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Abstract
One of the major challenges for humanitarian organizations in response planning
is dealing with the inherent ambiguity and uncertainty in disaster situations. The
available information that comes from different sources in postdisaster settings may
involve missing elements and inconsistencies, which can hamper effective humani-
tarian decision-making. In this paper, we propose a new methodological framework
based on graph clustering and stochastic optimization to support humanitarian decision-
makers in analyzing the implications of divergent estimates from multiple data sources
on final decisions and efficiently integrating these estimates into decision-making. To
the best of our knowledge, the integration of ambiguous information into decision-
making by combining a cluster machine learning method with stochastic optimization
has not been done before. We illustrate the proposed approach on a realistic case study
that focuses on locating shelters to serve internally displaced people (IDP) in a conflict
setting, specifically, the Syrian civil war. We use the needs assessment data from two
different reliable sources to estimate the shelter needs in Idleb, a district of Syria. The
analysis of data provided by two assessment sources has indicated a high degree of
ambiguity due to inconsistent estimates. We apply the proposed methodology to inte-
grate divergent estimates in making shelter location decisions. The results highlight
that our methodology leads to higher satisfaction of demand for shelters than other
approaches such as a classical stochastic programming model. Moreover, we show that
our solution integrates information coming from both sources more efficiently thereby
hedging against the ambiguity more effectively. With the newly proposed methodol-
ogy, the decision-maker is able to analyze the degree of ambiguity in the data and the
degree of consensus between different data sources to ultimately make better decisions
for delivering humanitarian aid.

K E Y W O R D S
ambiguity, clustering, data aggregation, humanitarian decision-making, needs assessment

1 INTRODUCTION

While the availability of high-quality information is cru-
cial to make effective decisions for all organizations, it can
be difficult to access complete and accurate information in
some settings. In particular, the nature of the information
flow in complex humanitarian environments (such as after a
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natural disaster or during a conflict) can significantly impede
effective decision-making processes of humanitarian agen-
cies, which aim to provide timely and sufficient aid (Altay &
Labonte, 2014; Day et al., 2012). Specifically, humanitarian
agencies have to make decisions under significant uncertainty
due to lack of sufficient information on various parameters
(e.g., needs, infrastructure conditions) that are critical for
disaster response. Moreover, to estimate these parameters,
agencies often need to make sense of a large amount of
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information with missing and inconsistent elements, which
can create high degrees of ambiguity in decision-making.
Specifically, ambiguity is defined as “uncertainty about prob-
ability, created by missing information that is relevant and
could be known” (Snow, 2010). While eliminating ambigu-
ity in postdisaster environments may not be possible, we
propose a methodological framework that enhances agencies’
capabilities to deal with ambiguity in decision-making.

In postdisaster environments, available information may
involve inconsistencies since data can come from a vari-
ety of sources (Altay & Labonte, 2014; Day et al., 2012).
For instance, postdisaster needs may be estimated by using
predisaster information (e.g., governmental statistics) and
postdisaster information obtained through various technolo-
gies (e.g., aerial images from satellites and drones), and
media reports and interviews made by local key informants
(such as community leaders). In addition to the large number
and diversity of information sources, different methods and
assumptions can be used in data processing, which can lead
to different estimates on critical parameters used for planning
response activities. While considering all available informa-
tion may be attractive in making plans, it is challenging for
humanitarian organizations to systematically integrate differ-
ent estimates into decision-making in an environment where
the pressure and stakes for acting quickly are high. There is
an overarching need for approaches that support humanitar-
ian decision-makers to integrate information processing and
decision-making in postdisaster settings effectively (Comes
et al., 2020; O’Brien, 2017; Raymond & Al Achkar, 2016).
In this study, we aim to address this important research
gap.

Given multiple estimates on a parameter (e.g., the propor-
tion of people with shelter or food needs), a humanitarian
decision-maker can combine different values into a single
value by applying simple aggregation techniques such as tak-
ing the highest data value to “play it safe” (Day et al., 2012)
or computing the average (Benini et al., 2017). Defining a
triangular distribution based on the best, minimum, and max-
imum estimates is also possible (Benini et al., 2017). In the
humanitarian logistics literature, it is common to define prob-
ability distributions to represent the uncertainties brought by
different estimates and then to use stochastic optimization to
support postdisaster decisions such as last-mile relief distri-
bution and shelter location (Dönmez et al., 2021; Liberatore
et al., 2013). However, such mathematical aggregation of
data without examining its consequences on decision-making
can mask the effects and contributions of individual data
sources in final decisions (Benini et al., 2017). When the
data from different sources are aggregated into a single value
or a probability distribution, it is not possible to observe
whether the final solution would correspond to a consensus
decision if the individual assessments were considered. Thus,
one cannot identify which decisions are supported by differ-
ent estimates, and which ones are significantly affected by the
differences among assessments. Decision-makers may also
not know which data aggregation techniques to use (comput-
ing simple averages or using more sophisticated techniques),

and, most importantly, the effects of the chosen aggregation
techniques on the final decisions. Therefore, additional infor-
mation that would reduce such a high level of ambiguity in
decision-making would be valuable (Snow, 2010).

Rather than merging data coming from different sources by
aggregating before solving a decision-making problem, we
develop a method that can effectively integrate the data aggre-
gation and decision-making processes. Specifically, given
different estimates provided by multiple data sources on crit-
ical parameters for postdisaster decision-making, we present
an approach based on stochastic optimization and unsu-
pervised machine learning, specifically graph clustering,
which aims to identify groups of scenarios whose asso-
ciated solutions are similar. The resulting clusters provide
the information that directly reduces the level of ambiguity
faced by the decision-maker. More specifically, the proposed
methodological framework aims to deal with ambiguity in
humanitarian decision-making by (i) analyzing solutions sys-
tematically to identify whether there exists a high degree of
consensus among different estimates in terms of their impli-
cations on decisions and observe how different estimates
influence the decisions, and (ii) integrating the data from dif-
ferent sources into decision-making in a meaningful way by
adjusting the weights to different solutions to obtain the most
“agreed” solution.

While our methodology is general and can be applied to
different decision-making environments where quantitative
estimates are available from multiple sources, we illustrate
the implementation of the proposed approach in a case study
focusing on the integration of needs assessment data with
shelter location decisions during the Syrian conflict. Since
the beginning of the conflict, sector-specific (e.g., shelter,
nutrition) needs across the country have been systematically
assessed by different humanitarian initiatives. However, dis-
crepancies may occur between different assessments since
different initiatives may follow different methodologies to
conduct surveys with different key informants, as well as they
may use different assumptions and techniques while clean-
ing and aggregating the collected information. For instance,
as reported by Benini et al. (2017), the estimated proportion
of internally displaced people (IDP) in a single subdistrict
of Syria varies between 15% and 74% across different data
sources. We apply the proposed methodology to the needs
assessment data provided by two reliable assessment initia-
tives, which were collected in July/August 2018 from the
Idleb subdistrict of Syria. We integrate the needs assessment
data related to the shelter needs of the affected population
into decision-making for designing a shelter network and
show the benefits of the proposed approach in dealing with
information ambiguity compared to traditional approaches.

To summarize, the contributions of this paper are as
follows:

1. We design a novel and computationally efficient two-
phase methodological framework to support the human-
itarian decision-making process in a postdisaster setting
that includes
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(a) a descriptive phase that directly analyzes the lev-
els of information ambiguity stemming from the
obtained parameter assessments from the different
data sources;

(b) a prescriptive phase that defines a stochastic optimiza-
tion model by adjusting the relative weights given to
each scenario generated in such a way as to reduce the
level of ambiguity in the informational context.

To the best of our knowledge, this is the first study
to address the problem of ambiguity and divergence of
estimates in humanitarian decision-making processes.

2. We demonstrate how the scenario clustering method
developed in Hewitt et al. (2022), which relies on the use
of a decision-based opportunity loss dissimilarity function
to identify patterns in a scenario set, can be generalized
and extended to directly analyze the levels of ambigu-
ity that humanitarian decision-makers face when planning
operations following a disaster. Specifically, we show
that the defined dissimilarity function provides the key to
search for clusters of scenarios that exhibit a higher level
of decision consensus across multiple data sources. Such
clusters then directly reduce the levels of ambiguity in the
informational context involved in the planning, which, in
turn, provide value to the humanitarian decision-makers.
The development of a clustering method in combination
with stochastic programming to reduce ambiguity has not
yet been done.

3. We illustrate the usefulness and efficiency of our proposed
methodological framework using real-world data. Specif-
ically, our case study addresses the integration of needs
assessment data with the decisions of locating shelters
during the Syrian conflict. We evaluate the quality of our
solutions with respect to a naïve approach and a common
stochastic optimization model. We also derive insights on
the benefits of our proposed approach for the humanitarian
decision-makers.

The rest of this paper is organized as follows. In Section 2,
we review the relevant literature. In Section 3, we define our
problem and in Section 4, we describe our methodological
framework. We present a numerical analysis to illustrate the
implementation and advantages of the proposed methodology
in Section 5. Finally, we conclude and discuss future research
in Section 6.

