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Abstract: While junction temperature control is an indispensable part of having reliable solid-state
lighting, there is no direct method to measure its quantity. Among various methods, temperature-
sensitive optical parameter-based junction temperature measurement techniques have been used in
practice. Researchers calibrate different spectral power distribution behaviors to a specific tempera-
ture and then use that to predict the junction temperature. White light in white LEDs is composed
of blue chip emission and down-converted emission from photoluminescent particles, each with
its own behavior at different temperatures. These two emissions can be combined in an unlimited
number of ways to produce diverse white colors at different brightness levels. The shape of the
spectral power distribution can, in essence, be compressed into a correlated color temperature (CCT).
The intensity level of the spectral power distribution can be inferred from the luminous flux as it is
the special weighted integration of the spectral power distribution. This paper demonstrates that
knowing the color characteristics and power level provide enough information for possible regressor
trainings to predict any white LED junction temperature. A database from manufacturer datasheets
is utilized to develop four machine learning-based models, viz., k-Nearest Neighbor (KNN), Radius
Near Neighbors (RNN), Random Forest (RF), and Extreme Gradient Booster (XGB). The models were
used to predict the junction temperatures from a set of dynamic opto-thermal measurements. This
study shows that machine learning algorithms can be employed as reliable novel prediction tools for
junction temperature estimation, particularly where measuring equipment limitations exist, as in
wafer-level probing or phosphor-coated chips.

Keywords: junction temperature; temperature prediction; light emitting diodes; machine learning;
solid-state lighting; gradient boosted trees; random forest

1. Introduction

The invention of the first nitride-based blue LED by Isamu Akasaki and others, in
1986, revolutionized the general lighting industry [1]. Followed by increased efficiency,
manufacturing cost reduction, and the attainment of high color-rendering indexes with the
phosphor-based white light generation, white LEDs quickly dominated the general lighting
markets [2]. WLEDs soon reached the efficacy of over 100 lm/W inside packages that can
handle more than 10 W of input power [3]. Thermal management is still a critical factor
for high-power LEDs. The junction temperature (Tj) rise generated by large self-heating
fluxes has shown significant impacts on efficiency, optoelectrical characteristics, and the
reliability of LEDs [4,5]. Fundamentally, heat is being generated in the active region of
an LED due to non-radiative recombinations, radiation absorption, and Joule heating [6],
and in a white LED, in the color conversion composite [7]. Heat from the active region,
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color conversion composite, and other heat generation zones (e.g., light absorption) should
conduct through a complex three-dimensional thermal resistance network, starting from
each epitaxial layer to the integrated heat management system and ending at convection
to the ambient medium. Thus, in a steady-state condition, the average temperature of the
junction depends on thermal conductivity, chip-to-ambient thermal resistance, and local
temperatures of nearby heat generation zones (e.g., phosphor composite) [8–11].

1.1. A. Junction Temperature Effect on Emission Characteristic

In an interrelated manner, the Tj alters the temperature-dependent radiative and
non-radiative recombination of a WLED, as well as carrier leakage from active regions in
some instances [12], and ultimately reduces the efficiency of the light generation, known
as thermal droop [13]. Emission characteristics of the chip also change by temperature
variations due to the temperature dependence of the energy bandgap [14]. This leads
to the use of temperature-sensitive optical parameters (TSOPs) for the Tj measurement,
which are selected parameters from the spectral power distribution (SPD), such as the peak
wavelength or spectral bandwidth [15]. The TSOP Tj measurement methods have shown
their practicality with uninterrupted and non-destructive procedures [16–18].

