOFs by targeting a specific Xe/Kr adsorption
selectivity and demonstrated that their inversely designed MOFs
were distributed around the desired selectivity value while the
randomly generated MOFs were skewed toward lower selectiv-
ities. A similar approach was recently undertaken where MOF
membranes were inversely designed for C2H4/C2H6 separation
using GA with the aim of obtaining MOF membranes having
high C2H4/C2H6 selectivity and C2H4 permeability.[128] It was
shown that one of the designed MOFs exceeded the threshold
values of membrane selectivity and permeability in the fitness
function, which also surpassed the computed membrane-based
separation performances of MOFs in CoRE MOF database.[80]

That work also showed that the ideal MOF membrane for
C2H4/C2H6 separation can be specified in much fewer attempts
(8000 MOFs constructed) than a typical high-throughput screen-
ing approach that would enumerate all possible combinations of
topologies, nodes, and linkers of MOFs.

4. Outlook

Given the highly tailorable structures of MOFs, membrane-based
separation using MOFs holds much promise. Yet, considering
the multiobjective nature of MOF development aiming to pro-
vide high-performing, stable, cost-effective structures, the dis-
covery of promising MOF-based membranes is a multidimen-
sional challenge requiring the integration of experimental, theo-
retical, and data-driven efforts. Thus, the major developments in
the field of MOF-based membranes are expected to involve sig-
nificant advances in all these three aspects. On the experimen-
tal side, two major developments whose wider adoption in the
field could accelerate MOF development process are 1) AI-guided
MOF-based membrane synthesis and 2) automation of experi-
ments. Over time, many synthetic challenges were overcome and
MOF membranes with diverse physical and chemical properties
were realized in the lab.[129,130] However, the conventional experi-
mental approach for MOF-based membrane studies mostly relies
on heuristic or trial-and-error approach. AI-driven MOF-based
membrane fabrication can significantly accelerate the membrane
discovery process. Through the exploitation of ever-increasing
large-scale MOF membrane data, accurate AI-driven models can
be constructed that can rapidly provide the best fabrication con-
ditions for MOF-based membranes in addition to predicting gas
separation and stability/compatibility properties of membranes
to guide the experimental efforts. Furthermore, recently intro-
duced “synthesis” robots and automated material characteriza-
tion/testing systems could provide an easier pathway to mem-
brane synthesis, characterization, and testing.[131,132]

On the molecular simulations side, the accuracy of simula-
tions performed to investigate MOF-based membranes could be
taken to the next level by employing specialized and flexible force
fields. For instance, DFT-based force fields can provide accurate
description of gas-open metal site interactions for which generic
force field-based interactions may be inaccurate.[133] The use of
accurate ab initio force fields instead of generic force fields in
gas adsorption and diffusion simulations can provide more ac-
curate membrane performance metrics (e.g., selectivity, perme-
ability) and material rankings for further computational scrutiny
and/or experimentation. Likewise, the widely adopted assump-

tion of rigid MOFs in adsorption and diffusion simulations may
lead to inaccurate results, especially when the gas molecule sizes
are comparable to the pore sizes of MOFs.[59,83,134] Depending on
the case, flexibility effects may lead to better or worse membrane
performance.[135] Yet, the development of flexible force fields has
its own challenges such as the choice of system size, and de-
ficiency of efficient sampling of phase transitions.[136] Recently,
employing ML methods for force field development has increas-
ingly been popular and exemplary works on modeling diffusion
in MOFs using ML force fields have appeared.[137,138]

Several recent studies[139–141] demonstrated that MOFs hav-
ing the same reference code in the databases may have differ-
ent chemical compositions depending on the structure cura-
tions (i.e., removal of solvents and charge-balancing ions, adding
missing hydrogens) carried out prior to database construction.
An important outcome of this issue is that the discrepancies
in simulated gas uptakes across differently curated structures
(with identical reference codes) may grow as lower pressures are
employed.[139] This suggests that computational screening of ma-
terials for gas separation at subatmospheric pressures can result
in different “promising” materials lists. As adsorption and diffu-
sion properties of structures rely on the structure composition
and atomic positions, analyzing the structures of top-performing
membranes would be highly useful to identify potential struc-
tural problems and discard problematic structures.

