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Abstract: We report the minimum errors of structural parameters, namely lattice parameter, crystallite
size,  and atomic  displacement parameters,  expected from Pair  Distribution Function (PDF)  analysis  of
nanocrystalline gold powders for the first time by a self-consistent computational methodology. Although
PDF analysis has been increasingly used to characterize nanocrystalline powders by X-rays, the current
literature includes no established error bounds to be expected from the resulting structural parameters.
For accurate interpretation of X-ray diffraction data, these error bounds must be determined, and the
obtained structural parameters must be cleared from them. Our novel methodology includes: 1) simulation
of ideal powder diffraction experiments with the use of the Debye scattering equation, 2) pair distribution
function analysis of the diffraction data with the Diffpy-CMI analysis software, and 3) determination of the
errors from PDF analysis of the simulated diffraction data by comparing them with real-space analysis of
spherical gold nanocrystals that are 30 nm size and smaller. Our results show that except for the lattice
parameters and even with an ideal crystalline powder sample and ideal diffraction data, the extracted
structural parameters from PDF analysis diverge from their true values for the studied nanopowder. These
deviations are dependent on the average size of the nanocrystals and the energy of the X-rays selected for
the diffraction experiments, where lower X-ray energies and small-sized nanocrystalline powders lead to
greater errors.
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INTRODUCTION

Nanomaterials are becoming an integral part of all
manufacturing processes in industries ranging from
food, cosmetics, and weaponry, since they promise
tunable  physical,  electrical,  mechanical,  etc.
properties  (1,2)  that  can  potentially  bring
revolutionary  solutions  to  many  problems  in
engineering  designs.  The  number  one  step  for
controlled  manufacturing  and/or  integration  of
nanomaterials  in mass production is  fast,  reliable,
and  robust  characterization,  which  must  be
performed  with  the  highest  amount  of  detail  and
resolution  to  optimize  nanomaterials  for  best

performance. X-ray diffraction (XRD) is currently the
gold  standard  characterization  technique  that
promises  these  requirements  while  accessing
atomic-scale  information  in  a  non-destructive
manner (3). Although XRD was initially developed to
investigate  the  atomic  periodicity  in  crystalline
materials, the technique has progressed enormously
and  has  been  extended  to  the  analysis  of
amorphous  materials  as  well.  Among  the  most
frequent  practices  of  X-ray  diffraction  is  powder
diffraction. In this technique, one has no obligation
to  prepare high quality  single crystalline samples,
which is an obstacle for many materials (4), but can
also investigate polycrystalline and powder forms of
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materials as well. This has caught the attention of
researchers working in the field of nanopowders, a
class of nanomaterials consisting of nanocrystalline
particles, and has resulted in further development of
the  XRD  technique  on  nanoparticulate  forms  of
matter.

In XRD analysis of nanopowders, there are mainly
two  methodologies  one  can  follow:  1) perform
whole  pattern  modelling  and  refinement  analysis
assuming there is a unit cell model that represents
the atomic ordering in the coherent domain of the
material  and  work  towards  solving  for  that  cell
model from the diffraction data; or 2) abandon the
unit  cell  construct  and  perform  modelling  and
refinement analysis of bond distance histograms of
the  coherent  domains  of  the  material  by  Fourier
transforming the  powder  diffraction  data  (5).  The
first  method  is  known  as  the  structure  solution
methodology,  and  Rietveld  refinement  (6)  is  the
most  widely  used  algorithm  in  this  context.  The
second  method,  known  as  the  pair  distribution
function analysis, has been around for a while, but it
has become popular with the development of open
source computer programs (7) and the availability
of  synchrotron  X-ray  sources,  enabling  enormous
progress in the capabilities of the technique.

For  bulk  crystalline  materials  where  the  atomic
periodicity extends beyond hundreds of nanometers
(8),  crystallographic  solutions  are  generally
available  from  their  diffraction  data,  and  the
resulting unit  cell  typically represents the average
structural  properties  of  the  material.  There  is  no
guarantee that this solution is unique (9); however,
one  may  complement  X-ray  analysis  with
independent,  direct  or  indirect  methods  for
confirmation,  such  as  Transmission  Electron
Microscopy  (TEM)  or  electrical  conductivity,
respectively.  For  nanocrystalline  materials,
crystallographic analysis is not as trivial as in bulk
crystalline materials; in this case, atomic periodicity
extends  up  to  100  nm  or  so,  and  thus  typical
diffraction data from such materials show structural
features intermediate between those of  crystalline
and amorphous materials. There are certain regions
in nanomaterials where the atomic stacking can be
described as periodic, as in a regular crystal,  and
some other regions where this stacking cannot be
considered periodic at all (10). For such materials,
the assumption of a single unit cell representing the
average atomic configuration within the material is
unjustified  (11).  Therefore  data  analysis  methods
relying on the assumption of a unit cell model fail.
In  that  case,  pair  distribution  function  analysis,
assuming no particular  atomic stacking within the
scattering material and no single repeating unit cell,
may be the right solution for structural analysis of
nanocrystalline  powders  and  is  quickly  becoming
popular.

In  an  earlier  work,  we  demonstrated  that
widespread crystallographic analysis routines, such
as  line  profile  analysis  and  Rietveld  refinement,
failed  to  retrieve  the  true  lattice  parameters  of
nanocrystalline  powders  (11)  and  identified  the
reason for failure as the incompatible single unit cell
model used to represent the atomic configuration of
atoms  in  nanocrystals.  In  the  current  work,  we
implement  our  self-consistent  methodology  to
quantify  the minimum errors within  the structural
parameters,  i.e.,  lattice  parameters,  average
crystallite  sizes,  and  atomic  displacement
parameters, retrieved from pair distribution function
analysis and evaluate how errors vary with respect
to the energy of the X-rays and the average size of
the  nanocrystals  studied.  Our  findings  will
potentially  guide  researchers  working  on  the
characterization  of  nanomaterials  to  use  pair
distribution function analysis properly with realistic
expectations  for  accuracy,  interpret  their  results
correctly,  and  design  their  experimental  setups
better  for  improved  accuracy  in  structural
identification of nanocrystalline powders.

THEORY

A typical PDF experiment consists of: 1) measuring
the  coherent  X-ray  scattering  intensity  I coh(q)
from  an  ensemble  of  atoms  in  the  kinematic
scattering  regime;  2) manipulating  this
measurement  to  extract  what  is  called  the
normalized  total  scattering  function  S(q);  3) a
Fourier  transformation  to  convert  the  total
scattering function to another function of real space,
r,  that  is  an  indirect  representation  of  distances
between pairs of atoms making up the crystal (5).
This resulting transform is called the reduced pair
distribution function G(r), and it is then refined to
extract  structural  parameters  of  the  irradiated
sample.  These  steps  can  be  mathematically
formulated as below:

I coh(q)=∑
i=1

N

∑
j=1

N

f i f j e x p(iq . [r i−r j ])   (Eq.1)

where N is the number of atoms that are irradiated
by X-rays, f=f (q)   is the atomic scattering factor

of  the  type  of  material  which  depends  on  the
scattering angle 2θ and the irradiation wavelength,
λ, r i  is the coordinate vector of the atom i from an

arbitrary origin and i  is the imaginary number, √−1 .