Chhajed et al. [19] calibrated the peak wavelength for UV, blue, green, and red GaN-
based LEDs from a forward current of 10 to 100 mA at a temperature of 22 to 120 ◦C. The
temperature coefficients of the dominant wavelength for the blue, green, and red LEDs
were determined as 0.0389, 0.0308, and 0.1562 nm/K, respectively. A strong red shift of
red AlGaInP LED was also seen in the other study of authors for a trichromatic white
LED system [16]. Chen et al. conducted Tj measurement experiments and obtained peak
wavelength shifts for three different AlGaInP LED arrays [20]. Shifting characteristics
investigated at longer, central, and shorter wavelengths have shown that the center wave-
length is the most suitable method for determining the junction temperature of an LED
array. Tamura et al. [21] analyzed the wavelength shift of an InGaN-based white LED at
various temperatures from 20 to 160 ◦C, and their experiments have shown that blue-light
emission from the active layer and yellow-light emission from YAG phosphor formed
two different electroluminescence bands. Each band displayed distinct behaviors with
changing temperatures. However, similar to previous cases, the Tj was calibrated with
the blue emission of the chip. Chen et al. [22] have shown a simplified peak wavelength
shift variation in a different Tj for white LED under different drive currents. Gu et al. [23]
selected the point of interest as the lowest energy in the SPD between the peaks of blue
and yellow emissions. The ratio of the total radiant energy of white LED to the radiant
energy within the blue emission in different junction temperatures has displayed a linear
relationship. This transfer function can be used for Tj prediction.

Furthermore, the TSOP measurement methods have proven to be a practical approach
for measuring the phosphor temperature in an operating white LED. Based on the total
emission division of a white LED to a sum of the spectrum of the blue chip and two spectra
from the phosphor with a short and a long wavelength band, Yang et al. [24] examined
the fitting peak wavelengths and FWHMs of the short and long wavelength bands at the
different phosphor temperatures. They have stated that the phosphor temperature can be
precisely measured by checking the variations of its related emission spectrum. Like other
LEDs, a red shift at higher temperatures was observed.

1.2. B. Commonality of SPD Response to Junction Temperature and Input Current Density Change

Fundamentally, it can be seen that one of the outcomes of the Tj increase is the red
shift and the broadening of the SPD [25], as illustrated in Figure 1a. A red shift happens
due to the bandgap reduction at elevated temperatures, studied comprehensively by Wang
et al. [26,27] for GaN-based blue LEDs. Recently, similar results were reported at high
temperatures and high-brightness GaN on sapphire blue LEDs [28]. It should be noted that
the SPD shows a blue shift and broadening with an increasing input current. Li et al. [29]
studied the effect of the input current and temperature on the spectral behavior of green
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InGaN/GaN multi-quantum-well LED and showed that the excitation source can alter
the carrier dynamics in the active region. A large blue shift was observed in high-input
powers, mainly due to the carrier screening effect due to a weakened piezoelectric field
that results in the quantum-confined Stark effect [30]. It is noted that, in general, lighting
applications blue shift does not occur as commercial chip packages are tuned to operate
at a constant current density. Although LEDs can operate at higher efficiencies in lower
current densities (e.g., 10 A/cm2), due to inadequate luminous flux per wafer area in these
current densities, 35 A/cm2 is the widely used input current density value with acceptable
internal quantum efficiency [3,31,32]. Overall, it can be stated that TSOPs are unique for
each electrical working condition, and because 35 A/cm2 is the commonly accepted nominal
current density, LED manufacturers provide the TSOP behavior of chips mainly in this
current density.

Figure 1. Road map illustration of the current study which provides (a) basic behavior of the spectral
power distribution (SPD) of a WLED by the temperature rise of the junction, (b) process of the SPD
diagram for luminous flux (LF), and correlated color temperature (CCT) determination. Based on
this processed information, manufacturers provide (c) postprocessed data for the determination of the
temperature sensitivity of the chip. (d) Provided data from manufacturers can be digitized and collected
for (e) ML model training and tuning. (f) Model validation for the accuracy of the universal algorithm.
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1.3. C. Luminous Flux and Correlated Color Temperature, Data Interpretations from SPD

As shown in Figure 1a,b, as the true “fingerprint” of any light source, the SPD can
be rendered to how our eyes can see its color via the CIE 1931 color space diagram [33]
and how bright it is to our eyes based on the weighted integration in the visible luminous
efficiency function [34]. It should also be noted that light intensity also changes depending
on the internal quantum efficiency behavior of the LED at each specific temperature and
input current [35]. The luminescence of LEDs decreases with a temperature rise, while
Meneghini et al. [13] recently presented a tutorial article on the physical origin of this
phenomenon. The shape and intensity of the spectral power distribution, in essence, can be
interpreted to the correlated color temperature (CCT) and luminous flux (LF).

