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ABSTRACT

With the introduction of HTTP/3 (H3) and QUIC at its core, there

is an expectation of significant improvements in Web-based secure

object delivery. As HTTP is a central protocol to the current

adaptive streaming methods in all major streaming services, an

important question is what H3 will bring to the table for such

services. To answer this question, we present the new features of

H3 and QUIC, and compare them to those of H/1.1/2 and TCP. We

also share the latest research findings in this domain.

CCS CONCEPTS

• Networks → Application layer protocols; • Information

systems → Multimedia streaming.

KEYWORDS

HTTP adaptive streaming, QUIC, CDN, ABR, OTT, DASH, HLS.

ACM Reference Format:

Minh Nguyen, Christian Timmerer, Stefan Pham, Daniel Silhavy, and Ali C.

Begen. 2022. Take the Red Pill for H3 and See How Deep the Rabbit Hole

Goes. In Mile-High Video Conference (MHV’22), March 1–3, 2022, Denver, CO,

USA. ACM, New York, NY, USA, 6 pages. https://doi.org/10.1145/3510450.

3517302

1 INTRODUCTION

1.1 The Birth of the Hypertext Transfer Protocol

The Hypertext Transfer Protocol (HTTP) is an application-level

protocol that has been in use by the World Wide Web (WWW)

for over 30 years. The initial HTTP version (HTTP/0.9) was quite

a simple protocol prototyped for raw data transfer from a server

to a client. In 1996, an informational RFC (RFC 1945 [1]) came

out of the Internet Engineering Task Force (IETF) to document

HTTP/1.0 where the protocol was improved by allowing messages

to be in the format of MIME-like messages, containing meta

information about the data transferred and modifiers on the

request/response semantics. This RFC was published with some

concerns since HTTP/1.0 was somewhat loose on specifying
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what was mandatory or optional to implement and it did not

sufficiently take into consideration the effects of hierarchical

proxies, caching, the need for persistent connections and virtual

hosts. Incomplete implementations caused interoperability issues

and this has necessitated a protocol version change. Shortly after in

early 1997, a standards-track RFC (RFC 2068 [2]) specified HTTP/1.1

with more stringent requirements than HTTP/1.0 to ensure reliable

and interoperable implementations. Two years later, RFC 2068 was

revised to RFC 2616 [3], which stayed in effect for a long time. In

2014, HTTP/1.1 was revised significantly and upgraded with new

features in RFCs 7230 [4], 7231 [5], 7232 [6], 7233 [7], 7234 [8] and

7235 [9]. Today, most Web traffic is still carried over HTTP/1.1.

1.2 HTTP/2 (H2)

The second major version of the HTTP, dubbed as HTTP/2 (H2),

was released in 2015 by the IETF [10]. H2 was derived mainly

from the ideas inherited from Google’s SPDY proposal [11], an

experimental protocol first announced in 20091 with the objective

of reducing page load times. H2 included many new features

such as stream multiplexing, server push, stream priority and

stream termination. Instead of running multiple TCP connections

in parallel for handling multiple simultaneous requests as in the

case of HTTP/1.1, H2 used a single TCP connection to carry

multiple request-response pairs (via multiple streams). In the

context of HTTP Adaptive Streaming (HAS) [12], this new stream

multiplexing feature was studied in [13, 14] and found to improve

the HAS. However, the reported improvements were not substantial.

While all major browsers rushed into adding H2 support, content

delivery network (CDN) providers have not implemented H2 on

their servers until Apple’s low-latency extensions for HLS required

them to do so [15]. At the end of the day, H2 added several new

features, but it still uses TCP as the underlying reliable transport

protocol and suffers from head-of-line (HoL) blocking.

Several studies investigated H2 in the context of HAS. Wei et al.

evaluated the server push feature in the live streaming scenario with

the k-Push strategy, where an HTTP GET request was sent to the

server to download a fixed number of (𝑘) continuous segments [16].
The proposed method showed that server push was able to reduce

the request overhead significantly. However, fixing 𝑘 could result
in rebuffering when the throughput was unfavorable. The work

in [17–19] focused on methods that flexibly determined 𝑘 based on
throughput, buffer and segment duration to trade off the request

overhead and rebuffering risk. Although server push is not widely

1https://www.chromium.org/spdy/spdy-protocol/
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used today, the studies mentioned above show its benefits to the

performance of HAS.

The stream termination and stream priority features were

evaluated in 360-degree video streaming [20, 21] to cope with the

high throughput requirement of such applications. The 360-degree

video is spatially divided into multiple tiles. The tiles located inside

the viewport of the user are downloaded in higher quality withmore

allocated bandwidth using the stream priority feature, whereas the

other tiles are downloaded in lower quality with less bandwidth.