2 LITERATURE REVIEW

In this section, we review the relevant literature on
decision-making and information management in humanitar-
ian operations (Section 2.1), machine learning and ambiguity
(Section 2.2), and shelter location problems (Section 2.3).

2.1 Humanitarian decision-making and
information management

This study is motivated by the need for systematical
approaches to facilitate linking information management and

decision-making processes, which is a primary challenge in
humanitarian environments. There exists a rich literature that
present analytical models to address a variety of humanitar-
ian decision-making problems arising in different settings,
including transportation planning and fleet management (e.g.,
Gralla et al., 2016; McCoy & Lee, 2014), inventory and distri-
bution planning (e.g., Azizi et al., 2021; Gallien et al., 2021),
prepositioning and network design (e.g., Balcik et al., 2019;
Dufour et al., 2018), and postdisaster debris operations (e.g.,
Lorca et al., 2017). As described by Gralla et al. (2016),
humanitarian logisticians must make decisions quickly in
emergency situations by using incomplete and large amount
of information coming from different sources. Because of
the urgency involved, information must be gathered quickly
and disseminated to the relevant stakeholders. Several stud-
ies highlight the important role of accurate information for
humanitarian decision-making and the challenges of informa-
tion management in disaster contexts (e.g., Altay & Labonte,
2014; Comes et al., 2020; Day et al., 2012; Ergun et al., 2014;
Gupta et al., 2016, 2019; P. Shi et al., 2023; Van de Walle &
Comes, 2015).

While humanitarian organizations have traditionally suf-
fered from lack of consistent data and information (Starr
& Van Wassenhove, 2014), recent advances in technology
present major opportunities for leveraging data and infor-
mation to improve humanitarian operations (Swaminathan,
2018). Humanitarian organizations are increasingly inter-
ested in utilizing the benefits of technological innovations in
dealing with the complex and dynamic operational environ-
ment (Besiou & Van Wassenhove, 2020; Marić et al., 2022;
Yoo et al., 2020). However, given that disaster managers are
faced with large amounts of information, integration of mul-
tiple sources to achieve accurate information for effective
decision-making has become an important concern (Gupta
et al., 2019). Moreover, no single actor can be the source of
all required data in humanitarian environments (Balcik et al.,
2010), and different agencies may have different estimates
about needs (Ruesch et al., 2022).

Furthermore, in the case of violent conflict situations,
it may not be even safe for aid workers to collect data
on the ground. Indeed, humanitarian organizations often
use external data as it is not feasible for them to collect
their own data relevant to plan their response. Therefore,
different initiatives (e.g., Humanitarian Data Exchange plat-
form, which is managed by United Nations Office for the
Coordination of Humanitarian Affairs (OCHA’s) Centre for
Humanitarian Data) have been launched to ensure access to
quality-assured or accurate data and support evidence-based
decision-making. How to facilitate such open data by human-
itarian agencies operating in the field is also discussed in
the literature (e.g., Abuoda et al., 2021; Paulus et al., 2018;
Swamy et al., 2019).

Large amounts of information from heterogeneous sources
can bring significant challenges for humanitarian organi-
zations that have limited time to make decisions (e.g.,
Hosseinnezhad & Saidi-mehrabad, 2018). Swaminathan
(2018) stresses the need for methods that can effectively syn-
thesize different data streams. Taylor et al. (2021) discuss
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that ambiguity and uncertainty are the main reasons for
the difference between postdisaster policy formulation and
its actual implementation and emphasize the need for new
approaches integrating ambiguity, vagueness, and incon-
sistency. Zagorecki et al. (2013) highlight the importance
of applying advanced analysis techniques that creates new
knowledge from available data, rather than processing the
data in a prescribed manner. We aim to address the need for
innovative methods to better link information management
and decision-making in humanitarian supply chains, which
is increasingly stressed as an important research gap (e.g.,
Comes et al., 2020; Van Wassenhove & Besiou, 2013). While
the existing humanitarian decision-making studies may con-
sider the effects of uncertainties due to data unavailability by
using various stochastic and robust optimization approaches,
to the best of our knowledge, our study is the first to explic-
itly analyze the information from different viable sources and
integrate them into decision-making.

In this study, we link data processing and decision-making
by proposing a methodology based on unsupervised machine
learning. The increasing use of technology in disaster set-
tings enables the accessibility to ever greater amounts and
types of data, making machine learning techniques increas-
ingly popular in disaster management (e.g., Ofli et al., 2016;
Sokat et al., 2016). Machine learning algorithms have a
wide range of applications in disaster management such as
identifying damaged buildings, detecting victim locations,
predicting the behavior of crowds, assessing risks, and mak-
ing predictions about disaster occurrences such as floods or
fires (e.g., see reviews by Chamola et al., 2020; Linardos
et al., 2022; Sun et al., 2020; Zagorecki et al., 2013). The
existing techniques mostly focus on developing methodolo-
gies to utilize various sources of data to make predictions
for informed decision-making in disaster management. How-
ever, to the best of our knowledge, there exists no study that
utilizes machine learning techniques to integrate estimates
from different data sources into decision-making by analyz-
ing and reducing ambiguity, which we address in this study
by presenting a novel method.

2.2 Machine learning and ambiguity

There is a vast literature on combining machine learning and
optimization in general: for example, Bengio et al. (2021)
and Vesselinova et al. (2020) for supervised approaches
and Mazyavkina et al. (2021) for reinforcement learning
applied to optimization. Applications of machine learning
also appear with increasing frequency in humanitarian logis-
tics, for example, Chamola et al. (2020). In the machine
learning literature, the term “ambiguity” appears sometimes
(e.g., Ghysels et al., 2021), but it has a different mean-
ing in that context. There, ambiguity is defined in terms
of inaccuracy in the data. This presupposes the existence
of a ground truth from which the dataset diverges, which
does not correspond to our meaning of the term: we do not
assume that the ground truth is knowable. To the best of our

knowledge, our specific contribution of reducing ambiguity
through unsupervised machine learning has not previously
been tackled.

Several review papers (e.g., Grass & Fischer, 2016; Gutjahr
& Nolz, 2016) show that discrete scenarios are most often
used to capture the uncertainties in disaster contexts. There
are two general ways of generating scenarios in a human-
itarian setting, either by deriving them from past data on
disasters or by interviewing experts (Yáñez-Sandivari et al.,
2020). For instance, Andres et al. (2020) propose a scenario-
based artificial intelligence approach where scenarios are
based on empirical data to forecast the number of forcibly
displaced people.

In this study, we propose a scenario clustering approach
to specifically analyze the levels of ambiguity regarding
the source-specific scenarios. Scenario clustering techniques
have been primarily used to search for patterns in, or asso-
ciated with, scenarios or to reduce the number of scenarios.
(See Appendix A for an overview on scenario clustering
approaches in the Supporting Information.) The generally
large size of the scenario set (Birge & Louveaux, 2011) can
lead to formulations that are intractable to solve directly (e.g.,
Dyer & Stougie, 2006). Our approach uses and extends the
methodology of Hewitt et al. (2022) by analyzing the level
of decision agreement among scenarios and integrating these
scenarios through optimization to reach a consensus decision.
Note that the approach of Hewitt et al. (2022) alone is not set
up to analyze ambiguity.

2.3 Shelter location problems

In this study, we propose an integrated data aggregation
and decision-making methodology, which is illustrated in a
postdisaster setting that focuses on linking the needs assess-
ment data and shelter location decisions during a complex
emergency. Both postdisaster needs assessment planning and
shelter location problems are widely studied in different
humanitarian contexts (e.g., see the reviews by Farahani
et al., 2020; Galindo & Batta, 2013). While the assessment
information may highly affect the design and management
of relief operations, existing studies usually consider data
analysis and decision-making in an integrated way; rather,
available assessment data is processed first to estimate the
values of uncertain critical parameters (i.e., demand), which
are then used as deterministic or stochastic inputs to solve
an optimization problem for making disaster response deci-
sions (e.g., Lorca et al., 2017; Stauffer et al., 2016). In
contrast to the traditional sequential approach, we present
a new method that integrates the available needs assess-
ment data into decision-making for disaster response, which
can provide more intuition to decision-makers in under-
standing the effects of data aggregation and making sense
of different solutions generated by data from different
assessment sources.

Locating shelters such as town halls, gyms, or tents, to
serve the affected people after a disaster is an active research
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field (Kılcı et al., 2015; Kınay et al., 2018; Ni et al., 2018).
Given that location decisions are extremely impeded by the
high degree of uncertainty inherent in disaster and crisis
situations, stochastic optimization techniques are widely uti-
lized (Dönmez et al., 2021). Specifically, two-stage stochastic
models have been often used to model uncertainty, which
consists of decisions made before (i.e., first stage) and after
(i.e., second stage) the realization of uncertainty represented
by scenarios. Two-stage stochastic programming is well
suited in the chaotic aftermath of a disaster where there exists
a high level of uncertainty regarding needs in the affected
region. We consider a two-stage stochastic model to locate
shelters with limited capacities by exploring how ambigu-
ous needs assessment information can be integrated into the
decision-making. Note that robust optimization, particularly
distributionally robust optimization, is an approach that can
be applied to solve problems that involve ambiguity and to
find solutions that hedge against the risks associated with this
ambiguity. This is done by considering the worst case across
the ambiguity, see, for example, the review by Rahimian
and Mehrotra (2019). However, our objective here is to
allow the decision-maker to analyze and link the decisions
to be made with the information provided by the different
data sources, which cannot be achieved by applying robust
optimization.