A  normalization  is  applied  on  Icoh to  access  the
reduced total scattering function S(q):

S (q)−1=
I c oh(q)

N ⟨ f ⟩2− f 2

⟨f ⟩2
                          (Eq. 2)

Where  q  is  the  magnitude  of  the  momentum
transfer  vector  of  the  X-rays,  with
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q=|q|=4 π sin θ
λ

 and <f>2 is the squared average

atomic scattering factor. In Eq. 2, we highlight the
term  'coherent  intensity'  to  emphasize  that  the
reduced total scattering function is related only to
the coherent portion of measured X-ray intensities,
hence -if applicable- the measured diffraction data
must be cleared from unwanted signal such as that
resulting  from  multiple  scattering,  sample
absorption, background scattering, etc. Once S(q) is
evaluated, the pair distribution function G(r) can be
obtained by the following Fourier-Sine transform:

G(r )=2
π
∫
0

∞

q [S(q)−1]sin (qr )dq      (Eq.3)

As  can  be  seen,  the  reduced  pair  distribution
function G(r) is theoretically accessible exactly from
the measured coherent  diffraction intensities  by a
standard  normalization  followed  by  a  Fourier
transform. But during real measurements, the upper
limit of the integral in Eq. 3 is never infinite and is
limited by the maximum scattering angle at which
the  diffraction  intensities  are  recorded  and  the
wavelength  of  X-rays.  Accordingly,  a  truncated
approximation  of  the  Fourier-Sine  transform  is
employed  to  obtain  the  reduced  pair  distribution
function:

G(r )=2
π ∫

qmi n

qma x

q [S(q)−1 ]sin (qr )dq       (Eq. 4)

where  qmax=
4 π sin (θma x)

λ
.  This  truncation  is

known to decrease the resolution of the real space
function obtained from the Fourier transform (12).
Similarly, the small angle scattering portion of the
diffraction data is usually cropped, since diffraction
intensities close to forward-scattering angles scale
with  the  square  of  the  total  number of  irradiated
atoms and have the potential to burn the center of
X-ray  detectors  due  to  extremely  high  photon
counts, unless properly blocked. Secondly, including
the small angle scattering portion in diffraction data
results in an incompatibility with the expected input
of  the  subsequent  refinement  process  (13).
Therefore,  the  small  angle  scattering  portion  is
excluded  from  the  integration,  i.e.,

qmin=
4 π sin θmin

λ
 and θmin >0.

G(r)  can  also  be  evaluated  using  sample’s  real-
space  parameters.  This  can  be  accomplished  by
realizing that G(r) is actually the local deviation of
the number density of atom pairs from the average
number density of irradiated atoms separated by a
particular  interatomic  distance  r.  Using  this
definition, G(r) can also be written as:

G(r )=1
r
∑
i

N

∑
j

N [ f i f j⟨f ⟩2
δ (r−r i j)]−4 π ρ0   (Eq. 5)

where δ(r) is the Dirac delta function, r i j=|r i−r j|
and ρ0  is the average number density of the atomic

ensemble.  For  an  ensemble  of  atoms  that  are
stacked perfectly periodic in 3 dimensions, like an
ideal crystalline particle, Eq. 5 results in sharp and
discrete Dirac delta functions, located at interatomic
distances corresponding to characteristic interplanar
distances of the crystallite. However, for all realistic
crystalline  and  amorphous  material  samples
measured  at  finite  temperatures,  the  resulting
thermal  movement  of  atoms  causes  these  Dirac
delta  functions  to  broaden,  proportional  to  the
amount of atomic displacement. Assuming random
displacements  of  atoms  around  their  average
positions,  each  pair  distribution  peak  can  be
numerically  approximated by a Gaussian function.
Hence, the width of these Gaussian functions can be
used as a measure of the average displacements of
atoms  around  their  average  positions,  which  can
then be related to the Debye-Waller factor in X-ray
diffraction experiments (5).
In conclusion, the main logic behind Pair Distribution
Function  refinement  is  to  calculate  a  model  G(r)
based on the initial atomic coordinates assumed for
the diffracting sample (using Eq. 5) and refine this
model against the G(r) obtained from the diffraction
signature of that sample (using Eqs. 2 and 4) until a
predefined tolerance level is achieved between the
two  G(r)  functions.  Unlike  standard  Rietveld
refinement  analysis  commonly  used  in
crystallographic  studies  of  polycrystalline,  single
crystalline,  and nanocrystalline  materials,  the  PDF
refinement  is  based  on  a  least  square  error
minimization process performed on real-space data,
rather than reciprocal (or angular, 2θ) space.

METHODOLOGY

Here we describe the four main steps followed to
study  the  accuracy  limits  of  the  structural
parameters  obtained  from  gold  nanocrystalline
powders  using  their  X-ray  diffraction  data.  These
are:  1) creating  the  atomic  coordinates  of  a
nanocrystalline  particle  and  generating  an  ideal,
monodispersed  particle  ensemble  from  it;  2)
calculating  the  expected  powder  diffraction  data
from  this  nanocrystalline  particle  ensemble;  3)
steps  followed  during  preprocessing  of  the
diffraction  data;  and  4)  pair  distribution  function
analysis.

Creating  Perfectly-Crystalline  and  Energy-
Minimized  Versions  of  Ideally  Random,
Monodispersed Nanocrystalline Powders
This  step  includes  creating  atomic  coordinates  of
spherical gold nanocrystals with two versions: ideal
nanocrystalline  and  energy  minimized  atomic
configurations.  For  ideal  crystalline  nanoparticles,
we assumed a lattice  parameter of 4.0626  Å and
created  atomic  coordinates  in  3  dimensions  by
following the packing rules of  face centered cubic
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crystals.  Spherical  nanocrystals  with  variable
diameters  were  generated.  For  energy-minimized
nanocrystals, we used these ideal-crystalline atomic
configurations  as  input  and  performed equilibrium
molecular dynamics (EMD) simulations assuming a
0  Kelvin  final  temperature.  EMD simulations  were
performed with the open-source LAMMPS code (14)
combining  the  initial  (ideal-crystalline)  atomic
coordinates with interatomic forces modeled by the

optimized embedded atom method (EAM) for gold
atoms as  suggested  in  the  literature  (15).  These
new coordinates were validated against similar work
from past literature (11). Figure 1 shows the energy
minimization  process  and  the  resulting  atomic
coordinates  of  ideal-crystalline  and  energy-
minimized versions of a spherical gold nanoparticle
with a 5 nm nominal diameter.

Figure 1: Left side: Change in the total energy of the spherical gold nanoparticle system during EMD
simulations  performed on ideal  crystalline  atomic  configuration.  The resulting  energy-minimized atomic
configuration has less total energy and is thermodynamically stable. The number of steps taken during the
simulation was determined by the tolerance value of 10-8. Right side: The atomic configurations of ideal-
crystalline (blue markers) and energy-minimized versions (yellow markers) of the gold nanoparticle with a 5
nm nominal diameter. The blue arrows associated with blue markers show the relative displacement of
atomic sites resulting from energy minimization. The green arrow drawn by dashed lines is one of the
diameter lines we used to calculate the average size of the nanoparticle.

Once  the  atomic  coordinates  of  a  single  gold
nanoparticle  are  generated,  we  can  create  a
monodispersed,  ideal  powder  ensemble  by
considering  a  finite  number  of  such  particles  and
randomizing their  orientation with respect to each
other.  The  final  set  of  atomic  coordinates  would
constitute an ideal particle ensemble (powder) with
a  finite  number  of  identical  nanoparticles  having
random  distribution  of  particle  orientations.  The
diffracted  intensities  from  such  a  finite  particle
ensemble  would  fluctuate  around  a  mean  value
where the uncertainty in the intensities is inversely
proportional to the number of particles considered
(16). However, if we take the limit of the number of
particles  to  infinity,  then  the  orientationally-
averaged  diffracted  X-ray  intensities  from  these
particles correspond to their ultimate limit with no
statistical uncertainty. In this study, we focused on
the accuracy limits of an X-ray analysis algorithm;
hence,  we  chose  to  work  with  infinite-particle
ensembles, eliminating statistical fluctuations in the
diffraction  data  resulting  from  particle  selection
statistics.   