This strategy reduces the total downloaded data, resulting in a

smaller throughput requirement without significantly impairing

the user’s quality of experience (QoE) [22].

1.3 HTTP/3 (H3)

The third major version of the HTTP is HTTP/3 (H3) [23] and

it is built on the QUIC protocol that was recently published in

RFC 9000 [24] after a substantial undertaking by the IETF QUIC

working group participants. QUIC was developed by Google [25]

to provide a secure and reliable transport protocol over UDP. Like

TCP, QUIC is a connection-oriented and stateful protocol that

provides interaction between a client and server. QUIC allows

an application to establish a connection quickly and use flow-

controlled streams multiplexed over that single connection. QUIC

also enables network path migration without losing the connection.

Google reported that QUIC decreased search latency by 8%, and

(YouTube) video rebuffering by 18% on desktop devices [25].

Although QUIC and TCP show similar performance in non-lossy

networks, QUIC provides significant improvements when the

network experiences packet losses [26]. Over the years, many and

somewhat incompatible QUIC implementations2 with different

sets of features came out and were tested for interoperability and

benchmarking [27, 28]. Nonetheless, as the RFC is now published,

we expect all major codebases to converge on the standard QUIC.

Although H3 inherits most of the features of H2, it provides

additional features, too, due to the use of QUIC as opposed to TCP.

One such feature is the zero round-trip time (0-RTT) connection

setup. While H2 wastes some RTTs for the three-way handshake

due to TCP connections, H3 takes advantage of Transport Layer

Security (TLS) 1.3 directly integrated into QUIC to save at least

one RTT for connection setup. QUIC-based H3 is also free from

the HoL blocking issues inherent to TCP. Different requests can

be processed simultaneously with stream multiplexing by putting

each pair of HTTP requests and responses in an individual stream.

A stream is an independent sequence of data delivered between the

server and client. The data belonging to streams are interleaved as

illustrated in Figure 1.

Stream A
DATA

Request B
Request A

Stream B
DATA

Stream A
DATA

Stream B
DATA

Figure 1: Stream multiplexing feature in H2 and H3. The

client sends two requests at the same time.

2https://github.com/quicwg/base-drafts/wiki/Implementations
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Figure 2: Server push feature in H2 and H3 compared

with HTTP/1.1. (a) In non-pipelined HTTP/1.1, the pairs of

requests and responses come one by one, which uses one RTT

for each pair. (b) When pipelining is enabled for HTTP/1.1,

some RTTs can be saved but the number of requests remains

the same. (c) H2 and H3 provide server push feature that

eliminates multiple RTTs with only one request.

The server push feature enables the client to receive multiple

responses from the server by sending a single HTTP GET request.

It might be helpful when the server knows that these responses are

necessary for the client to completely process the corresponding

request. This feature helps the client save multiple RTTs compared

to non-pipelined HTTP/1.1, where a new request is sent only if the

response of the previous request has been fully received (Figure 2a).

HTTP/1.1 offers the pipelining feature that allows many requests

to be delivered over a single TCP connection without waiting for

each response (Figure 2b). However, it needs more requests than H2

and H3 to obtain the same responses. A comparison of the server

push feature in H2 and H3 to HTTP/1.1 (non-)pipelining is shown

in Figure 2.

Among the multiple streams over a single connection, the client

can indicate its preference for a stream over the others by the stream

priority feature. If the stream priority is not indicated, these streams

share the connection’s throughput equally. This feature exists in

both H2 and H3, though H2 in RFC 7450 has a more complex design

for the stream priority feature than the mechanism in H3 [29]. The

IETF HTTP Working Group is currently working on an extensible

prioritization scheme [29], which is being implemented in H3 and

might also be adopted by H2 through a revision [30].
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The last feature considered in this paper is stream termination.

When the client considers a stream’s data is no longer necessary, it

can send an RST_STREAM frame (inH2) orH3_REQUEST_CANCELLED

error code (in H3) to cancel that stream while keeping the con-

nection with the server. This feature is a performant termination

technique of H2 and H3 to avoid wasting the throughput for down-

loading unused data. Meanwhile, the only way for HTTP/1.1 client

to cancel a request is to close the TCP connection, which in turn

causes other delays due to the three-way handshake and slow start

when a new connection is needed.

In this paper, our goals are four-fold:

• Different flavors of HTTP: We provide the development

path of HTTP and explain the recent new features.

• Survey of results reported in academia/industry: We

give a glimpse of the results showing the importance of the

H2/H3 features in HAS.