As discussed in Dönmez et al. (2021), shelter location deci-
sions, which are widely addressed in the literature, are made
under significant demand uncertainty (e.g., Kınay et al., 2018;
Ozbay et al., 2019). The demand scenarios in the existing
papers are often generated based on available data sources
(i.e., historical data) by using various methods that rely on
different assumptions. That is, there exist no standard datasets
and methods followed to generate scenarios based on data.
In this paper, we address an important concern that has been
raised by practitioners (e.g., Benini et al., 2017), but not been
addressed by the studies that use scenario-based approaches
in shelter location problems or other humanitarian logistics
problems, which is dealing with the ambiguity that may be
caused by multiple reliable data sources related to uncertain
parameters for disaster response. We illustrate the benefits of
the proposed approach by a case study developed with real
data from the Syrian conflict.

In summary, this study contributes to the literature by
developing a new methodology that links information pro-
cessing with decision-making in a postdisaster environment
that involves uncertainty and ambiguity and presenting the
benefits of the proposed approach in a complex emergency
setting with real data. The proposed methodology can sup-
port humanitarian decision-makers to eliminate the excessive
effort and energy spent to deal with information ambigu-
ity without connecting it to decisions and hence shifting the
focus from aggregation of data to aggregation of data with
respect to conclusions to be drawn. Although the proposed
approach is illustrated with a shelter location problem formu-
lated as a two-stage stochastic model, it is general and would
apply to any kind of optimization model involving scenarios.

3 PROBLEM DEFINITION

In this section, we first define the problem in general terms
(Section 3.1) and then introduce a shelter location problem in
a humanitarian setting (Section 3.2).

3.1 General problem statement

Consider a decision-maker who faces a given problem
involving uncertainty, such as the allocation of relief
resources under demand or supply uncertainty. Specifically,
the decision-maker must make a series of decisions, which
we represent as the variable vector x, while the informational
context in which the problem appears contains uncertain
parameters, which we represent as the parameter vector 𝜉.
We further assume that 𝜙(x, 𝜉) defines the function that the
decision-maker seeks to optimize. Without loss of generality,
let us assume that function 𝜙(x, 𝜉) computes the total value
associated with x if the uncertain parameters turn out to be
𝜉 and which the decision-maker is interested in maximiz-
ing. Considering that vector 𝜉 contains a series of uncertain
parameters, then for a fixed set of decisions x, 𝜙(x, 𝜉) defines a
distribution of values (i.e., each one associated with a possible
realization of vector 𝜉).

In the context of our shelter location problem (Section 3.2),
x is the choice of shelter locations to serve the affected pop-
ulation that need shelter, whereas 𝜉 represents a number of
uncertain parameters that affect the outcome of the alloca-
tion of aid, such as the number of people in need of shelter.
The function 𝜙(x, 𝜉) then represents the total number of IDPs
that can be accommodated if a decision x is taken and the
realization of the uncertain parameters is 𝜉.

The probability measure ℙ encodes the distribution of the
vector of uncertain parameters 𝜉. The following optimization
model can then be solved by the decision-maker to find an
appropriate solution to the problem:

max
x∈A

𝔼𝜉[𝜙(x, 𝜉)], (1)

where A defines a set of constraints that are imposed on the
decision variables x. The objective function defined in model
(1) is the expected value of a given solution, and it represents
what is often referred to as the value function or recourse
function in a stochastic program (Birge & Louveaux, 2011).
We seek to maximize the total expected number of people
that can be accommodated in shelters. It is assumed that a
series of data sources, which are different assessments for
shelter needs, are leveraged to formulate the probability mea-
sure ℙ. Let K define the finite set of distinct data sources
that are considered. It is further assumed that each data
source k ∈ K can be used to define a source-specific proba-
bility measure, which we define as ℙk. Moreover, the applied
hypothesis is that the same level of confidence is associated
with all the source-specific probability measures ℙk, ∀k ∈ K.
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Therefore, there is ambiguity regarding which of the proba-
bility measures should be used to define model (1).

Stochastic optimization enables problems to be solved
by formulating the uncertain parameters using a probability
measure that is explicitly defined (see Birge and Louveaux,
2011). Although this approach does not directly tackle ambi-
guity, it allows a problem to be solved using different
probability measures. When the approach is applied to the
present problem, given any ℙ, a set S of scenarios with associ-
ated probabilities ps for s ∈  is generated to produce a more
manageable problem to solve. In the disaster context, scenar-
ios can include the information on, for example, the specific
disaster type, its extent, demand for aid, etc. The following
discrete probability measure is obtained:

P =
∑
s∈

ps𝛿s, (2)

where 𝛿s, ∀s ∈  , define indicator functions that state
whether or not the associated scenarios appear in a given
random experiment. Another way of viewing (2) is as a dis-
cretization of ℙ. Assuming that 𝜉s represents the realization
of the uncertain parameters associated with scenario s ∈  ,
then the following approximation problem (i.e., with respect
to the original problem (1)) can be solved:

max
x∈A

∑
s∈

ps𝜙(x, 𝜉s). (3)

Assuming that problem (3) is solved using a given set
k, that is generated using the source-specific probability
measure ℙk, then one would obtain the optimal solution x⋆

k .
Specifically, solution x⋆

k defines a set of feasible decisions
(i.e., x⋆

k ∈ A) that provide the maximum approximated value
function if the data source k ∈ K is used to generate the sce-
nario set k (i.e., the underlying assumption being that ℙk

defines the distributions of the parameters 𝜉). If this two-step
process [Step 1: generate a set of scenarios; Step 2: solve
the resulting approximated problem (3)], is then repeated for
all available data sources k, then one obtains a set of fea-
sible (and most likely different) solutions x⋆

k ∈ A, ∀k ∈ K.
Each of these solutions prescribes the set of decisions that
would be appropriate to implement if each data source is
used separately to formulate the probability measure applica-
ble to formulate the distributions of the uncertain parameters.
On their own, each solution x⋆

k does not guarantee an effi-
cient integration of the probabilistic information that may be
gathered from the other data sources (i.e., ∀k′ ∈ K such that
k′ ≠ k). Solution x⋆

k only provides the perspective of what
decisions are warranted if ℙk is trusted to properly formu-
late the prevailing uncertainty. However, x⋆

k , ∀k ∈ K, can be
used as the basis to evaluate just how close a given solution
comes to simultaneously reaching the prescribed decisions
when the probabilistic information, inferred from each data
source, is considered. In particular, given a specific solution
to the considered problem x ∈ A, let us define the following

function:

𝜖k(x) =
∑

s∈k

ps𝜙(x⋆
k , 𝜉s) −

∑
s∈k

ps𝜙(x, 𝜉s). (4)

The function 𝜖k(x) defines the gap, evaluated based on the
approximated probabilistic model derived using the data
source k, associated with solution x when it is compared with
the optimal solution x⋆

k (i.e., which is obtained under the
assumption that ℙk is applicable). An overall gap can then
be defined as follows:

𝜖(x) =
∑
k∈K

𝜆k𝜖k(x), (5)

for some weights (𝜆k ≥ 0: k ∈ K). These weights represent
the relative importance of each source K in the gap. For exam-
ple, when all sources are considered to be equally reliable (or
when there is no information about the reliability), one can
choose 𝜆k = 1 for all k ∈ K, thus giving each source the same
weight in the gap calculation.

To deal with the ambiguity encoded in the probability
measure, we then propose to search for a solution x⋆ that
minimizes the overall gap value:

x⋆ ≈ arg min
x∈A

𝜖(x). (6)

In the present paper, we will show that, by using a novel
clustering methodology to perform a systematic analysis of
the scenarios included in k, ∀k ∈ K, we can define an alter-
native approximation model of type (3) that can be solved to
obtain a high-quality solution of type (6).

3.2 Shelter location problem and model

As stated in the introduction, when considering the type
of problems that are faced by humanitarian organizations
(such as the deployment of aid in postdisaster environments)
another important imperative for decision-makers is the need
to analyze how the various data sources k ∈ K impact the
decisions to be made (i.e., x ∈ A). From a qualitative perspec-
tive, it can be valuable for them to gain insights regarding
how the various data sources influence their decisions. Such
insights are often essential to justify the choices made regard-
ing how the aid is deployed and the available resources
managed. But such analysis may also be required for account-
ability purposes with respect to donors, who expect that the
use of their donations to be determined following a care-
ful needs assessment. In all cases, properly integrating the
information provided by the various data sources directly
into the decision processes defines an important challenge in
humanitarian planning settings.