Generation of Ideal Diffraction Profiles
The expected diffraction intensity distribution from
infinitely  large  powders  of  gold  nanocrystals  was

computed by the  Debye scattering  equation (17).
This equation has the following form:

⟨ I (2θ)⟩=f m(2θ) f n(2θ)∑
m=1

N

∑
n=1

N sin (|q||rmn|)
|q||rmn|

(Eq. 6)
Here  ⟨ I (2θ)⟩  is  the  orientationally-averaged

diffracted intensity distribution that is a function of
the scattering angle 2θ, |q|  is the magnitude of the

momentum  transfer  vector,  |rmn|=|rm−rn| is  the

magnitude of the separation vector between atoms
m and n, and fm(2θ) is the atomic scattering factor
of atom m, which is again angle dependent as q  and

is determined by the type of scattering material. For
a monatomic crystal such as a gold nanoparticle, fm

= fn; hence, fm(2θ)fn(2θ)=f2(2θ). Finally, the upper
limit  of  the  summation  N  is  the  total  number  of
atoms within a single nanoparticle. As seen from Eq.
6, one needs only the atomic coordinates of a single
nanoparticle  to generate  the orientational  average
of  the  diffracted  intensity  distribution  from  a
monodispersed ensemble of nanocrystals irradiated
by  monochromatic  X-rays.  This  means  that  the
Debye  equation  implicitly  assumes  that  the
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orientation  distribution  of  nanocrystals  making  up
the particle ensemble is ideally random, which also
necessitates  that  the  ensemble  consists  of  an
infinite  number  of  identical  crystals.  Interested
readers  can  follow  classical  texts  (18)  to  confirm
these assumptions behind the Debye equation.

To sum up, the Debye equation provides us with a
powerful tool to test error bounds and applicability
of X-ray analysis algorithms on diffraction data from
nanocrystals,  since  we  can  work  with  noise-free,
ideal diffraction data and have full control over the
inputs to these algorithms.

In  this  study,  the  diffracted  intensity  data  were
obtained by the Debyer software1, since coding Eq.
6 and directly running simulations with nanocrystals
with  large  number  of  atoms  N  causes  the
computation time to explode quickly. This software
optimizes  the  computation  time  neatly  by
generating  histograms  of  available  interatomic
distance vectors,  rmn  for each atom in the particle

and  considering  only  those  terms  that  contribute
appreciably  to  the  diffracted  intensities.  Hence,  it
diverges slightly from the exact computation of the
Debye equation. However, we confirmed that these
deviations are minor, and do not affect our results,
similar to past work (11). Next, we set the angular
range  as  2θ ϵ (5∘,180∘) ,  angular  spacing  as

d θ=0.01∘  and  selected  5  different  X-ray

wavelengths from 0.21 to 1.54 Å, which are widely
used in experimental studies2. Five different particle
diameters  were  considered  when  modelling  the
nanocrystalline powders, which ranged from 5 to 30
nm.  This  process  resulted  in  50  different  X-ray
diffraction  data  since  we  considered  both  ideal
crystalline and energy-minimized versions of these
5  nanocrystalline  particle  ensembles.  Examples  of
computed diffraction data are seen on the left side
of  Figure  2.  Finally,  we  emphasize  that  these
intensities do not contain any unwanted scattering
signals  or  background  other  than  the  coherent,
elastic  scattering  from  gold  atoms.  Hence,  they
were used directly in the subsequent analysis steps.
When  working  with  experimental  diffraction  data,
one  needs  to  carefully  clean  up  their  data  from
inelastic scattering, refraction effects, counting and
particle  selection statistics,  and  systematic/human
errors, if present, before further analysis (12). 

Preprocessing of Diffraction Data 
Before  performing  the  pair  distribution  function
analysis, one should process the powder diffraction
data.  Typically,  this  process  entails  obtaining  the
normalized total  scattering function S(q) from the
intensity data and then performing the Fourier-Sine

1 https://debyer.readthedocs.io/en/latest/

2 For simulations with λ=0.21Å, dθ = 0.001° and

2θ ϵ (0.1∘,55∘)  since dθ > 0.001° was not narrow 

enough to resolve neighboring Bragg peaks clearly.

transform of the data. In this work, we performed
these steps using the pdfgetx3 code (19), which is
part  of  the  Diffpy-CMI  package  (7)  due  to  the
software’s  being  widely  used  by  the  X-ray
community in PDF analysis.

An important step while performing the Fourier-Sine
transform  of  the  intensity  data  is  the  proper
removal  of  the small  angle  scattering  component.
This  was  done  by  visualizing  our  simulated
diffraction data one by one and setting an angular
threshold below which there would be considered a
small angle scattering component of the diffracted
signal.  This  region  was  determined  separately  for
each wavelength considered and reported in the last

column of Table 1 as  qmin=
4 πsin θmin

λ
. Finally,

the default setting of rpoly=0.9 was used, since the
minimum  interatomic  distance  in  our  gold
nanocrystals is around 2.872 Å, which is imposed by
the stacking rules of the FCC unit cell, and rpoly=0.9
is not expected to affect our interatomic distances
as explained by past literature  (19).  On the right
side  of  Figure  2,  examples  of  reduced  pair
distribution  functions  G(r)  resulting  from
preprocessing of diffraction profiles of 5, 10, and 15
nm spherical gold nanoparticles are shown.

Pair  Distribution  Function  Analysis  and
Refinement
After the intensity  data are transformed, the final
step  is  the  PDF  refinement.  We  used  the  freely-
available  module  Diffpy-cmi  (7)  to  perform  our
refinements. At the beginning of a refinement, one
needs to provide the transformed intensity files as
well as a cif file (crystallographic information file) of
the powder material as input. This cif file, which in
our case is the one for gold, is used to initialize the
structural  parameters  such  as  lattice  parameter,
thermal parameters, etc., to be refined. Then, the
real space range over which the refinement will be
performed  is  selected,  and  the  parameters  are
refined one-by-one. Typical  refinement parameters
are: 1) an arbitrary scaling factor used to match the
nominal values of the calculated and modeled pair
distribution functions; 2) average lattice parameter;
3) coherent particle size, which is a measure of the
average extent of atomic periodicity for diffracting
particles; 4) a damping factor qdamp used to quantify
and  implement  the  limited  instrument  resolution
effects,  such  as  X-ray  wavelength  and  limited
angular  range  of  the  X-ray  detector,  on  the
corresponding pair distribution function model; and
5) thermal  parameters  such  as  Anisotropic
Displacement  Parameters  (ADP)  used  to  quantify
static  or  dynamic,  direction-dependent  or
independent,  mean-squared  atomic  displacements
from  ideal  lattice  positions  (20).  During  the
refinement, the software tries to modify and match
the modeled pair distribution function against that
obtained from the Fourier Sine transform by a least-
square optimization routine. 
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In this work, we started off by initializing the lattice
parameter  as  4.078  Å,  crystal  space  group  as
Fm3m, Biso as 0.001, a negligible but finite value to
avoid  crashing  of  the  software  since  Biso=0
corresponds to a case with Dirac delta functions as
reduced  pair  distribution  peaks,  and  instrument-
related damping factor qdamp as 0.001, which is the
default value assumed in Diffpy-cmi software, since
our simulated data cannot be corrected against the
refinement of a calibration material, unlike what is
suggested in the literature (21).  Next,  we divided
the whole  refinement process  into  multiple  steps;
we refined the lattice parameter and the arbitrary

scaling  factor  first,  the  coherent  particle  size,
assuming spherical particle shapes second, Biso, i.e.
the  atomic  displacement  parameter,  assuming
isotropic displacement of atoms, third, and then all
parameters were refined altogether last. The quality
of the refinement was confirmed by two measures:
Rw, which is a goodness-of-fit parameter reported
by  the  software,  and  by  visual  inspection  of  the
calculated and measured pair distribution functions.
We  observed  that  relying  solely  on  Rw  was
misleading  since  there  is  no  universally  accepted
reference value for Rw for a particular fit quality.