• H2BR: We describe an H2/H3-aware retransmission

technique to fill the quality gaps in the buffer with the

objective of enhancing QoE in HAS. H2BR uses H2/H3’s

features including server push, stream priority, stream

multiplexing and stream termination.

• H3 testbed: We design an H3-based testbed for testing

streaming clients while using predefined network traces.

This testbed is a functional tool for automated testing and

providing visualized results.

2 SURVEY OF RESULTS REPORTED IN
ACADEMIA AND INDUSTRY

H2 and H3 have been studied intensely in both academia and

industry. Though the work in [12] covers some studies about H2

and QUIC-based streaming, the efforts from the industry were

not mentioned and the results for QUIC’s performance in the

standardized IETF version were not revealed. This section provides

a glimpse of the recent studies in this space.

Mueller et al. evaluated H2 in the context of Dynamic Adaptive

Streaming over HTTP (DASH) [31]. The authors showed that H2

performed better than its predecessor, HTTP/1.0, and more or

less as the same as HTTP/1.1 in terms of bandwidth utilization

when the RTT was increased. This was attributed to using one

TCP connection for each request in HTTP/1.0 and a single TCP

connection for multiple requests in HTTP/1.1 and H2. Timmerer et

al. continued the work to compare H2 over TCP with QUIC [32]. It

was found that QUIC did not improve the DASH performance at

the client for any values of RTT.

Similarly, Bhat et al. compared the performance of common

adaptive bitrate (ABR) algorithms over QUIC and TCP in time-

varying network conditions [33]. The authors stated that the ABR

algorithms originally designed for running over TCP did not achieve

QoE improvements when used over QUIC. On the other hand,

Arisu et al. found that HAS performance over QUIC was better than

TCP, especially in terms of the initial startup delay and the wait

time after frame seeking [34]. However, the impact of packet loss

rate was not taken into account in these works.

The authors in [35, 36] investigated the performance of H2 over

TCP andH3 over QUIC at different packet loss rates. Retransmission

techniques to enhance the QoE in HASwere tested in [14, 37]. These

techniques took advantage of server push, stream multiplexing,

stream priority and stream termination of H2 and H3. The

experimental results confirmed the conclusions of [32] when the

packet loss rate was close to 0%. Additionally, they showed that

H3 provided significantly better performance than H2 when the

packet loss rate increased. The reason was that H3 did not suffer

from HoL blocking as H2 did, so the throughput was utilized more

efficiently. It should be noted that these papers focused on using

H2 and H3 independent of the ABR algorithms at the client.

The work in [38] introduced an ABR scheme that made

the bitrate decisions for the next segment and the low-quality

segments in the buffer by using prominent features of H3 including

streaming multiplexing and stream termination. The proposed

method, namely Days of Future Past, utilizes a Mixed Integer Linear

Programming (MILP) model to decide on which buffered segments

should be upgraded at which bitrate to enhance the QoE. Stream

multiplexing feature is used to send multiple requests (for the next

and to-be-upgraded segments) to the server. If the throughput

becomes insufficient, stream termination is called to cancel the

download of the buffered segments to avoid rebuffering.

On the industry side, Google and Akamai have been globally

deploying QUIC on their servers [39]. According to W3Tech, there

are many Websites that enabled H2: around 46% of all Websites are

using H2 3 at the writing of this paper. Though this figure for H3 is

more modest, it has been growing drastically. H3 was used by less

than 5% of all Websites by the end of 2020, and currently, around

25% of the Websites are using this version of HTTP 4.

In real-world environments, H2 most likely makes the Website

faster than HTTP/1.1 though the improvement varies due to

(i) latency, (ii) packet loss, (iii) content type and (iv) the amount

of third-party content [40]. H2 outperforms HTTP/1.1 in high-

latency networks (e.g., mobile networks) due to binary framing

and header compression (fewer bytes to deliver). On the other

hand, HTTP/1.1’s performance surpasses H2’s in high-packet-

loss connections according to Akamai5. This is attributed to

using multiple concurrent TCP connections by the browsers

using HTTP/1.1. In terms of content type, there is a significant

improvement of the page load time for the pages containing many

small objects when H2 is enabled thanks to the stream multiplexing

feature and header compression. This comparison can be conducted

by a demo from Akamai6 as shown in Figure 3. As the third-party

content from external domains may not be using H2 features like

stream priority, the performance of H2 can be impaired when the

number of external content increases. Cloudflare investigated the

0-RTT connection setup of H3 and saw a 12.4% decrease in the

delay from the first request to the first byte arrived, compared to

H2 [41].