In this subsection, we consider a problem of accommodat-
ing people or families affected by a disaster, for example,
a civil war as in our case, where it is difficult to obtain
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F I G U R E 1 General methodological process. [Color figure can be viewed at wileyonlinelibrary.com]

accurate information. For our case study in Section 5.2, we
use two data sources, that is, |K| = 2, that collect informa-
tion to assess shelter needs in crisis-affected regions based
on different surveys made in the same district in close peri-
ods. Depending on the disaster scale, each scenario refers to
the number of IDPs in need of shelter. Our network con-
sists of nodes, for example, cities or districts, where shelter
demand can arise and where facilities such as a tent or a
public building can be set up or temporarily converted to meet
this demand. In the first stage, that is, before the full extent of
the disaster and the demand have been realized, decisions on
shelter locations have to be taken. Each shelter can accom-
modate people within a particular coverage distance. When
the actual number of people and families in need of shel-
ter is known, second-stage decisions on how many of them
can be accommodated are taken. The objective of our model
is to meet the expected demand for sheltering where the
number and capacity of shelters are limited. The stochastic
optimization model presented in Appendix B in the Support-
ing Information is an adopted and simplified version of the
one proposed by Noyan et al. (2015).

4 METHODOLOGICAL FRAMEWORK

We now detail the proposed methodological framework,
which enables a large amount of information contained in the
assessments emanating from the set of data sources k ∈ K to
be more efficiently integrated within decision-making. These
data sources can be used to specify a probability estimate for
an event or a state or simply to provide a range of values (i.e.,
the minimum, maximum, and most probable) for an unknown
quantity such as the number of people in need. In the latter
case, the range of values can be used to define probabilistic
measures; for example, via triangular distributions, which are
easy to understand and interpret (Benini et al., 2017).

As discussed in the previous section, since the different
data sources k ∈ K may lead to drastically different assess-
ments of the uncertain parameters, integrating the overall
contextual information that is provided (i.e., the value vec-
tors 𝜉s, ∀s ∈ Sk, and ∀k ∈ K) becomes quite challenging
for humanitarian organizations. To efficiently incorporate the
ambiguous information provided by the set of data sources
k ∈ K to find a high-quality solution of type (6), we pro-
pose a two-phase methodological framework, as illustrated
in Figure 1.

In the first phase (descriptive phase), a descriptive analy-
sis is performed on the source-specific probability measures

obtained from the set of data sources. The general objective
of this phase is not only to specify the information provided
by the data sources but also to assess the impacts that this
information has on the considered planning problem. Upon
completion, knowledge is obtained on the unknown contex-
tual information of the problem and on the level of overall
decision agreement between the models generated from the
data sources.

The second phase of our framework is dedicated to the
use of this knowledge to prescribe an appropriate solution
to the problem (prescriptive phase). Through the use of
novel decision analysis techniques and mathematical pro-
gramming methods, the information extracted from the data
sources is efficiently interpreted and aggregated to provide
decision support. Specifically, we will show how an alterna-
tive approximation model of type (3) can be defined to obtain
a consensus solution x⋆ as defined by (6).

In the rest of the section, we describe the two phases
included in the framework, which involve five steps. The
descriptive phase is explained in Section 4.1, while the pre-
scriptive phase is presented in Section 4.2. Step I generates
sets of scenarios that represent the assessments provided
by each data source, following the general stochastic pro-
gramming approach. Step II calculates the opportunity cost
between scenarios in order to quantify the error of predict-
ing the wrong one. Step III identifies groups of scenarios that
are close to each other with respect to the opportunity cost
defined in Step II. Steps II and III apply a version of the clus-
tering methodology of Hewitt et al. (2022) adapted to our
setting. Finally, Steps IV (ambiguity analysis) and V (inte-
gration through optimization) are new and make up the key
methodological innovations of this paper. Overall, these last
two steps lead to defining an optimization model which, once
solved, provides us with the consensus solution.

4.1 Descriptive phase

Following Figure 1, the descriptive phase consists of per-
forming the following four steps: scenario generation,
opportunity cost distance computation, cluster generation,
and ambiguity analysis.

Step I: Scenario generation
Obtaining information from each data source is subject to
two types of error (Hoffman & Hammonds, 1994). On
the one hand, there is the uncertainty encoded in the data
source which we call intrinsic uncertainty. It is this type
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of uncertainty that motivates giving a range, rather than a
point estimate. On the other hand, there is uncertainty not
encoded in the data source, or extrinsic uncertainty. For
example, any data source expressed through an expert assess-
ment is likely subject to overestimation of the precision
regarding the expert’s predictions (Hammitt & Shlyakhter,
2006). Also, unlikely outcomes may not have occurred (or
be explicitly considered) in the dataset, which leads to their
probability being underestimated (Abdellaoui et al., 2011). In
the extreme case, the range of values for an uncertain parame-
ter obtained from different data sources may not even overlap:
all values in the possible range extracted from one data source
may be considered impossible by the other.

In order to hedge the risk posed by this extrinsic uncer-
tainty, we formulate a larger prediction uncertainty than that
given by any individual data source (see Section 5.1.1 and
Appendix E for more details in the Supporting Information).
Let us recall that we denote by ℙk the source-specific prob-
ability distribution associated with data source k ∈ K. That
is, ℙk encodes the assessment of uncertainty represented by
the data source k. In our case study, we consider two data
sources, which provide needs assessment results based on
different surveys made in the same district in close periods.
Recall further that x denotes the decision vector—in our case
the allocation of shelter nodes—and that 𝜉 denotes the vector
of uncertain parameters, that is, the shelter needs.

From these probability distributions, we then sample dis-
crete values for the uncertain parameters and include them
into scenarios: each scenario being associated with one set of
values that the uncertain parameter vector takes. (See King
and Wallace, 2012, for more details on sampling methods
that can be applied in this context.) In the following, we will
denote the discretization of the probability measure ℙk by k

(the scenario set). For each scenario s ∈ k, we denote by
𝜉s the corresponding realization of the uncertain parameter 𝜉.
Denoting by Nk, the number of scenarios contained in k we
can write

k =
{

sk
1, … , sk

Nk

}
and Ξk =

{
𝜉sk

1
, … , 𝜉sk

Nk

}
.

The sets containing all scenarios, and their associated
realizations of the uncertain parameters are denoted by

 =
⋃
k∈K

k and Ξ =
⋃
k∈K

Ξk.

We assume throughout that the scenario sets generated from
each data source are disjoint, so

|| =
∑
k∈K

|k| =
∑
k∈K

Nk. (7)

Each scenario s ∈  is assigned a probability ps ≥ 0 of occur-
ring. Implicit in these probabilities is a weighting of different
sources: since scenario sets generated by each data source
are disjoint, we can compute the probability of a scenario

generated by a given source k ∈ K to be observed:

Pk =
∑

s∈k

ps for k ∈ K. (8)

The relative values of Pk give a weight of the data source
k, representing our confidence in each source. When we are
equally confident in all data sources, or when no informa-
tion is available about their reliability, we can choose the

probabilities ps such that Pk =
1

|K| . That way, equal weight

is associated with each source. One way of achieving this
is to generate the same number of scenarios from each
source and then to assign equal probabilities to all scenarios:

N1 = ⋯ = N|K| and ps =
1

|| for all s ∈  .

Step II: Opportunity cost distance
The second step of the descriptive phase defines the basis
over which the scenarios included in the sets k, ∀k ∈ K, will
be compared and analyzed. Specifically, the idea is to inter-
pret the information contained in 𝜉s, ∀s ∈  , in terms of the
decisions to be made regarding the specific decision-making
problem that is considered. Therefore, for each data source
k ∈ K, the following solutions are obtained:

x
(
sk

i

)
= arg max

x∈A
𝜙
(
x, 𝜉sk

i

)
, i = 1, … , Nk. (9)

These solutions can be understood as follows: if one were
somehow certain that scenario sk

i will occur then the solution
x(sk

i ), obtained by solving the problem (9) using the predicted
scenario sk

i , will be implemented. Each data source k ∈ K is
associated with the following solution set:

Xk =
{

x
(
sk

1

)
, … , x

(
sk

Nk

)}
.

and the overall set of all such solutions is thus denoted as

X =
⋃
k∈K

Xk.

We now apply a notion of distance between scenarios,
called opportunity cost distance that was first introduced in
Hewitt et al. (2022). For any pair of scenarios s1 ∈  and s2 ∈
 , we evaluate the cost of predicting scenario s1 and taking
the associated decision, when in fact scenario s2 occurs. Thus,
these two scenarios are close with respect to this distance
if the decisions associated with them are mutually accept-
able (i.e., solutions x(s1) and x(s2) are good surrogates for
one another). Mathematically, the opportunity cost distance
is given by

d(s1, s2) = 𝜙(x(s2), 𝜉s2
) − 𝜙(x(s1), 𝜉s2

) + 𝜙(x(s1), 𝜉s1
)

− 𝜙(x(s2), 𝜉s1
). (10)

An opportunity cost distance matrix is then obtained by
calculating the distance values using Equation (10) for all
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scenario pairs in the overall set (i.e., compute d(s1, s2), ∀s1,
s2 ∈ ).