Figure 2: Left side: The simulated powder diffraction profiles of 5 nm (top), 10 nm (middle), 15 nm
(bottom) diameter spherical gold nanoparticles assuming 1 Å wavelength X-rays. The insets show a close up
view  of  the  intensity  distributions  between 45° and  70°.  Right  side: The  corresponding  reduced  pair
distribution functions G(r) of the diffraction profiles on the left. The insets are a close up view of the tails
where G(r) approaches background level.

RESULTS AND DISCUSSION

In this section, we report the outcomes of the pair
distribution  function  analysis  of  diffraction  data
simulated from ideal,  random, and monodispersed
gold nanocrystals of various sizes and both in ideal
crystalline and energy-minimized forms.

PDF Refinement of Diffraction Data from Ideal
Crystalline Gold Nanopowders
An  example  of  a  successful  PDF  refinement  is
presented in Figure 3. Here, the diffraction data was

simulated  based  on  an  ideal  ensemble  of  5  nm
diameter,  ideal-crystalline  spherical  gold
nanoparticles,  and 1 Å wavelength of  X-rays.  The
left and right sides of the figure show, respectively,
the  full  (0-60  Å)  and  short  range  (1.5-20  Å)
portions  of  the  reduced  pair  distribution  function,
obtained from the diffraction data itself (Gobs shown
by black squares) and the best  fitting model  (Gfit

shown by red curves) obtained by the refinement
process.  Blue curves at the bottom of the graphs
are residuals, Gobs-Gfit, that quantify the difference
between observed data and the fitted model.  The
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full-range  refinement  plot  demonstrates  that,
overall, the positions and relative intensities of the
reduced  pair  distribution  function  were  captured
correctly. The correct positioning of the fit centers
can be confirmed from the short-range refinement
plot  as  well:  here  the  Gfit(r)  peaks  with  major
intensities  belong  to  the  relative  number  of
interatomic  distances  with  lengths  equal  to  peak
center  positions.  For  an  ideal  FCC gold  crystallite
with lattice parameter of 4.0626 Å, we can confirm
that the first few interatomic distances available are
2.873,  4.063,  5.745  Å  etc.,  which  are  the  first,
second, and third nearest interatomic distances in
the  cell.  These  are  also  the  positions  of  the  first
three G(r) peaks, with the exception of the second
peak,  which  shifted  slightly  off  from  its  ideal

position, i.e., 4.063 Å. The reason behind the shift
here  is  an overlapping neighboring peak centered
around 4.30 Å, which is not an actual G(r) peak but
a Fourier truncation peak resulting from the limited
qmax range of  the  intensity  data  (12).  Finally,  the
full-range fit  shows that  the  G(r)  functions  decay
decrease to a noise level between 40 and 50 Å. This
is  an  indication  that  no  atom  pair  exists  with  a
separation  distance  larger  than  these  limits.  The
exact  value  of  this  distance  is  determined  by  a
shape form factor that is implemented in the Diffpy-
cmi algorithm (22) and is interpreted as the size of
the coherent particle domain. For an ideal crystalline
particle,  the  coherent  domain  size  equals  the
average diameter of the particle.

Figure 3: Left: Long range results of successful refinement of the diffraction data from 5 nm diameter ideal
gold nanoparticles. The data was generated assuming 1 Å X-ray wavelength. The inset shows the tail of the
fit for the real space interval of 40-50 Å. Right: Short range portion of the PDF analysis for the real space
interval of 1.5-20 Å. The blue curve reports the residual between the observed G(r) function and the fitted
model.

Table  1  presents  the  systematic  PDF  refinement
results  performed on  the  diffraction  data  of  ideal
crystalline  nanoparticle  ensembles  with  variable
particle sizes irradiated at 5 different wavelengths.
Here, nominal size is the intended diameter of the
nanocrystals making up the ideal powders, λ is the
assumed wavelength of the X-rays while computing
the  diffraction  data,  a  is  the  refined  lattice
parameter,  D  is  the  refined  particle  diameter

assuming spherical crystallites, qdamp and Biso are the
refined damping and isotropic atomic displacement
factors  of  the  modeled  pair  distribution  function,

respectively,  Δr= 2 π
qmax

 is  the  achievable  real-

space  resolution  of  the  processed  diffraction  data
and  finally,  qmin  and  qmax are  the  minimum  and
maximum magnitudes  of  the  momentum  transfer
vector allowed in the Fourier-Sine transform.
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Table 1: PDF refinement results of diffraction data computed from ideal crystalline, spherical gold
nanoparticle ensembles evaluated at 5 different wavelengths.

Nominal
Size (Å)

λ
(Å)

a
(Å)

D
(Å)

Biso

(Å2)
Rw ∆r

(Å)
qmin

(1/Å)
qmax

(1/Å)
48.75 0.21 4.06263 48.74 0.002 0.043 0.10 1.56 27.6
97.50 0.21 4.06261 97.64 0.001 0.028 0.10 1.56 27.6
150 0.21 4.06260 150.55 0.001 0.025 0.10 1.56 27.6
195 0.21 4.06260 195.45 0.001 0.019 0.10 1.56 27.6
293 0.21 4.06260 293.97 0.002 0.016 0.10 1.56 27.6

48.75 0.56 4.06260 48.81 0.006 0.053 0.28 1.56 22.4
97.50 0.56 4.06260 97.46 0.002 0.018 0.28 1.56 22.4
150 0.56 4.06260 150.54 0.002 0.017 0.28 1.56 22.4
195 0.56 4.06260 195.30 0.002 0.013 0.28 1.56 22.4
293 0.56 4.06260 293.51 0.002 0.011 0.28 1.56 22.4

48.75 0.71 4.06255 49.07 0.011 0.055 0.35 1.54 17.7
97.50 0.71 4.06258 97.78 0.006 0.044 0.35 1.54 17.7
150 0.71 4.06260 150.88 0.003 0.032 0.35 1.54 17.7
195 0.71 4.06260 195.68 0.002 0.028 0.35 1.54 17.7
293 0.71 4.06260 294.01 0.002 0.023 0.35 1.54 17.7

48.75 1.00 4.06249 48.82 0.013 0.035 0.50 1.64 12.6
97.50 1.00 4.06259 97.76 0.009 0.027 0.50 1.64 12.6
150 1.00 4.06260 150.78 0.002 0.024 0.50 1.64 12.6
195 1.00 4.06260 195.62 0.005 0.019 0.50 1.64 12.6
293 1.00 4.06264 294.07 0.004 0.015 0.50 1.64 12.6

48.75 1.54 4.06264 48.98 0.001 0.050 0.77 1.70 8.2
97.50 1.54 4.06262 97.83 0.001 0.033 0.77 1.70 8.2
150 1.54 4.06261 150.79 0.001 0.027 0.77 1.70 8.2
195 1.54 4.06261 195.67 0.002 0.023 0.77 1.70 8.2
293 1.54 4.06260 294.17 0.002 0.020 0.77 1.70 8.2