Although almost all the current simulation studies on MOF-
based membranes aimed to predict their gas separation prop-
erties, gaining insights into the stability of membrane materi-
als is critical for practical use.[142] So far, the mechanical stabil-
ity of MOFs has been studied using DFT and force field-based
simulations.[143–145] Yet, the scale of MOFs for which mechan-
ical properties were calculated is limited, and expanding those
investigations, especially to high-performing membrane candi-
dates, can provide insights into their potential use in practical
separation operations. Regarding the water stability, performing
water uptake simulations at low pressures can provide a quali-
tative idea about the extent of hydrophilicity of MOF structures.
Besides, for the MOFs which appear to be hydrophilic, investi-
gating their water degradation mechanisms via DFT simulations
can be highly beneficial to elucidate the likelihood of structure
degradation upon exposure to different extents of humidity. The
MOF/polymer interface compatibility can improve or hinder the
separation performance of MMMs. However, most of the cur-
rent studies estimate separation performances of MOF/polymer
MMMs based on the theoretical permeation models having dis-
parate assumptions on interfaces. While some of those models
could provide realistic results for some MMMs, a universal per-
meation model that applies to all MOF/polymer MMMs does not
exist. Therefore, detailed molecular simulation should be carried
out for the MOF/polymer MMMs of high interest as exemplified
earlier to reveal the molecular insight behind their separation
mechanism.[146,147]

The data-driven approaches have been very recently used in the
field of MOF-based membranes. The rapid increase in the num-
ber of synthesized MOFs, production of the large amount of sim-
ulation data for MOF membranes and MOF/polymer MMMs,
and the recent advancements in the development and imple-
mentation of AI methods in the material science have all con-
tributed to the emergence of a new era for the computational
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modeling of MOF-based membranes. AI approaches taking a
desired material property/performance as input and providing
structure as output is highly promising since this can signifi-
cantly reduce the number of membrane materials investigated.
So far, it has been shown that using secondary building units
of MOFs and evolutionary algorithms, high-performing MOF
membranes in terms of selectivity and permeability can be in-
versely designed.[128] This approach can be extended to the in-
verse design of other MOF membranes where a specific sepa-
ration performance metric could be prioritized. Ideally, defining
multiple objective metrics (e.g., mechanical stability, water stabil-
ity, permeability, etc.) can be more beneficial although it would
increase the complexity of the problem and require performing
a greater scale of molecular simulations or development of new
ML models whose outputs could be fed into the GA process.
Since developing ML models from scratch for each application
can take a lot of time and effort, TL approaches can also be ben-
eficial to make predictions for a wide variety of applications in
shorter time by transferring the knowledge from computation-
ally more affordable simulations to the challenging ones. It was
also shown that TL approaches can be used to transfer knowl-
edge from a targeted gas separation to another gas separation.[75]

Since both approaches reduce the number of molecular simula-
tions that are computationally expensive, their wider implemen-
tation in the near future is anticipated to further accelerate the
process of predicting the separation performances of MOF-based
membranes.

As MOFs can be decomposed into their building blocks
via recently developed tools like MOFid,[148] moffragmentor,[149]

mBUD,[150] and MOFseek,[151] the MOF databases can be queried
with the extracted building blocks to identify and probe MOFs
with similar/identical building units of high-performing MOF-
based membranes. These capabilities can be combined with
ML models predicting MOFs with high thermal and solvent-
removal,[152] mechanical,[143] water stability[153] to identify ma-
terials that can potentially find use in industrial applications.
This suggests that combining the stability and separation per-
formance of MOF-based membranes would allow for stability
and performance targeted identifications/investigations of MOF-
based membranes. Given the large number of MOFs, building
experimental and computational MOF membrane databases fol-
lowing findable, accessible, interoperable, reusable (FAIR)[154]

principles can significantly facilitate the reuse of existing data
and the collaboration of experimentalists and theoreticians. Re-
cently, a number of large open computational datasets regarding
membrane properties started to emerge.[72,74,128] In the future,
these datasets could be integrated into other computational stud-
ies where larger databases could be formed from which extraction
of large-scale structure–property correlations would be possible.