Step III: Cluster generation
Equipped with the opportunity cost distance function, and
having computed the associated distance matrix, we now look
for groups of scenarios that are very close to each other, but
relatively far away from the other groups. This step reduces
to solving a clustering problem over the scenario set  , for
which various unsupervised machine learning methods can
be applied, for example, J. Shi and Malik (2000) and von
Luxburg (2007). In the present case, we choose the normal-
ized N-Cut algorithm (Hewitt et al., 2022; J. Shi & Malik,
2000), which seeks to minimize the diameter of each clus-
ter in relation to the distance between clusters. In this way,
we obtain a partition C1, … , CM of the scenario set  such
that elements of the same cluster Cj are relatively close with
respect to the opportunity cost distance (10), whereas mem-
bers of two different clusters Ci and Cj for i ≠ j are relatively
far away from each other. The number of clusters M can be
chosen by the user depending on the context by consider-
ing the trade-off between a higher quality of the clustering
(more clusters) and lower computational complexity (fewer
clusters). In some contexts, M may be set in advance.

We will choose M so as to maximize a particular notion
of clustering quality called the Silhouette score, which mea-
sures how close each scenario is to other members of its own
cluster, compared to its distance to other clusters (Rousseeuw,
1987). In the literature, the elbow method (Bishop &
Nasrabadi, 2006) is sometimes used. In this work, we pre-
fer the Silhouette score because it takes into account both
intercluster and intracluster distances. Moreover, the elbow
method requires a subjective choice made by the modeler and
is therefore less reproducible (Ketchen & Shook, 1996).

Step IV: Ambiguity analysis
This step is dedicated to analyzing the obtained clusters with
a focus on diagnosing the level of decision agreement among
the scenarios and data sources. We begin by identifying the
level of agreement between data sources in terms of the deci-
sions to be made, by analyzing the clusters generated above.
For any subset U ⊆  , we can define the decision level of
agreement: Δ(U) ∈ [0, 1], by

Δ(U) =
4

|U|2
∑

s1,s2∈U

Δ(x(s1), x(s2)), (11)

where Δ(x1, x2) denotes the normalized Hamming distance
between two permissible solutions x1, x2 ∈ A, which is
defined as follows:

Δ(x1, x2) =
1
L

L∑
l=1

1x1(l)≠x2(l),

where L is the common length of x1 and x2, that is x1, x2 ∈
ℝL.

In this way, we can calculate the decision level of agree-
ment within the clusters, that is, Δ(Cj) for j = 1, … , M. By
computing Δ(k), we can also measure the variance of the
information obtained from one data source k ∈ K, that is, to
what extent the different scenarios generated from k lead to
the same solutions (or decisions). Note that at this step, the
Hamming distance is used to analyze the agreement or dis-
agreement between different solutions. In the next and last
step of our methodology, we incorporate these insights about
the agreement level to determine a consensus optimization
problem whose solution is evaluated by the epsilon function
in (5). (See Appendix C.1 for an example in the Supporting
Information.)

Another important dimension to consider in this analysis
is the distribution of scenarios’ origin within a cluster. We
will be interested in distinguishing between clusters where all
scenarios were generated by a single data source and clusters
with a mix of scenarios from different data sources. In other
words, we analyze the distribution of data sources in a cluster.
By explicitly considering this information, the decision-
maker is able to directly analyze the levels of ambiguity
related to the overall assessments provided by the different
data sources (i.e., the context information contained in Ξ).
Therefore, the more data sources are present in a given clus-
ter, the less ambiguity is involved between them regarding the
scenarios contained within the cluster. That is, even though
the scenarios may originate from different data sources and
may specify different values for the uncertain parameters,
they all lead to make decisions (find solutions to the problem)
that are similar (solutions that are good surrogates for one
another). This analysis thus provides value for an ambiguity-
averse decision-maker. Next, we show how a measure can be
defined to quantify such observations. More precisely, for a
cluster Cj and a data source k ∈ K, let 𝜋k(Cj) be the propor-
tion of scenarios in Cj generated from the data source k:

𝜋k(Cj) =
|Cj ∩ k|

|Cj| . (12)

We say that a data source k ∈ K is present in a cluster Cj
if 𝜋k(Cj) > 0. We then define the diversity of data sources
within a cluster via the entropy

H(Cj) = −
∑
k∈K

𝜋k(Cj) log(𝜋k(Cj)), (13)

with the usual convention that 0 log(0) = 0.
The value of H(Cj) lies between 0 and log(|K|) (recall

that |K| is the number of data sources). A value close to 0
indicates a low diversity of data sources. The extreme case
of H(Cj) = 0 means that all scenarios in Cj were gener-
ated by a single data source. While a large value of H(Cj)
indicates a high diversity of data sources. The highest possi-
ble value of H(Cj), namely log(|K|), means that every data
source is present in the cluster with the same proportion. (See
Appendix C.2 for an example in the Supporting Information.)
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4.2 Prescriptive phase

As indicated in Figure 1, the prescriptive phase consists of
performing the integration through optimization to achieve a
consensus decision.

Step V: Integration through optimization
In order to integrate the different estimates coming from var-
ious sources, we introduce two choices, namely a subset 
of the scenario set and weights ws for each scenario s ∈  ,
based on the metrics defined above. As a way of formalizing
the problem expressed in (6), we define a consensus solution
as follows:

x⋆ = arg max
x∈A

∑
s∈

ws𝜙(x, 𝜉s). (14)

This raises questions when formulating problem (14): Which
scenarios should be included in  , and how should the
weights ws be defined?

Regarding the choice of  , we could include all scenarios:
 =  . Then the consensus solution is obtained by explicitly
considering all information stemming from the data sources.
This would minimize the risk of not taking into account some
of the information contained in the data sources. However,
the size of the overall scenario set  might be very large, and
considering the complexity involved in computing the value
function 𝜙, solving problem (14) with the full set of scenarios
might not be computationally efficient. In this case, a repre-
sentative scenario can be identified for the cluster and used
as a proxy for the cluster in the definition of (14). As pro-
posed in Hewitt et al. (2022), the medoid of the cluster (i.e.,
the scenario that has the minimum average dissimilarity to all
other scenarios of the cluster) can serve as the representative.
Applying such a reduction, that is, choosing  ⊂  , natu-
rally leads to an approximation error with respect to using the
full set  when searching for a consensus solution (14). That
being said, as numerically illustrated in Hewitt et al. (2022),
the use of the medoids as representatives of the clusters can
still be used to produce a high-quality upper bound that can
be more efficiently computed.

We define the weight ws associated with a given scenario
s ∈  in two parts: (1) through the diversity of data sources
within the cluster to which s belongs and (2) according to the
stochasticity of the data source from which s was generated.
If a scenario reduction approach is applied to obtain  , then
the weights associated with the scenarios in a given cluster
are assigned to its respective representative.

In the first part, we place more weights on scenarios in
clusters that contain more data sources. This is done as a
means to prioritize the context information emanating from
a cluster where there is less ambiguity related to the data
sources that are present within it. When the data sources pro-
vide a differing view on the underlying uncertainty, this can
lead to a skewed representation of the information sources
in clusters. Recall that in our setting we cannot judge the

reliability of each source, and each source is assigned the
same level of confidence. Thus, a source whose information
leads to a higher level of uncertainty in our model will be
represented in a larger number of different clusters. In turn,
this knowledge allows us to better hedge against the risks of
inaccurate predictions. This motivates the second part, where
we place more weight on scenarios generated by data sources
that appear in more clusters.

Diversity weight
The first weight w(1)

j is the same for each scenario in a given
cluster Cj, that is, the weight only depends on the cluster
index j ∈ {1, … , M} and defined as follows (recalling the
definition of H from (13)):

w(1)
j = 𝜆K + H

(
Cj
)
, where 𝜆K =

log (|K|)
4

. (15)

Stochasticity weight
As explained above, we also place more weight on scenarios
generated from data sources that appear in more clusters. The
second weight is the same for each scenario that was gener-
ated from the same source. We, therefore, denote the second
weight by w(2)

k for k ∈ K (recall that K is the set of data
sources). Suppose that two scenarios s1 and s2 were chosen
uniformly from k, the set of scenarios generated by source k.
The weight w(2)

k is an affine function of the probability that s1
and s2 belong to different clusters, that is, the weight is higher
if the source k is more evenly represented across the clusters.
More formally, let 𝜄 :  ⟶ {1, … , M} denote the function
that maps each scenario s to the index 𝜄(s) of the cluster to
which it belongs, that is, so that s ∈ C𝜄(s). Then

w(2)
k =

1
4

+
1

|k|2
M∑

j=1

|Cj ∩ k||k ⧵ Cj|. (16)

The term
1

4
avoids zero weights if all scenarios generated by

a data source lie in the same cluster.

Defining the overall weight
Having defined the two weights w(1)

j and w(2)
k , we now define

an overall weight on each scenario by multiplying them with
the scenario probability. Recall that w(1)

j only depends on s

through the cluster j that s belongs to and w(2)
k only on the

data source k scenario s was generated from. However, this
is not quite satisfactory yet, since we would like the weights
to be equal to 1 on average. Formally, we define the overall
weight ws for s ∈  as

ws =
w(1)

𝜄(s)w
(2)
𝛾(s)

W
ps, where W =

1
||

∑
s∈

w(1)
𝜄(s)w

(2)
𝛾(s)ps

(17)

and 𝛾(s) ∈ K denotes the data source from which scenario s
was generated, that is, s ∈ 𝛾(s). The normalization constant
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W ensures that the average of the weights is equal to 1:

1
||

∑
s∈

ws = 1.