1.4. D. Temperature Dependent Data Presentation by Manufacturers

Schematically outlined in Figure 1c, WLED manufacturers, after the SPD analysis,
provide three temperature-dependent optical parameters for their chips: (1) the temperature
dependency of the LF, (2) the temperature dependency of the CIE 1931 x coordinate (ccx),
and (3) the temperature dependency of the CIE 1931 y coordinate (ccy). As discussed earlier,
this information is provided in the current density of 35 A/cm2. Presented in Figure 1a–
c, these three graphs carry necessary information about the SPD (through chromaticity
functions) at each Tj. Our data analysis of two major chip manufacturers has revealed
that the LED upstream industry [36] has reached a concurrence point, where similarities
in the responses of the LF, ccx, and ccy to the Tj can be seen. It seems that the technology
of the developing epitaxy process includes the production of the emitting layer, cladding
layer, and buffer layer, and the reflector to the micro-manufacturing process of the design
of the electrodes for current spreading, optical microstructures for light extraction, and
segmentation are all similar between manufacturers. Overall, the temperature-sensitive
optical parameters of the blue chips and phosphors are presenting consistent behavior,
while divergence can only be seen from the mid- and downstream LED manufacturing
industry. This divergence only changes the thermal resistance network of the LED device,
not the temperature sensitivity of the SPD. This seemingly universal behavior can pave
the way for a mutual ML algorithm for all WLEDs to predict their Tj inside a package or a
system, only by knowing their CCT and LF.

1.5. E. Predictable Response to Temperature and Possibility of Algorithm Training

In recent years, machine learning (ML) methods have been utilized to predict the
SPD and reliability and lifetime prediction of LEDs [37,38]. Lu et al. [39] proposed a
lifetime prediction method for WLEDs based on a multidimensional back-propagation
(BP) artificial neural network (ANN). For the model, the temperature, electric current,
initial chrominance, and initial luminous flux are selected as input neural layers, and the
service life of the LED was the expected outcome. Overall, the BP-ANN improved with
the Adaboost algorithm and was found to be a promising solution to lower the lifetime
prediction error, but the estimation time took longer. Liu et al. [40] employed the BP-ANN
to study the multi-physics interrelation between the electrical power, light output, and
thermal dissipation for LED systems. For the simplified photo electron–thermal (PET)
multi-physics prediction model, the drive current and the temperature were selected as the
input layers, while luminous flux, optical power, and electrical power were defined as the
output layers, and the model accuracy was updated according to the seven hidden-layer
neurons. The BP-ANN model was trained with experimental optical and electrical data
at a 0-450 mA drive current and a good agreement between the measured and predicted
luminous flux and the optical and electrical power was observed. It was concluded that
the PET interrelations can be efficiently made with at least a 6.7 times reduction in the
computing resource with the developed ANN model. In their later article [41], a reduced
simulation time and higher accuracy in lifetime prediction were reported. The correlation
coefficient of 0.99715 between the predicted and training data claimed to be an indicator
for the successful prediction of the lifetime and the reliability of a multi-chip LED.
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Furthermore, Chen et al. [42] conducted anomaly detection on the color failure of LEDs
using a k-Nearest Neighbor (k-NN) kernel-density-based cluster algorithm. A principal
component analysis was carried out for the dimensionality reduction of 24 extracted SPD
features. The principal components were divided into clusters using k-NN kernel-density
clustering, and anomalies are detected when the test point distance from the centroid of
the cluster is larger than the predefined threshold distance. Fan et al. [43] proposed a BP
and Genetic Algorithm (GA)-BP ANN for the dynamic SPD prediction of the full spectrum
of the white LED operating under different conditions. The method applicability was
tested for data outside the experimental dataset and when the training data are small. As
a result, a strong dependence between the prediction accuracy and the nature of LED,
and the amount of test data was found. With the proposed BP-ANN and GA BP-ANN,
the averaged SPD root mean squared error was found to be 6E-5 while the chromaticity
difference was 0.002.