As can be seen, the refined lattice parameters agree
well with the assumed lattice parameter (a=4.0626
Å) during generation of the atomic coordinates of
the ideal crystalline spherical gold nanoparticles for
all  particle  sizes  considered  and  at  all  X-ray
wavelengths.  They  fluctuate  only  at  the  fifth
decimal, which is in fact outside the accuracy limits
of the lattice parameter that can be obtained from
our diffraction data due to our angular spacing being
set  as  d θ=0.01ο  and also the resolution of  the

pair  distribution  function  analysis  ∆r  >>  10-5 Å.
Therefore, we can interpret these small fluctuations
as  resulting  from  numerical  errors  during  the
refinement process. When we look at the extracted
diameters, we again see that they agree with the
nominal  particle  diameters  within  1%  accuracy.
There  are  two sources  of  error  resulting in  these
small inaccuracies: the first one is the limited range
of  the  qmax that  approximates  the  Fourier  Sine
integral in Eq. 3 with a finite integration range, and
the second one is the nominal particle shapes being
far  from  ideal  spheres.  As  explained  in  previous
sections, ideal crystalline particles were obtained by
carving  out  spheroidal  shapes  from  an  ideal  3D
face-centered cubic lattice without considering the
integrity  of  individual  unit  cells  within  the  outer
layers  of  the  particle.  Hence,  these  discrete
spherical  particles  are  actually  spheroids  with
faceted surfaces (see Figure 1).  The diameters  of
these shapes,  therefore,  are  best  expressed  as  a

distribution  of  diameters  around  a  mean  value
rather  than an ideal Dirac delta function, and the
width of this distribution adds to the inaccuracies in
the  extracted  diameters  from  the  PDF  analysis.
Nevertheless,  the  lattice  parameters  and  the
average  crystallite  diameters  are  obtained  quite
nicely, and even with limited resolution of reduced
pair distribution functions with qmax as low as 8.2 Å-1

(12). Such high performances from PDF analysis are
impossible to achieve with experimentally-obtained
diffraction data from real  nanocrystalline samples.
Therefore these accuracy limits must be interpreted
as  the  best-case-scenario  or  equivalently,  the
minimum errors to be expected from the capabilities
of PDF analysis. 

When we look at how the PDF-extracted structural
parameters  compare  with  their  true  values  at
different wavelengths of X-rays, we notice that the
most sensitive parameter to the X-ray energy and
particle  size  is  the  isotropic  atomic  displacement
factor,  Biso.  This  is  a  correction factor  used when
analyzing  powder  diffraction  data  and  quantifies
how much of an intensity decay should be expected
in the diffraction data of an irradiated powder due to
the amplitude of thermal vibrations of its constituent
atoms.  Because  these  vibration  amplitudes  cause
lattice points to become finite volumes rather than
being dimensionless points in 3D space, an increase
in  the  temperature  of  an  irradiated  sample  must
cause  a  decreased  probability  of  constructive
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interference between atomic planes since their ideal
periodicity  is  eventually lost.  This effect  has been
studied in past literature, and it was concluded that
these thermal vibrations of atoms do not cause any
broadening in the corresponding Bragg peaks of the
diffraction data, but only suppress their intensities,
with an uneven and larger influence on higher order
reflections  (23).  Their  effect  on  the  reduced  pair
distribution peaks is a broadening, which is typically
modeled  by  a  convolution  operation  of  the  G(r)
peaks  with  a  Gaussian  function  if  the  atomic
vibrations  are  isotropic  in  all  directions  (12).
Looking at Table 1, it can be seen that extracted Biso

values of all nanocrystal sizes vary between 0.001
and  0.013  Å2.  Although  these  non-zero  atomic
displacement  parameters  indicate  the  presence  of
atomic vibrations when there are none,  they may
result from numerical errors and the finite angular
range  of  the  diffraction  data  causing  truncation
errors  in  the  Fourier  transform  since  they  are
obtained from the PDF analysis  of diffraction data
computed  from  ideal  nanocrystals  where  all
constituent  atoms are  fixed at  their  lattice  points
(Biso  = 0). Finally, these erroneous Biso values are
generally  higher  for  smaller  particles  than  larger
ones.

PDF  refinement  of  diffraction  data  from
energy-minimized Gold nanopowders 
Table  2  presents  our  PDF  refinement  results  of
diffraction  data  simulated  with  energy-minimized
versions of gold nanopowders considered previously.
The  difference  here  is  that  the  atoms  now
experience  finite  displacements  from  their  ideal
lattice positions, since at 0 Kelvin temperature, the
minimum-energy  configurations  of  nanocrystalline
particles do not necessarily correspond with those of
an  ideal  FCC  lattice,  especially  for  surface-layer
atoms as demonstrated in previous literature  (11,
24).  The  static  (time-independent)  component  of
these displacements from the ideal lattice points are
treated as microstrains in X-ray literature, and past
work (25) showed that these microstrains were of
compressive  type  at  the  nanoparticle  surface,
gradually  decaying  to  a  displacement-free  core
region  of  the  nanoparticles,  as  seen  in  Figure  1.
During PDF refinement, microstrain information was
not  extracted  because  there  was  no  long-range
atomic  order  assumed  while  refining  for  the
modeled  G(r)  functions.  Instead,  all  atomic
displacements  are treated as contributions to  Biso,
irrespective  of  whether  they  result  from static  or
dynamic  displacements  caused  by  temperature-
dependent atomic vibrations3 (20). 

3 As it can be noted, this treatment is inconsistent with the
methodology  followed  in  refinement  methods  based  on
structural solutions, such as Rietveld refinement, since the
latter allows one  to distinguish between microstrain and
isotropic/anisotropic  atomic  displacements  and  extract
both.

The  findings  in  Table  2  confirm  the  inward
movement  of  surface  atoms  as  a  result  of  the
energy-minimization  operation.  As  seen,  for  all
wavelengths  considered,  the  refined  lattice
parameters decrease with decreasing particle size.
This  can  be  explained  by  smaller  nanocrystals
experiencing  much  higher  numbers  of  atomic
displacements  since  they  have  a  much  higher
proportion  of  their  atoms  on  their  surface  layers
compared  to  larger  nanocrystals.  These  surface
atoms are not fully coordinated with neighbor atoms
as opposed to core atoms, so they can move more
freely  than  core  atoms.  Hence,  large  amounts  of
inward displacement experienced by surface atoms
cause  a  decrease  in  the  average  unit  cell
dimensions.  With  decreasing  surface  atom
proportions in larger particles, the effect was less
significant.  Eventually,  the  lattice  parameters  of
larger nanocrystals, such as those of 20 and 30 nm
nominal  diameters,  are  almost  comparable  to  the
initial lattice parameter of the particles, i.e. 4.0626
Å. This effect was confirmed in an earlier study as
well (11) and is also visualized on the left side of
Figure 3.