Illustrative examples can be found in Appendixes C.3 and C.4
in the Supporting Information.

5 NUMERICAL STUDIES

In this section, we present numerical studies developed based
on data from the Syrian conflict to illustrate the implemen-
tation of the proposed methodology and assess its value for
decision-makers. We focus on the integration of the needs
assessment data with decision-making for locating shelters
to serve IDPs in Idleb. We generate synthetic assessment
data and analyze our approach in Section 5.1. In Section 5.2,
we focus on real assessments provided by two humanitarian
initiatives active on the ground.

5.1 Synthetic tests

Syria has been at civil war since 2011, which has led to
millions of casualties and displaced people (UN Refugee
Agency, 2021). For the studies, we focus on the assessments
of Idleb district, which is located in the northwestern part of
the country bordering Turkey. Idleb is one of the most tor-
mented parts of Syria due to frequent skirmishes between
the Syrian government and the opposition forces. Due to the
recurring bombardment and air strikes, about 1.7 million peo-
ple have fled the area seeking security in neighboring coun-
tries like Turkey. Those who stay require essential supplies
like water, food, and medical care. To illustrate our approach,
we focus on people in need of shelter in Idleb and use the
shelter location model given in Appendix B in the Supporting
Information. In our synthetic tests, we suppose that there are
five fictitious data sources, denoted by #1 to #5, from which
we randomly generate shelter needs assessments. We further
distinguish between the “close,” “medium,” and “wide” cases
and simulate from each. The “close” case means that the
shelter demand estimations provided by the five sources are
rather similar, while in the “wide” case they are far apart. All
remaining parameters are presented in Section 5.2.1.

5.1.1 Implementation of the methodology

In this section, we explain each step of our methodology.

Step I: Scenario generation
We randomly generate 1000 scenarios, that is, 200 from each
fictitious source. Each scenario s can occur with the same
probability, that is, ps = 0.001, and represents estimates of
shelter demand.

Step II: Opportunity cost distance
In the second step of our methodological process, the
opportunity cost distances d(⋅, ⋅) had to be determined. For
this purpose, our two-stage stochastic model (22)–(31) in
Appendix B in the Supporting Information was solved for
each scenario separately and differences between the cor-
responding objective values were calculated via (10). In
the case where a single scenario is considered, (22)–(31)
becomes a deterministic model.

Step III: Cluster generation
Using the opportunity cost distance d(⋅, ⋅) from the previous
step, we now have a graph on the set of 1000 scenarios, where
the length of the edge between any two vertices s1 and s2
is given by the opportunity cost d(s1, s2). This leads us to
the graph clustering problem of identifying clusters of ver-
tices such that the edge between any two scenarios from the
same scenario is short. Based on the opportunity cost dis-
tances in (10), we have grouped the scenario set using the
normalized N-Cut algorithm, as mentioned in the third step of
our methodology in Section 4.1. In this algorithm, the num-
ber of clusters M is an input parameter that can be chosen.
Specifically, we have clustered the graph into 2, 3, …, 39
clusters and have chosen the optimal clustering according to
the Silhouette score. While this upper bound of 39 may seem
to be arbitrary, we have found that as the number of clus-
ters grows above 10, the quality of the clustering decreases
rapidly. Therefore, the upper bound does not turn out to be
very important.

Step IV: Ambiguity analysis
In the last step of the descriptive phase, we analyze the con-
sensus level between sources by determining the decisional
level of agreement (11) and the diversity of sources in a
cluster (13) based on the previously generated clusters.

Step V: Integration through optimization (prescriptive
phase)
The integration step involves identifying the consensus deci-
sions, which are obtained through optimization (14). The
determination of the corresponding weights ws are explained
in the following.

Let us define z = (zo : o ∈ O) as a binary vector that
includes the shelter opening decisions. We further define
Z = {z ∣

∑
o∈O zo ≤ 𝜅, zo ∈ {0, 1}, ∀o ∈ O} as the set of

first-stage constraints. Considering a solution z ∈ Z, we
also express the second-stage cost function 𝜙(z, qs, 𝜃s) =
max

∑
o∈O psr

s
o for a specific scenario s ∈ S, such that con-

straints (24)–(28) and (30) and (31) of the optimization model
in Appendix B (in the Supporting Information) hold. For a
given set S ⊆ S and the weight values ws, s ∈ S, the inte-
gration optimization model in (14) is defined for our case as
follows:

max
∑
s∈S

ws𝜙(z, qs, 𝜃s) (18)

s.t. z ∈ Z. (19)
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F I G U R E 2 Distribution of scenarios across the clusters for case (a) “close,” (b) “medium,” and (c) “wide.” [Color figure can be viewed at
wileyonlinelibrary.com]

The objective function (18) maximizes the weighted expected
number of accommodated people over all scenarios from S,
so that a maximum of 𝜅 shelters can be opened in the first
stage (19). Therefore, the consensus decisions, which we
denote as z⋆ (i.e., the optimal solution for model (18)–(19)),
are directly dependent on the choices made regarding the set
S and how the weights ws, s ∈ S, are fixed. Regarding our
specific application, we present four strategies to fix the set S
and the weights ws, s ∈ S, in solving model (18)–(19):

1. Expected value approach: The expectation is applied over
the information based on both sources as the means to
integrate. When applied in our case problem, this entails
that we define the expected scenario s for which the asso-
ciated parameters are defined as follows: qs = (qi : i ∈ I),
where qi =

∑
s∈S psq

s
i , ∀i ∈ I and 𝜃s =

∑
s∈S ps𝜃

s. Thus,
to obtain the consensus decisions in this case, we fix
S = {s} and we set the value ws = 1. Model (18)–(19)
is then solved, and we let z define the optimal solution
obtained.

2. Stochastic optimization: This is the traditional stochastic
programming approach, which approximates the stochas-
tic phenomena that is present in the considered problem
by generating a set of representative scenarios. In this

case, we thus define S = S and we set ws =
1

∣S∣
, ∀s ∈ S,

to account for the fact that the confidence level for all
sources is identical (i.e., we thus assume that all scenar-
ios are equiprobable). Model (18)–(19) is then solved, and
we let z̃ define the optimal solution obtained.

3. Scenario clustering: The clusters generated in Step III
of our methodology are used to perform the ambigu-
ity analysis to assess the level of consistency between
the sources regarding the information they are provid-
ing. In the present case, we set S = S and determine the
weights ws, s ∈ S using Equation (17). Model (18)–(19)
is then solved, and we let ẑ define the optimal solution
obtained.

4. Source-specific integration: This approach relies solely
on the information provided by the five sources. There-

fore, we define  = k and we set ws =
1

∣k∣
, ∀s ∈  and

k = 1, … 5. Model (18)–(19) is then solved to obtain the

optimal solution z⋆
k . In this case, solution z⋆

k can be inter-
preted as the best possible solution if source k is used in
the assessment of shelter needs.

As we have no information about the relative reliability of
the five sources, we weight them equally. This corresponds to
choosing 𝜆k = 1 for each data source k in (5). In particular,
(4) and (5) can then be written as

𝜖k(z) =
∑

s∈k

1
∣ k ∣

𝜙(z⋆
k , qs, 𝜃s) −

∑
s∈k

1
∣ k ∣

𝜙(z, qs, 𝜃s),

(20)

𝜖(z) =
∑
k∈K

𝜖k(z). (21)

5.1.2 Results and analysis

In this section, we apply the steps of our methodology and
present results for our cases that focus on making shelter loca-
tion decisions based on multiple needs assessments. Based
on the scenarios generated in Step I and shelter solutions zo
obtained in Step II, the optimal number of clusters in Step
III is M = 7 (according to the Silhouette score) for all three
cases, with the respective distributions shown in Figure 2.
In contrast to the “close” and “medium” cases, where most
scenarios are present in one cluster, in the “wide” case they
are rather evenly distributed across the first six clusters. This
observation is confirmed by the entropy, where the “medium”
case has the highest spread of entropy values and therefore
a particularly high level of ambiguity. (See Appendix D for
a discussion on the ambiguity analysis (Step IV) and the
resulting weights (Step V) in the Supporting Information.)

We now implement Step V of our methodology by iden-
tifying consensus decisions z⋆ for the approaches: expected
value, scenario clustering, and the source-specific integration
described in Section 5.1.1. In order to evaluate the perfor-
mance of our clustering approach, Table 1 summarizes the
gaps according to (20) and (21) for the “close,” “medium,”
and “wide” cases. For all three cases, our proposed method
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TA B L E 1 Comparison of gaps between the expected value and the new clustering approach for the “close,” “medium,” and “wide” cases.