As the HTCS and ML studies mostly identify promising MOF
membranes, it could be anticipated that the subsequent synthe-
sis efforts would be targeted at the best performing materials. Yet,
many times, lower ranked materials are synthesized due to facile
synthesis procedures of the material.[155] The determination of
relative free energies of structures through simulations and/or
ML models can reveal the structures that are highly unlikely to
be synthesizable which can be discarded from the material list
of interest. Among the materials that are determined to be syn-
thesizable, those with low synthesis cost would be preferred in

practical applications, thus MOF cost should be one of the selec-
tion criteria in addition to performance.[156]

To sum up, performing force field-based molecular simula-
tions, DFT simulations, and establishing ML models can provide
multiple benefits for advancing the understanding of MOF-based
membrane structures and the underlying reasons behind their
separation performances. The force field-based molecular simu-
lations enable efficient sampling of the porous space in MOF-
based membranes for gas adsorption and diffusion. Recently,
machine-learned force fields[138,157] based on ab initio data were
derived that can accurately describe the adsorption and/or diffu-
sion of small molecules in MOFs with open metal sites. The ex-
pansion of such efforts where ab initio data and ML methods are
combined to develop accurate force fields will be highly beneficial
as it will enable obtaining molecular simulation results in line
with experimental observations for a larger set of MOFs where
generic force fields typically fail. The development of accurate
force fields is also crucial for performing prolonged force field-
based MD simulations for the investigation of relatively slowly
diffusing species in MOF-based membranes where long ab ini-
tio MD runs would be highly costly. Besides providing reference
data for force field development, DFT simulations are also vi-
tal to accurately characterize MOF-based membrane structures.
While the application of DFT was initially mostly limited to par-
tial charge assignment and optimization of pure MOF structures,
protocols of DFT simulations have been established and applied
for the modeling of MOF-based MMM structures as well.[114]

This hints that fully atomistic simulations of MOF-based MMM
structures could be performed more commonly in the near future
which could help investigate interface effects at atomistic scale
rather than employ permeation models, which may not provide
a realistic description of the MMM structure.

The development of ML models can significantly speed up the
prediction of structural properties and/or gas separation perfor-
mances of MOF-based membranes. However, to have physically
relevant predictions using ML models, the reference dataset to
be used in the ML model development needs to be accurate. De-
pending on the system and target property, generic force field-
based molecular simulation data could be considered accurate or
not. Before developing ML models, the accuracy of simulation
data should be validated using experimental data and/or compu-
tational data based on more accurate methods. Once data accu-
racy is validated, ML models can be trained using different classes
of features (e.g., geometric, chemical). While there are some com-
monly used features (e.g., surface area, number of specific atoms)
for ML model development, the introduction of new and prefer-
ably easily calculable features will be of high importance for the
prediction of structural, adsorption, and diffusion properties of
MOF-based membranes. All in all, the multidimensional MOF
membrane discovery and development problem can only be ef-
fectively tackled by the cooperative implementation of the state-
of-the-art experimental, theoretical, and data-driven methods as
exemplified by the recent multiscale work[158] combining molec-
ular simulation, ML, and process modeling to study CO2/CH4
separation using MOF-based membranes. With well-integrated
experimental–theoretical–data-driven workflows, we anticipate
that the discovery process of promising MOF-based membranes
with superior properties than conventional membranes can be
drastically expedited and many of the hurdles regarding the devel-
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opment and use of high-performing, stable, and low-cost MOF-
based membranes in the industry can be overcome.
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