In summary, the later versions of HTTP outperform their

predecessors in most cases. H2 significantly reduces the latency and

request overhead by the server push feature, and improves the page

load time for the Websites containing multiple small objects thanks

to the stream multiplexing feature. These features combined with

stream priority and stream termination can boost the performance

3https://w3techs.com/technologies/details/ce-http2
4https://w3techs.com/technologies/details/ce-http3
5https://developer.akamai.com/blog/2020/04/14/quick-introduction-http3
6https://http2.akamai.com/demo
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Figure 3: A result obtained in Akamai’s demo to compare

HTTP/1.1 and H2. The load time of small pieces assembling

the Earth graph over H2 (2.43 s) is significantly less than the

one over HTTP/1.1 (5.39 s).

of HAS in many scenarios. However, for the networks with a high

packet loss rate, HTTP/1.1 might perform better as most Web

browsers can open up to six TCP connections over this HTTP

version, compared to one TCP connection used byH2, to recover the

lost data faster. Moreover, HoL blocking and three-way handshake

still occur in H2 because of the TCP connection.

Built on QUIC and UDP, H3 features the 0-RTT connection

establishment and eliminates HoL blocking as concurrent streams

are delivered independently. Many studies have confirmed that

H3 performs better than its predecessors in high-packet-loss

connections. However, some state that this new version does

not benefit the conventional ABR algorithms in low-packet-loss

connections. Therefore, some attempts have been made to use H3’s

features efficiently in the context of HAS and answer the question:

What will H3 bring to the table for over-the-top (OTT) services?

From our survey, we observe that among H3’s features, stream

multiplexing and the ability to deal with HoL blocking can

significantly enhance the performance of such services. However,

new ABR methods should be developed to take advantage of these

features, as most methods were designed with HTTP/1.1 in mind.

The next section describes our recently proposed retransmission

technique that leverages H2/H3’s features to improve user QoE. In

addition, the new scheme of stream priority feature [29] in H3 has

not been actively investigated in the context of HAS. Thus, utilizing

H3’s stream priority in streaming applications is an exciting topic

for future work.

3 H2BR: H2/H3-AWARE RETRANSMISSION
TECHNIQUE

3.1 Motivation

One of the main issues in HAS is the quality variation due to

rate adaptation, which is due to the time-varying nature of the

available bandwidth. An ABR algorithm at the client is in the charge

of selecting a suitable bitrate (or representation) for the media

segments. Most ABR schemes consider the available bitrate choices

for the upcoming segment(s) but do not replace the segments that

have been already downloaded in low quality. If such segments can

...

Quality

Segments

1

2

3

Segments in the buffer

Th
rou

gh
pu

t

4

Figure 4: Motivation for the H2BR technique.

be replaced by higher quality versions, the user experience can be

improved.

Figure 4 shows the need to re-download some low-quality

segments located in the buffer. Assume that the video is encoded at

four different quality levels. There are four segments in the buffer

with the indexes from 𝑖 − 3 to 𝑖 and the quality levels 4, 1, 2, 3,
respectively. At the time of downloading the next segment 𝑖 + 1,
the throughput is good enough to download the next segment with

the highest quality level (4) and improve the quality of the segment

𝑖 − 2 from 1 to 2. This way, the visual quality can be improved.

3.2 H2BR

We developed an HTTP/2-Based Retransmission technique

(H2BR) [14] that takes advantage of features of the newer HTTP

versions, including server push, streaming multiplexing, stream

priority and stream termination. H2BR decides (i) whether a

retransmission process should be triggered, (ii) which segments

should be retransmitted at (iii) which bitrates.

After an ABR algorithm decides for the next segment’s bitrate,

H2BR considers the selected bitrate and the current buffer

occupancy to determine whether or not a retransmission should be

attempted. To minimize the impact of re-downloading segments on

the future bitrate selection, a retransmission is triggered only when

the selected bitrate is less than the estimated throughput and the

current buffer level is safe (e.g., more than half of the buffer size). To

decide the segments in the buffer to be re-downloaded, H2BR reads

the quality levels of the buffered segments and detects the quality

gaps. We define a quality gap at a segment whose neighboring

segments have a higher bitrate. A quality gap should be filled

when H2BR can find a suitable bitrate for the segments in that gap,

which is as high as possible and between the range of the adjacent

segments’ bitrates. Also, we need to ensure that the retransmission

completes before the re-downloaded segments need to be passed

to the decoder.

In addition to the stream for the next segment, H2BR

concurrently sends another request to open a new stream for the

retransmitted segments using stream multiplexing. In this work,

we use server push to re-download the buffered segments by a

10
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single request to reduce the request overhead. Also, the stream

priority feature is used to allocate the available throughput among

the two streams (i.e., one for the next segment and one for the

retransmitted segments). The retransmitted segments are delivered

with a higher proportion of the throughput if their deadline is soon.