Source

Case Approach #1 #2 #3 #4 #5 Total gap

Close Expected value 3097 4952 5657 4790 6356 24,853

Clustering 130 119 123 190 172 734

Medium Expected value 9420 11,438 10,036 10,296 11,908 53,098

Clustering 93 33 130 76 50 381

Wide Expected value 775 1740 1666 920 901 6003

Clustering 93 30 199 190 86 598

outperforms the expected value approach, resulting in signif-
icantly lower gaps. Starting with the “close” case, the total
gap of the expected value method is about 34 times higher.
If the estimates provided by the sources are further apart, that
is, “medium” case scenarios, then this total gap is even larger.
One would expect these gaps to increase even further for the
“wide” case. However, the situation here is somewhat dif-
ferent. Although estimates from sources diverge widely, the
ambiguity analysis has revealed a similar agreement level but
a higher entropy on average. In other words, while sources
vary in their estimates of shelter needs, there is a fair con-
sensus on shelter locations. Therefore, shelter solutions based
on the clustering approach are less dissimilar to the expected
value approach when compared to the “close” and “medium”
cases. That being said, one still observes that the use of
the clustering approach leads to a solution that is noticeably
closer to each source-specific solution found for the “wide”
case setting.

These results confirm our intuition that our newly pro-
posed methodological framework is particularly beneficial
when there is a wider range of source estimates, less consen-
sus on the solutions, and less diversity of sources within the
clusters. Given that humanitarian environments highly exhibit
these characteristics due to the large number and diver-
sity of primary and secondary data sources, as highlighted
by the literature, the proposed methodology can be highly
useful for bridging humanitarian information management
and decision-making.

5.2 Idleb case study

We give background information on the needs assessment
data provided by two different sources (Section 5.2.1) and
conclude with the corresponding results (Sections 5.2.2 and
5.2.3).

5.2.1 Case dataset

In the light of the hazardous circumstances in Syria, gath-
ering accurate information on the humanitarian situation is
extremely challenging. Various humanitarian initiatives con-
duct needs assessments in the affected regions to gather

information on the community necessities. The collected
information is processed (cleaned, combined, cross-checked
with secondary sources) and the sector-specific needs (shel-
ter, nutrition, etc.) in each district are published publicly.

We focus on two major assessment datasets, which are
made publicly available by two humanitarian initiatives, the
Humanitarian Needs Overview (HNO) and REACH. There
are other initiatives and organizations in Syria that focus
on collecting and disseminating assessment data at different
capacities (e.g., The International Organization for Migra-
tion, United Nations High Commissioner for Refugees).
Because HNO and REACH data are available for the same
period of time for shelter needs in the our focus district Idleb,
we consider two sources.

HNO, a joint effort by the United Nations (UN) and its
partners to assess the humanitarian situation in Syria, pro-
vides a consolidated and comprehensive dataset including
estimates on the number of people in need for different types
of relief in each district of Syria. We consider the nationwide
needs assessment of HNO conducted for 6322 communities
in Syria between July and August 2018. Specifically, 95,000
surveys at the household level were carried out. REACH
(2018) also conducts need assessments in Syria on a regular
basis since 2012. The assessments are based on community-
level interviews by key informants, which are selected based
on their knowledge of resident populations and IDPs in the
community and sector-specific expertise. Specifically, three
to seven key informants at each location are interviewed.

REACH, a nonprofit organization that aims to support
humanitarian response through better information manage-
ment, provides needs assessment data for the estimated total
number of people residing in a district and the percentage
of people requiring different types of supplies, for example,
water, food. and shelters. We consider the assessment dataset
of REACH based on the interviews conducted between 12
and 20 August 2018. In the following, we refer to HNO as
source #1 and REACH as source #2 which provides estimates
on the humanitarian needs.

While source #1 provides the estimated number of people
requiring shelter in detail, source #2 provides an aggregate
estimate according to which about 56% of local people are
in need of shelter (REACH, 2018). We, therefore, multiplied
the reported total population by 0.56 to obtain an estima-
tion for shelter needs. We obtain two assessment values for
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TA B L E 2 Location decisions to open shelters.

Decision Shelter

Almost always open (>80%) 3, 4

Almost never open (<20%) 9, 10, 12, 14, 16, 17, 19, 20, 25, 26

“Controversial” shelters 1, 2, 5, 6, 7, 8, 11, 13, 15, 18, 21, 22, 23, 24

shelter needs in each subdistrict, which can be used to
represent demand for shelter at each subdistrict of Idleb.

As mentioned in Section 4, triangular probability distribu-
tions, consisting of a minimum value min, maximum value
max, and the most probable value mode, can be practical in
humanitarian settings to represent uncertainty (Benini et al.,
2017). Here, we treat the shelter needs reported in the needs
assessment datasets of source #1 (HNO, 2019) and source
#2 (REACH, 2018) as the mode values, respectively. Based
on generated triangular distributions discussed in Appendix E
in the Supporting Information, 500 scenarios for each source
have been designed, that is, we obtain a total of || = 1000
scenarios. Since HNO and REACH are both supported by the
UN and are the most widely used needs assessment sources,
we assign the same level of confidence to both sources, that
is, equal weights Pk in (8) and 𝜆k in (5) for both sources.

Idleb consists of 26 subdistricts, and we assume that a shel-
ter can be opened at every of these subdistricts. Google Maps
was used to obtain distances between the centers of the sub-
districts. Since 2016, the OCHA organization has provided
monthly information on the locations of shelters in Idleb
and Aleppo, the types of shelters, and the number of IDPs
accommodated. According to OCHA (2018), shelters were
opened in 10 subdistricts of Idleb in August 2018, accommo-
dating an average of 80,000 IPDs. Based on this information,
we set that no more than 10 shelters can be opened, each
with an average capacity of 80,000 people; hence, the max-
imum available shelter capacity is 800,000. As indicated by
the Syria Needs Analysis Report (ACAPS, 2014), most IDPs
have fled to their neighboring districts. Therefore, the maxi-
mum coverage distance is set to 35 km, which is the average
distance between two neighboring districts.

5.2.2 Results and analysis

In the following, we again follow the steps presented in Sec-
tion 5.1.1. Given the scenarios generated in Step I of our
methodology, Step II consists in solving model (22)–(31)
(Appendix B in the Supporting Information) for each scenario
s ∈ S to obtain shelter solutions zo according to (9). Some
of the shelters are “uncontroversial,” in the sense that they
are opened either in almost all scenarios or in none of them.
Table 2 shows which shelter locations are chosen in more than
80% and fewer than 20% of scenarios overall. For instance,
nodes 3 and 4 are chosen for opening a shelter in more than
80% of the scenarios, that is, independent of the data source.
In contrast, shelter locations 9, 10, 12, 14, 16, 17, 19, 20, 25,
and 26 are almost never part of the solution. For the remaining

15 locations, such generalization for opening or not, cannot
be made.

The reason for the “controversial” cases can be found in the
distribution of overall demand according to the two sources.
In some cases, these predictions are quite far apart. Consider,
for example, the distribution of the overall demand prediction
for Abul Thohur, illustrated in Figure 3a. Here, the ranges of
estimated values based on the two sources barely overlap. In
other words, there is high ambiguity between the two data
sources with respect to the prediction of shelter demand, as
the sources do not even agree on the range of feasible values.

At the other extreme, there are districts where there is very
low ambiguity since the predictions of the two sources almost
completely coincide. Consider for example Figure 3b, where
the overall demand prediction for Harim is shown. The ques-
tion arises as to where shelter locations should be opened
when demand assessments differ greatly in some cases, for
example, as in Abul Thohur, and most shelter locations are
“controversial” (Table 2). To answer this question, the ambi-
guity of both data sources has to be analyzed and integrated
in the decision-making process.

By implementing Step III of the proposed methodology
and based on the Silhouette score, the optimal number of
clusters is M = 9. These clusters are used in the following
to perform the ambiguity analysis, as described in Step IV
of our methodology. As illustrated by Figure 4, the scenar-
ios generated from source #1 split over nine clusters and the
last cluster consists of the source #2 scenarios and only one
#1 scenario. Two observations can be made. First, source #1
predicts a much higher level of uncertainty than source #2 as
it is present in more clusters. Second, the clusters are very
homogeneous with respect to the data source from which the
scenarios were generated: in all clusters only one data source
is present (except cluster 9 having one #1 scenario), that is,
there is no diversity of data sources within the clusters and
therefore no entropy for clusters 1–8 and a negligible entropy
of 0.0144 for cluster 9. This means that in terms of the shelter
solution there is a high degree of disagreement between the
two data sources.

Within each of the nine generated clusters, the decision
level of agreement (11) is shown in Table 3. A graphical
representation of the distribution of opened shelters across
the clusters is also given in Figure 7 in Appendix F in the
Supporting Information. According to the results, in clusters
consisting of scenarios from source #1, that is, C1–C8, there
is relatively less consensus regarding shelter locations than in
those from source #2, that is, C9, resulting in a higher cred-
ibility of source #2. Such analyses allow the decision-maker
to understand the level of ambiguity in the information com-
ing from different sources and its impact on shelter locations.
Such insights cannot be gained when traditional stochastic
optimization approaches are utilized.

The shelter solutions for the different approaches described
in Step V in Section 5.1.1 are shown in Table 4. Column
“Actual” indicates where shelters were actually opened in
August 2018 in Idleb (OCHA, 2018). As sources #1 and
#2 estimate shelter needs for some districts differently, for
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F I G U R E 3 Overall demand prediction for Abul Thohur (a) and Harim (b), according to sources #1 and #2. [Color figure can be viewed at
wileyonlinelibrary.com]

TA B L E 3 Decision level of agreement by cluster Cj.