Although ML algorithms are becoming more popular for LED lifetime and SPD pre-
diction, little attention has been paid to LED Tj estimation using ML approaches. Merenda
et al. [44] introduced an ML algorithm for the Tj prediction of an LED. In their study, the
Tj was evaluated according to the LED part number, aging of the device, and measured
current and voltage values. The training dataset was formed by measuring the Tj of five
LEDs with FVM at different current levels and aging conditions. The regression model was
derived from standardized input values with two hidden layers, and L1-L2 regularizations
were used to prevent overfitting. Validation studies have shown that using 10 inputs
with 84 MHz frequency average interface time, the model can predict the LED Tj in 2 ms.
Although the proposed algorithm is claimed to predict the Tj with a ±2 ◦C accuracy in the
temperature range of 50-110 ◦C, the number of samples used for the dataset is not high
enough to form a broadly applicable prediction model.

Considering the LF, ccx, and ccy while building the prediction model for the Tj is
advantageous as the predictions will be independent of the device thermal resistance.
Having information on the emitted light would be enough to perform agile testing of the
device in any environment. This article explores the reliability of such an ML method for
the Tj measurement of commercial WLEDs at their nominal current densities. k-Nearest
Neighbor (KNN), Radius Near Neighbors (RNN), Random Forest (RF), and Extreme
Gradient Booster (XGB) have been employed for the regression analysis to predict the Tj.
The rest of this paper is organized as follows: Section 2 explains the proposed method for
predicting the Tj of an LED, and Section 3 reports our experimental findings compared to
the predicted results. Finally, Section 4 concludes the paper with the future direction of
research.

2. Method

Figure 2 depicts the interconnected processes of data collection, regression, and ex-
periments. For this work, the data provided by LED manufacturers and the data collected
through experiments on LEDs produced by different LED manufacturers were used to
train and test prediction models. WLEDs from manufacturers other than those from which
the data were gathered were chosen for experimental study. Tj measurements were based
on the forward voltage method with detailed explanation in [45]. First, devices were
calibrated using the EVAtherm junction temperature measurement system to determine
their k-factor [46]. During the data acquisition test phase, a time-dependent self-heating
approach [47] was used to obtain the highest possible number of data points in Tj, ranging
from room temperature until the device reached a steady state. Set-up for the transient test
phase can be seen in Figure 2. LEDs were connected to a Keithley 2602B high-precision
source meter controlled by data acquisition software and were positioned at the center of
a LabSphere Illumia Plus 610 integrating sphere with a 2 m diameter sphere which was
painted with a highly reflective coating (reflectivity of 0.98). As shown in Figure 3, as the
LED starts to operate with a forward current of If, Tj experiences an unsteady temperature
rise from room temperature to a steady condition. During this process, a series of source
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delay measurement (SDM) cycles, with a pulse current of If,p = 1 mA with a delay time of
tp = 3 ms (including 1 ms delay and two 4-wire voltage measurements, each longing for
1 ms) were considered to evaluate time-dependent Tj. Pulses are delayed with a control
interval of tc = 200 ms. Simultaneously, time-dependent optical measurements (ccx, ccy,
and LF) with a CDS-610 model detector inside the sphere were recorded. The optical and
thermal data were then time-interpolated.

Figure 2. Overview of data collection, regression, and experiments and their interconnection.

The data obtained from manufactures contain LF, ccx, and ccy corresponding to a
specific junction temperature of different LED packages. It is not surprising that, of all the
features we could consider from the data sheet, optical parameters appeared to be more
important for temperature predictions than electrical and physical properties. In initial
tests to note a universal behavior between different manufacturers, correlations between
optical features and target (junction temperature) presented significant predictability and
thus were chosen for training. It was ensured to obtain broad coverage of cold-to-warm
white colors at the different brightness levels in the dataset. If there was insufficient number
of instances for a brightness level or color, data collection was continued for such instances.
In the end, a balanced dataset covering different brightness and colors was achieved.
In the training session, data from over 500 commercial white LED packages (Cree LED
and Nichia Corporation) were obtained. Next, data were preprocessed by carrying out
digitization, relying on user-supervised automatically generated plot-digitizing algorithms
at 1◦C interval in the Tj range of 25 to 100 ◦C. Thus, 75 different data instances (i.e., ccx, ccy,
LF, and Tj) per each LED package were recorded. As a result, data instances exceeded the
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total of 37500. For regression, our target was to predict the temperature of an LED package
given its LF, ccx, and ccy.