While re-downloading the segments, the instant buffer level and the

remaining re-download time are monitored. If these get lower than

predefined thresholds, the client uses the stream termination feature

to cancel the retransmission stream. These thresholds should be

small to prevent frequent terminations but the one related to the

instant buffer level should be high enough to avoid the risk of

stalling. The results in [14] show that H2BR can significantly reduce

the watching time spent at the lowest-quality video (up to more

than 70%). Also, the QoE is improved by up to 13% when H2BR is

enabled.

H2BR was originally proposed for non-scalable video streaming

where a low-quality segment was replaced by a higher-quality

one for better QoE. However, it can be applied for scalable video

streaming as well. In scalable video streaming, a segment can be

upgraded by adding enhancement layers on top of the base layer. In

this scenario, H2BR additionally downloads enhancement layers to

fill the quality gaps. Our work in [36] validated that H2BR improves

the user QoE in scalable video streaming over H2 and H3. Especially

when the network has a high packet loss rate, H3 increases H2BR’s

performance better than H2 due to the ability to eliminate HoL

blocking. The results in [36] showed that H3 enabled H2BR to

re-download up to 53.8% more enhancement layers.

4 H3 TESTBED

For evaluation, we design a testbed consisting of an H3 server (e.g.,

NGINX), Web apps (e.g., Chrome) and native apps (e.g., Android).

At the time of writing this paper, most projects are in the process of

implementing H3 - where possible, we plan to evaluate H3, but fall

back to QUIC or H2 if the implementations are not stable enough.

Another challenge for the Web platform is to map H3 transport

to playback via Media Source Extensions (MSE), which most

DASH/HLS clients are using today. WebTransport [42], currently

standardized in W3C, could potentially bridge that gap.

Using predefined bandwidth limitation trajectories, different

network conditions are emulated to evaluate use cases such as

strategies to recover from buffer underruns and optimize low-

latency streaming. The testbed enables automated test runs with

different streams, streaming clients and bandwidth configurations.

The results are tracked and visualized using a streaming analytics

solution for evaluation later on. Based on this evaluation, we will

present the current state of H3 server and client implementations

across Web and native platforms and address compatibility

challenges with the existing DASH/HLS-based media delivery.

The concrete setup of the testbed is depicted in Figure 5. The

Test Coordinator on the client side queues new jobs in a database.

The corresponding worker instances process the jobs based on job-

specific configuration parameters such as the target streaming client

(e.g., dash.js, ExoPlayer or hls.js). As part of the worker process, the

streaming client receives the mandatory manifests/playlists and

the corresponding media segments from an H3 server. Internally,

the H3 server may use one of the predefined bandwidth limitation

trajectories to test the playback under different conditions and

scenarios. During the playback, the worker instances report

playback metrics such as the average bitrate, startup delay and

number of rebuffering events to the metrics server using, for

example, Common Media Client Data (CMCD) [43–46] and Server

and Network-assisted DASH (SAND) [47]. The reported metrics

are analyzed and evaluated in the Evaluation UI. The entire system

scales flexibly by adjusting the number of worker processes and

docker images.

Client Components

Test
CoordinatorEvaluation UI

Report metrics

Server Components

Job queue

SAND / CMCD
Server

Perform test run

Job Queue

Evaluation 
data/metrics

Test runs

Fetch manifests 
and segments

H3 Server

Limiter

Limiter

Limiter

Docker Images

dash.js

ExoPlayer

Workers

hls.js

Manifests

Segments

Figure 5: Testbed for automated playback supporting

different streaming clients and network conditions.

5 CONCLUSIONS

In this paper, we recap the development path of HTTP and

describe new features of the newer HTTP versions: H2 and H3.

Moreover, we describe a retransmission technique, H2BR, that

takes advantage of features of H2 and H3 to efficiently upgrade the

existing low-quality segments in the buffer. H2BR can support ABR

algorithms to improve the QoE in both scalable and non-scalable

video streaming scenarios. We also lay out a testbed for streaming

clients that provides automated testing and result visualization for

HAS evaluation over the H3 protocol. Based on the evaluation, the

current state of the H3 implementations across Web and native

platforms can be presented.

We also reviewed the work published in academia and industry

about the performance of H2 and H3 in the context of HAS. It can

be concluded that both H2 and H3 bring benefits to HAS when their

features are taken into account in the design of ABR algorithms

and download strategies. However, the question of what one can do

with H2 and H3 to improve HAS is still not fully answered.
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