𝚫(C1) 𝚫(C2) 𝚫(C3) 𝚫(C4) 𝚫(C5) 𝚫(C6) 𝚫(C7) 𝚫(C8) 𝚫(C9)

0.6981 0.7033 0.6811 0.6627 0.7109 0.7521 0.6958 0.7256 0.3868

TA B L E 4 Shelter locations for different approaches.

Shelter location Node Actual Source #1 z⋆
1

Source #2 z⋆
2

Expected value z Stochastic z̃ Clustering ẑ

Abul Thohur 1

Bennsh 2 x

Idleb 3 x x x x

Maaret Tamsrin 4 x x x x

Saraqab 5 x x x x

Sarmin 6 x

Teftnaz 7 x x

Heish 8

Kafr Nobol 9 x

Khan Shaykun 10 x x x x

Ma’arrat An Nu’man 11 x x x x x

Sanjar 12 x x

Tamanaah 13 x x

Armanaz 14 x x

Dana 15 x x x x x

Harim 16 x x

Kafr Takharim 17 x x

Qourqeena 18 x

Salqin 19 x x

Badama 20 x

Darkosh 21 x x x x

Janudiyeh 22 x x

Jisr-Ash-Shugur 23 x x x

Ariha 24 x x

Ehsem 25 x x

Mhambal 26 x x
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F I G U R E 4 Distribution of scenarios across the clusters. [Color figure
can be viewed at wileyonlinelibrary.com]

example, as in the case of Abul Thohur, shelter solutions z⋆
1

and z⋆
2 for data source #1 and #2, respectively, have only

three out of 10 overlaps, namely at nodes 11 (Ma’aarat An
Nu’man), 15 (Dana), and 21 (Darkosh). These are also the
subdistricts where shelters have been opened.

Notably, shelter locations chosen by the expected value
and the stochastic approach have more overlaps with sources
#1 and #2 than our clustering approach. To account for the
underlying ambiguity, the shelter solution for the cluster-
ing approach has been computed with weights ws in (17)
based on M = 9. Due to the lack of data source diversity,
that is, H(Cj) = 0 for j = 1, … , 8, the first weight in (15) is

w(1)
j = 0.1733 for clusters 1–8 and w(1)

9 = 0.1877 for cluster

9. According to (16), the second weight is w(2)
#1 = 1.0954 and

w(2)
#2 = 0.25 for data sources #1 and #2, respectively, lead-

ing to the final weight ws = 1.6034 for scenarios generated
by source #1 and ws = 0.3963 by source #2. Therefore, sce-
narios coming from the risk-averse source #1 are weighted
more than those from source #2, as it is present in more clus-
ters showing its rather “stochastic” attitude. In other words,
source #1 predicts a higher level of uncertainty, which can
be considered more realistic and is therefore weighted more.
Such integrated analysis, that is, taking into account the
impact on the decision problem at hand, reveals which source
should be given more weight. As a result, the corresponding
shelter solution ẑ in Table 4 indicates two overlaps more with
shelter locations based on source #1 than with #2. Overall,
our clustering approach leads to seven shelter overlaps with
data sources #1 and #2, whereas the remaining shelter loca-
tions, that is, 12, 16, and 19, were chosen by the clustering
approach to hedge against ambiguity and risk. These results
show that the proposed methodology can provide an effective
means of guiding the decision-maker to reach a consensus
decision based on conflicting information from multiple reli-
able information sources such as experts and hence addresses
an important need in practice as highlighted by humanitarian
practitioners (e.g., Benini et al., 2017).

TA B L E 5 Gaps of objective values for different approaches.

Source #1 Source #2 Total

Gaps 𝝐1(z) 𝝐2(z) 𝝐(z)

Expected value 1 22,789 22,790

Stochastic 6 583 589

Clustering 0 68 68

5.2.3 Out-of-sample tests

Now, we evaluate the objective value obtained by the
proposed clustering method compared with respect to the
expected value and stochastic approaches. For this purpose,
out-of-samples tests were carried out, where 5000 scenarios
were generated for source #1 and #2 each, based on the same
principles as before and shelter locations from Table 4 were
used as an input.

Table 5 shows the gaps (20) and (21) between the objective
values of the out-of-sample tests for the different approaches.
For instance, solution of the expected value accommodates
22,789 fewer people than the solution based on source #2.
Though the shelter solution of the expected value approach
has many overlaps with both data sources, it performs worst
in terms of the objective value. The number of overlaps alone
is no guarantee for a good objective value.

According to Table 5, the stochastic approach results in a
smaller gap for source #2: 𝜖1(z̃) = 583 versus 𝜖1(z) = 22, 789,
but at the expense of a higher gap for source #1, that is,
𝜖2(z̃) = 6 versus 𝜖2(z) = 1. In contrast, our scenario clustering
approach provides the lowest gap results, meaning that solu-
tion ẑ best integrates the information coming from sources
#1 and #2 while hedging against ambiguity and uncertainty.
It provides the same objective value as source #1 and can
accommodate more people than the other two approaches in
the case of source #2. In summary, our method can support
the humanitarian decision-maker to incorporate divergent
information of different data sources in a way that higher
demand satisfaction can be achieved.

Recall that these numerical experiments only involve the
Idleb region and the specific planning of the aid that is pro-
vided to service the needs for shelter for the IDPs. The
proposed clustering method could bring more benefits if
applied to multiple affected districts in Syria by considering
a broader set of needs for the IDP such as different relief
items (e.g., food, hygiene sets, etc.). In this case, it can be
expected that further gains will be obtained for both the over-
all efficiency of the aid that is provided and the hedge that is
obtained against the risks stemming from both the ambiguity
and the uncertainty in the planning setting.

The out-of-sample tests highlight the overall value of the
clustering approach: the shelter needs assessments provided
by sources #1 and #2 disagree strongly for some locations.
One cannot agree with both sources at the same time, but we
do not know which of the predictions is closer to the true val-
ues. Our clustering approach obtains the smallest gaps while

 19375956, 2023, 9, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1111/pom

s.14018 by O
zyegin U

niversity, W
iley O

nline L
ibrary on [01/11/2023]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense



2972 GRASS ET AL.Production and Operations Management

at the same time integrating the ambiguous information. That
is, the characteristics of our solution are closer to the solu-
tions provided by each source. In this way, a higher level of
efficiency is achieved terms of the gaps obtained and the solu-
tions. We have provided a more effective approach that can
deal with the ambiguity and the uncertainty that is faced by
humanitarian decision-makers.

6 CONCLUSION

The inherent uncertainty in disaster situations complicates
the humanitarian decision-making process. Critical disaster
response decisions must be made under significant uncer-
tainty. Furthermore, the complexity of information flow
in disaster situations brings significant challenges in mak-
ing effective decisions. Specifically, different information
sources might deliver high-volume data, varying in type
and nature, that humanitarian organizations have to gather,
analyze, and aggregate to estimate the values of important
parameters for response such as the needs of the affected
people. The available information and estimates from differ-
ent sources might involve inconsistent elements, which create
high levels of ambiguity in decision-making. We present the
first methodological framework that can support humanitar-
ian decision-making to analyze the information provided by
multiple viable data sources in a systematic and transparent
way so that ambiguous information can be transformed into
actionable insights and solutions.

We illustrate the proposed approach by focusing on a
conflict setting where significant uncertainty may exist in
important parameters for making response decisions (such
as needs). Specifically, we analyze the estimates of shelter
needs in the Syrian civil war derived from two reliable data
sources. Our analyses have revealed a high degree of ambi-
guity and disagreement between both data sources, as there is
a large number of “controversial” shelter locations and a lack
of diversity of data sources within the resulting clusters. Our
numerical results show that the proposed methodology bet-
ter integrates such ambiguous information compared to other
common approaches such as the expected value method and
stochastic optimization. Specifically, the solutions produced
by the new approach are closer to both data sources while
achieving greater demand satisfaction, as evidenced by the
smaller gaps. This is also confirmed by additional synthetic
tests for different levels of estimation ranges, ambiguity,
and consensus, where the clustering method outperforms the
naïve approach in every single case. These tests have revealed
that our clustering method is particularly advantageous when
there is a wider range of source estimates, less consensus on
the solutions, and less diversity of sources within the clus-
ters. Overall, our results suggest that our clustering approach
is likely to be particularly valuable in cases with a high degree
of ambiguity and can therefore offer humanitarian decision-
makers an effective and efficient way to hedge against both
ambiguity and uncertainty.

Our work suggests several future research directions. Our
optimization model focuses on a simplified shelter location
problem for illustration. The impact of using the proposed
methodology in terms of gaps is likely to increase further
when more complex models are used. It would be interesting
to evaluate this improvement when addressing more com-
plex planning problems (e.g., multiple items and periods).
In this paper, we have focused solely on a classical stochas-
tic optimization approach, minimizing expected cost. The
methodology of this paper can also be translated to variants
of stochastic programming with alternative objective func-
tions and also robust optimization framework (e.g., using our
analytical method to reduce the size of the ambiguity sets in
distributionally robust models), which can be addressed by
future studies.
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