When  looking  at  the  extracted  particle  sizes,  the
indirect  effect  of  the  compressive  strains  on  the
nanoparticle  surfaces  can  be  noted.  For  all
considered  wavelengths,  the  refined  diameters  of
energy-minimized  nanoparticles  are  smaller  than
their  ideal-crystalline  counterparts.  These
differences  are  maximized  for  PDF  refinement
studies performed on the diffraction data computed
with the smallest X-ray wavelengths (λ = 0.21 Å)
than larger ones, as shown in the middle portion of
Figure  4.  The  reason  behind  this  wavelength-
dependence is that the smallest wavelength enables
the largest qmax range in the diffraction data and,
correspondingly,  the  highest  real-space  resolution
∆r and the minimum number of Fourier truncation
errors.  Therefore,  the  higher  sensitivity  in  real-
space  enables  the  visibility  of  these  small  size
differences.  In  addition,  the  reduction  in  the
extracted  diameters  is  bounded  by  the  smallest
nanocrystals (≈ 10%) on the upper limit, and the
largest nanocrystals on the lower limit (≈ 2%), for
all wavelengths studied. This is consistent with the
different  surface  atom  proportions  of  small  and
large nanocrystals and their resulting effects on the
energy-minimization process.
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Table 2: PDF refinement results of diffraction data computed from energy-minimized Crystalline and
spherical gold nanoparticle ensembles evaluated at 5 different wavelengths.

Nominal
Size (Å)

λ
(Å)

a
(Å)

D
(Å)

Biso

(Å2)
Rw ∆r

(Å)
qmin

(1/Å)
qmax

(1/Å)
48.75 0.21 4.05594 44.20 0.044 0.097 0.10 1.56 27.6
97.50 0.21 4.06000 93.48 0.020 0.047 0.10 1.56 27.6
150 0.21 4.06190 145.91 0.011 0.036 0.10 1.56 27.6
195 0.21 4.06251 191.01 0.011 0.036 0.10 1.56 27.6
293 0.21 4.06264 289.61 0.003 0.017 0.10 1.56 27.6

48.75 0.56 4.05534 44.85 0.058 0.071 0.28 1.56 22.4
97.50 0.56 4.05988 93.72 0.029 0.036 0.28 1.56 22.4
150 0.56 4.06185 146.38 0.019 0.030 0.28 1.56 22.4
195 0.56 4.06248 191.56 0.012 0.020 0.28 1.56 22.4
293 0.56 4.06263 289.86 0.008 0.012 0.28 1.56 22.4

48.75 0.71 4.05452 45.97 0.081 0.067 0.35 1.54 17.7
97.50 0.71 4.05968 94.51 0.040 0.044 0.35 1.54 17.7
150 0.71 4.06179 147.47 0.025 0.038 0.35 1.54 17.7
195 0.71 4.06244 192.69 0.017 0.030 0.35 1.54 17.7
293 0.71 4.06261 291.16 0.010 0.023 0.35 1.54 17.7

48.75 1.00 4.05359 46.82 0.102 0.055 0.50 1.64 12.6
97.50 1.00 4.05947 95.33 0.057 0.034 0.50 1.64 12.6
150 1.00 4.06167 148.44 0.037 0.028 0.50 1.64 12.6
195 1.00 4.06238 193.58 0.025 0.021 0.50 1.64 12.6
293 1.00 4.06259 292.15 0.015 0.016 0.50 1.64 12.6

48.75 1.54 4.05291 47.72 0.155 0.053 0.77 1.70 8.2
97.50 1.54 4.05929 96.39 0.078 0.038 0.77 1.70 8.2
150 1.54 4.06158 149.48 0.049 0.030 0.77 1.70 8.2
195 1.54 4.06232 194.53 0.033 0.024 0.77 1.70 8.2
293 1.54 4.06257 293.08 0.002 0.020 0.77 1.70 8.2

Figure 4: Left: Lattice parameters extracted from PDF refinement performed on simulated diffraction data
of gold nanoparticle ensembles irradiated by five different wavelengths of X-rays. Middle: Refined average
crystallite diameters from ideal-crystalline and energy-minimized nanoparticles.  Right: Refined isotropic
atomic displacement parameters Biso from ideal-crystalline and energy-minimized nanoparticles.
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Finally, when it comes to the extracted Biso values,
we notice that there is a significant increase in the
refined  values  for  energy-minimized  nanoparticles
compared  with  those  of  ideal  nanocrystals.  As
explained  in  the  beginning  of  this  section,  these
increases  could  be  the  result  of  both  static  and
dynamic  atomic  displacements  if  the  refined
diffraction data were experimentally obtained (12).
In our case, however, we simulated the diffraction
data based on the minimum-energy configurations
of our nanocrystalline particles, where the energy-
minimization  algorithm  ignored  the  zero-point
vibrational  movement  of  atoms  (15,  23).  As  a
result,  the  isotropic  atomic  displacement  values
extracted could only come from static displacements
of  atoms.  Considering that  the  largest  Biso values
obtained  from  the  ideal-crystalline  particle
ensembles are around 0.013 Å2, the Biso values of
energy-minimized nanoparticles that  are in excess
of 0.013 Å2 could be interpreted as contributed from
static  displacements  of  atoms.  These  static
displacements  of  atoms  are  maximized  for  the
smallest nanoparticles and minimized for the largest
ones  (see  the  right  column  of  Figure  4),  in
accordance with changes in the remaining structural
parameters.

Evaluation  of  Refined  Structural  Parameters
Against Real-Space Structural Parameters
In order to evaluate the accuracy of our refinement
results,  we  also  computed  the  average  structural
parameters of our nanoparticle ensembles based on
individual  atomic  coordinates.  These  atomistic
calculations were performed by classifying all atoms
according to their  coordination numbers. This was
done by counting the first nearest neighbors of all
atoms within spheres of 3.2 Å, radii centered at the
positions  of  atoms.  Those  with  a  coordination
number of 12 were considered core atoms, and the
remaining  ones  were  considered  as  surface  layer
atoms. Given the discrete atomic coordinates of a
nanoparticle,  the  diameter  distribution  was
calculated  by  surface  atom  coordinates.  One
diameter  was  calculated  for  each  pair  of  surface
atoms,  provided  that  the  line  connecting  these
atoms  crossed  the  center  of  the  particle.  This
resulted in 525, 2205, 5359, 9105, and 20673 total
numbers of diameters for 5, 10, 15, 20, and 30 nm
particles,  respectively.  The  minimum  (Dmin),
maximum  (Dmax),  average  (Dave),  and  standard
deviation of  these diameters  for  each particle  are
presented in Table 3. The last row reports the B iso

value  for  bulk  gold,  which  was  obtained  by  MD
simulations using periodic boundary conditions in 3
dimensions  and  ignoring  small  size  and  surface
effects  formerly  present  in  nanocrystalline  gold
particles.

Table 3: Structural parameters (average values and standard deviations) obtained from calculations based
on atomic coordinates of energy-minimized gold nanoparticles. Nsurf/N reports the ratio of the surface

atoms’ number to the total number of atoms in a single nanoparticle.
Nominal
Size (Å)

N s ur f

N
No. 

unit cell
aave

(Å)
astd

(Å)
Dmin

(Å)
Dmax

(Å)
Dave

(Å)
Dstd

(Å)
Biso

(Å2)

48.75 0.29 2539 4.0542 0.0256 43.43 48.23 45.89 1.4 0.026
97.50 0.15 24487 4.0588 0.0185 91.96 96.93 94.70 1.3 0.025
150 0.10 95396 4.0608 0.0145 144.82 149.87 147.59 1.4 0.022
195 0.078 213267 4.0618 0.0119 189.42 194.53 192.24 1.4 0.023
293 0.053 739799 4.0624 0.0087 286.95 292.05 289.73 1.4 N/A
Bulk ≈∞ ≈∞ 4.0626 ≈0 N/A N/A N/A N/A 0.019

The average lattice parameters of unit cells making
up  the  energy-minimized  nanoparticles  were
calculated  by  finite-strain  theory.  Here,  all
nanoparticles were decomposed into repeating unit
cells, where a unit cell was constructed of one basis
atom  plus  its  12  first-nearest  neighbors.  Under-
coordinated  surface  atoms  with  a  coordination
number of less than 12 were eliminated from the
calculation. To relate the average lattice parameters
of the energy-minimized nanoparticles aave to that of
the  ideal  crystalline  nanoparticles  a0,  we  used

εa ve=
aav e−a0
a0

, where a0= 4.0626 Å and εave is the

average lattice strain (25). Next, εave was calculated

by the following procedure: first, for each unit cell, a
3-by-3  deformation  gradient  F  was  computed  by
finding  coordinate  vectors  connecting  the  basis
atom  to  its  first-nearest  neighbor  atoms  in  the
reference structure, X i

, which were the ideal crystal

coordinates  in  our  case  and  in  the  deformed  or
energy-minimized  structure,  x i ,  with  i=1,2...12.

Then  F  was  determined  by  a  least-squares  fit
following the method from the literature (26, 27):

F X i≈ x i∀ i=1 . .. 12      (Eq.7)

E=1
2

(FT F−I )                 (Eq.8)

After that, F was obtained and E was computed, and
the three eigenvectors  of  the  symmetric  tensor  E
specified the relative variation ∆a/a0  of  the lattice

parameter in the principal directions of deformation.
The mean strain εave of all unit cells in the particle
was then multiplied by a0 to evaluate the average
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lattice  parameter  aave  of  the  energy-minimized
nanoparticle. Table 3 presents the total number of
unit  cells  considered  for  a  given  nanoparticle
(column 3)  along  with  the  corresponding average
lattice  parameters  and  their  standard  deviations
(4th and 5th columns, respectively). Finally, mean
square  displacements  (MSD)  of  particles  were
calculated  with  LAMMPS  without  applying  periodic
boundary conditions to take into account the free
surfaces  of  nanoparticles.  Before  each calculation,
all particles were subjected to: 1) heating up to 600
K within 50 ps; 2) equilibration at 600 K for 50 ps;
3) cooling  back  to  10K  within  50  ps;  and  4)
equilibration at 10 K for 100 ps in an NVT ensemble.
MSD calculations were simulated at 10 K because
molecular  dynamics  algorithms  do  not  allow
simulations  at  0K.  In  the  case  of  bulk  gold,  NPT
ensemble  was  used  instead  of  NVT  to  eliminate
surface effects. After the equilibration step, a 1000
ps  production  run  for  MSD  calculation  was
performed.  We  note  that  equilibration  time
significantly  affects  MSD.  If  the  system  is  not
equilibrated  well,  MSD  is  overestimated  and
contains  high,  time-dependent  fluctuations.  Thus,
we increased the equilibration time at  10  K from
100  to  1000  and  2000  ps  for  15  and  20  nm
particles, respectively. However, we were not able
to complete a full calculation for 30 nm particles in a
reasonable time, so the corresponding Biso for 30 nm
particles  was  excluded  from  Table  3.  Lastly,  the
isotropic  atomic  displacement  parameter  Biso was
calculated  by  B i s o=8 π

2M S D .  These  are

presented in the last column of Table 3.

As shown, an increase in the nominal  size of the
nanoparticles results in a dramatic decrease in the
N s u r f

N
 ratio, which directly influences the average

lattice  parameters  obtained for  the  particles  since
the relative mobility of surface atoms compared to
bulk atoms in a nanoparticle is significantly higher.
Higher  mobility  of  surface  atoms,  then,  results  in
larger decreases in the average lattice parameters
from 4.0626 Å. One may notice that the changes in
aave are not as dramatic as those of N su r f

N
 ratios;

the reason for that lies in our computation method
of aave. As described, we only considered atoms that
had full  coordination,  i.e.  had exactly 12 nearest-
neighbors,  to construct  a unit  cell.  Therefore,  the
most  mobile  surface  atoms are  not  considered in
our average unit  cell  calculations,  which disregard
the  largest  inward  movements  of  the  outermost-
surface  atoms.  Secondly,  the  average  diameters
obtained from the particles correlate well with the
nominal  sizes.  Compared  with  the  Dave values  of
ideal  crystalline  nanoparticles,  which  are  46.10,
94.90,  147.70,  192.30,  and  289.80  ±  1.5  Å,
respectively, the Dave  of energy-minimized particles
are smaller, but the difference is within the standard
deviation of the diameter distributions (Dstd). Hence,
real space calculations do not indicate appreciable

size changes due to energy-minimization,  at  least
not  with  the  calculation  method  described  here.
Finally, looking at Biso values, we immediately see
their inverse relationship with the nominal sizes of
the  nanoparticles.  This  is  expected  and  can  be
explained  with  similar  arguments  as  the  lattice
parameter  changes.  Higher  surface  atom  ratios
enable much larger atomic movements, and these
immediately  increase  the  MSD  values.  At  the
ultimate limit of a bulk structure, Biso converges to
0.019 Å2, which is the minimum of all others.

Next, we compared the values in Table 3 with the
PDF  refinement  results  of  energy-minimized
particles in Table 2. However, this is not trivial since
we have 5 sets of refined parameters for each X-ray
wavelength and large changes in parameter values
are  observed  at  different  wavelengths.  Consistent
with past literature (12), we select the refinement
results  for  0.21  Å,  as  reference  value  of  PDF
refinement  since  it  yields  the  highest  real-space
resolution and minimum Fourier  truncation errors.
Comparing Table 3 with Table 2, we observe that
the  lattice  parameters  computed  atomistically  are
slightly  lower  than  those  from  PDF  refinement,
although  the  differences  are  at  the  third  decimal
and are within the standard deviations reported in
Table 3. Considering that the atomistic simulations
do neglect under-coordinated atoms, the observed
agreement is surprisingly good. When we switch to
refined  diameters,  we  realize  that  they  correlate
well  with  the  average  diameters  calculated  within
their  standard  deviations.  Among  the  three
structural  parameters,  refined  Biso values  are  the
most  divergent  from  their  atomistically-computed
counterparts.  Although their magnitude orders are
similar, the dramatic size dependence of the refined
Biso values  is  not  confirmed  by  atomistic
calculations.  One  reason  for  explaining  the
disagreement  is  the  Gaussian  model  of  atomic
displacements  assumed  by  the  PDF  refinement
algorithm. As confirmed indirectly by the changes in
the lattice parameters and average diameters, the
atoms within energy-minimized nanoparticles do not
experience  random  displacements  as  implied  by
Gaussian models. Atomic displacements are uneven
at different atomic layers of the particles, and their
directions  are  mostly  inward.  Hence,  the
incompatibility between assumed models of atomic
movements  contributes  to  the  divergences  in  the
extracted  Biso values.  Secondly,  our  Fourier
truncation errors are expected to cause large errors
in the refined atomic displacement values from PDF,
as  shown in  previously  (12),  since  even with  the
smallest  X-ray  wavelength,  our  qmax value  is  still
less than the suggested 30 Å-1 limit. Thirdly, the Biso

values  from  the  refinement  of  energy-minimized
nanoparticles  must  be  cleared from the  minimum
error limits for a fair comparison, even though Table
1 shows that their contribution is within 0.002 Å2 for
all sizes at λ=0.21 Å . Lastly, the refined Biso values

from  PDF  analysis  are  actually  from  the  static
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displacements  of  atoms,  whereas  our  LAMMPS
calculations  consider  hundreds  of  nanoparticle
ensembles  where  only  the  dynamic  atomic
displacements are reported in the MSD calculations.
This  shows  that  even  with  error-free  diffraction
data,  extracting  atomic  displacement  parameters
based on PDF analysis of X-ray diffraction data is a
challenging task that requires carefully-planned data
generation/collection  strategies  as  well  as
compatible  parameter  definitions.  Overall,  the
agreement between atomistic calculations and PDF-
refined  structural  parameters  of  spherical  gold
nanoparticles is satisfactory.

CONCLUSIONS

In  this  study,  we  used  atomistic  calculations  to
generate  and  analyze  ideal  diffraction  data  from
powders of spherical gold nanoparticles to evaluate
the  accuracy  limits  of  Pair  Distribution  Function
analysis in extracting the lattice parameter, average
particle size, and atomic displacement values. Our
results show that the minimum uncertainties in the
extracted structural parameters from the diffraction
data of ideal-crystalline nanoparticles are within ± 5
x 10-5 Å the average lattice parameter, which is the
most stable structural parameter irrespective of the
X-ray wavelength selected. The diameters obtained
from PDF analysis are closer to the maximum values
of  the  diameter  distributions  of  ideal  crystalline
particles  since  PDF  analysis  relies  on  analytical
models  to  obtain  average  crystal  sizes  from  the
approximate  position  of  where  the  G(r)  curve
decays down to noise level. Still, the extracted sizes
are  within  1% of  the  nominal  sizes.  A  high  qmax

value  is  desired  for  the  highest  resolution  of
crystallite size. Finally, Biso values are bound within
0.013 Å2 for the systems we studied, with higher
uncertainties present for the smallest nanocrystals
and  lower  ones  for  the  largest  nanocrystals.  The
size  dependencies  on  Biso uncertainties  are
consistent  with  the  experimental  observations  of
surface  atom  mobility  and  its  effects  on
nanoparticles with small crystallite sizes.

PDF  analyses  of  energy-minimized  nanoparticles
revealed  consistent  trends  with  similar  analyses
performed with crystallographic solution algorithms
(11). Decreasing lattice parameters with decreasing
nominal particle size is confirmed with all  selected
X-ray  wavelengths,  although  the  amount  of
decrease  depends  on  the  qmax range  of  the
diffraction data. However, the inward movement of
surface  atoms  resulting  from  the  energy-
minimization process was not captured by the PDF
method when qmax was less than 15 Å-1.  This again
confirms that  PDF-based  crystallite  sizes  are  very
sensitive to the wavelength selected.  A significant
increase  in  Biso was  observed  as  a  result  of  the
energy minimization for all particle sizes and for all
X-ray  wavelengths.  The  amount  of  enhancement
was  the  most  prominent  for  the  smallest

nanoparticles  since  they  have the  largest  ratio  of
surface atoms. 

Atomistic calculations of structural parameters from
energy-minimized  nanoparticles  agree  fairly  well
with  those  obtained  by  PDF  analysis.  The  lattice
parameters and average particle sizes agree within
their  standard  deviations.  However,  we  were  not
able to directly correlate the refined Biso values with
those from real-space calculations. Possible reasons
were identified as incompatible definitions of mean
square displacements of atoms in the two methods
compared,  and  large  Fourier  truncation  errors
resulting from limited qmax range.  These could  be
significant when qmax is less than 30 Å-1, as reported
previously (12).

To conclude, our results show that PDF analysis can
be a strong tool for researchers who want to study
the structural properties of nanocrystalline powders.
The  uncertainties  in  the  refined  parameters  are
quite low, even with less-than-ideal diffraction data
and modest qmax  values. Moreover, one can follow
our proposed methodology to estimate the analysis
errors  for  specific  cases  since  our  method  is
generalizable and uses open-source programs and
optimized  computation  routines.  However,  we
highlight  that  the  estimated  errors  obtained  from
the  proposed  methodology  would  only  yield  the
minimum  expected  uncertainties  of  structural
parameters; when working with measured XRD data
that  contains  undesirable  scattering  components
such  as  photon  counting  and  sampling  statistics,
size  and/or  lattice  parameter  distributions  in  the
sample, background scattering, etc. the uncertainty
to  be  expected  must  increase.  Therefore,  the
accurate  interpretation  of  X-ray  diffraction  data
from  nanocrystalline  powders  requires  great  care
and meticulous analysis of different sources of error
and their bounds.  
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SUPPORTING INFORMATION

Additional details of our Molecular Dynamics (MD) simulations are provided in this section.

Force-field selection:
For  MD  simulations,  interatomic  forces  were  modeled  with  optimized  embedded  atom  method  (EAM)
developed by Sheng et al. (2011) [15] and available online to be used with LAMMPS [14]. The force-field
was highly optimized to match the experimental database and has been shown to have validity in the
modeling of gold nanoparticles by Xiong et al. (2018) [11]. 

MD steps and results:
Before starting  the MD simulations with LAMMPS, five separate  spherical  gold nanocrystal  models with
diameters of 5, 10, 15, 20, and 30 nm were generated from an FCC lattice with 4.0626 Å lattice parameter.
This corresponded to the bulk lattice parameter of gold at 0 K calculated with the selected force-field.
Generated nanocrystals were each placed in the center of a simulation box. The volume of the simulation
box  and the  number  of  atoms in  each  nanocrystal  are  given  in  Table  S1.  An  example  of  a  10  nm
nanocrystal inside a simulation box is shown in Figure S1. Afterwards, MD simulations were performed with
non-periodic boundary conditions applied in all directions since we were studying colloidal, free-standing
gold nanocrystals. We followed six steps in the simulations, as shown in Table S2. They are as follows: 

1) The energy minimization was performed with the force and energy change ratio criteria of 10 -6 eV Å-1 and
10-6, respectively, for convergence within a maximum of 80 ps. Final atomic configuration obtained from
this step was assumed to be energy-minimized at 0 K and was used in subsequent Pair Distribution Function
analyses. The steps below were used for MSD (Mean Square Displacement) calculations.

2-4) Following energy minimization, an annealing simulation cycle was performed between 10-600 K in NVT
ensemble by raising the temperature of the system and cooling it back. This step is important since it allows
atoms  to  overcome  their  energy  barriers  and  avoid  local  minimum energy  configurations  [25].  Total
simulation length of this step was 150 ps.

5) Then, the system was equilibrated at 10 K temperature before MSD calculation. This step makes sure
that system is energetically equilibrated at given conditions and results in reliable data out of MD. With
respect to time, the temperature and energy change of the system, during annealing and equilibration, are
shown in Figures S2A and S2B. Total simulation length of this step was 100 ps.

6)  Finally,  a  production run was  performed to  calculate  the  MSD of  the  systems during  the  1000  ps
simulation as shown in Figure S2C.

Table S1 : The number of atoms and the volume of the simulation boxes used in MD runs of each
nanocrystal

Size 
(nm)

Number of 
atoms

MD box volume 
(nm3)

5 3589 324.81
10 28897 1622.23
15 106114 4947.76
20 231477 9938.38
30 781145 30371.33
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Table S2 : MD steps with simulation parameters.

Step Ensembl
e

Temperature
(K)

Simulation time
(ps)

Timestep (ps) Note

1 - 0 80*

0.001

Energy
minimization

2

NVT**

2 – 600 50
Annealing
simulation

3 600 50
4 600 - 10 50
5 10 100 Equilibration run

6 10 1000 Production run –
MSD calculation

* Specified time is the maximum allowed simulation time in case the given energy and force convergence 
criteria are not satisified .
** In case of bulk system  NPT ensemble is used.

Figure S1: 10 nm diameter spherical gold nanocrystal model is shown inside its simulation box.
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Figure S2: A) Temperature vs. time, B) Total energy vs. time, and C) MSD vs. time for 10 nm gold
nanocrystal model.
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