Figure 3. Illustration of the transient test phase (red curve shows the trend of temperature rise of the
junction, and the yellow curve assimilates the trend of optical parameters).

ML algorithms have proven to successfully handle numerous features, rank their
importance, and have high nonlinearity complexity with multivariate relationships [48]. In
this study, we aim to apply different regression algorithms and compare their performances
to choose the best one for our problem. Accordingly, we trained our dataset with K-Nearest
Neighbor (KNN), Radius Near Neighbors (RNN), Random Forest (RF), and Extreme
Gradient Booster (XGB) separately. A brief explanation of these algorithms is as follows:

KNN and RRN [49] are seen as “black-box” regressors where functions are predicted
from the dataset and are non-parametric, simple yet effective supervised learning algo-
rithms. They are widely used for classification tasks but can also be used for regression. In
KNN regression, the prediction is the average of the property values of k-Nearest Neighbors
with their weights depending on the given distance functions. The RNN is a simple exten-
sion of the KNN. The performance of the regressor highly depends on the number of the
nearest neighbors; thus, the accuracy of the regressor can be tuned by the number selected
for the close neighbors and the type of distance metric range among the outputs [50].

The RF regressor [51] is a supervised learning algorithm that combines the predictions
of a collection of decision tree regressors in order to make a more accurate prediction. RF
constructs numerous decision trees in parallel and outputs the mean of the predictions of
the decision trees as one prediction. It is worth mentioning that different parts of the data
are used to build up different decision trees by choosing n samples from the training set
with replacement (i.e., random bootstrap samples of size n). This makes the RF regressor
less sensitive to overfitting, in contrast to decision trees. Note that overfitting is an issue
where the model learns the unnecessary characteristics of the training data so that it may
not perform well on unseen test instances.

XGB [52] is one of the leading supervised ML algorithms, widely used for building ML
models implemented for both regression and classification tasks. The gradient boosting tree
model identifies the flaws of the weak learners and boosts the gradient descent with each
weak learner in the loss function. The loss function is calculated from the difference between
the predicted value and the true value. Predictors in the ensemble correct the mistakes of the
previous node until the leaf is reached. XGB model is selected for its scalability, performance,
and computational speed as well as its ability to handle noise and variance.

Typically, in machine learning, the percentage of the data division for training and
test dataset is 80 and 20%, respectively. Accordingly, we used 30000 randomly chosen
instances for training and the remaining 7500 instances for the test. To tune and assess
the predictors, we reported their performance in terms of well-known regression metrics,
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such as explained variance regression score (EVS), root mean squared error (R2 Score),
mean absolute error (MAE), and root of mean squared error (RMSE). Next, experimental
optical parameters were given as input to each trained ML algorithm and their accuracy
predictions were tested.

3. Results

Figure 4 presents the density distribution of the LF, ccx, and ccy in the test and training
datasets. It can be seen that the dataset contains WLEDs with a wide range of brightness
levels covering a wide spectrum of CIE color coordinates. After fitting the model by each
predictor, their prediction performance as well as the plot of the relationship between the
real and predicted junction temperatures is presented in Figure 5. Note that there are two
types of data: data provided by manufacturers and data obtained through experiments.
Figure 5 depicts the relationship between the prediction and real temperatures based on the
information provided by the manufacturers on the left, whereas plots on the right depict
the relationship based on data provided by the experiments. It is worth remembering that
the former reflects the manufacturers’ desired/estimated temperatures, whilst the latter
shows the actual temperatures that we measure during our tests. An agglomeration of
data points can be noticed in the experimental data in the 80 ◦C region, given the fact that
devices under test reach this temperature quickly. Referring to Figure 3, this is due to the
abrupt spike in the temperature from room temperature in the test devices. In this period,
the constant exposure time of the spectrophotometer results in the acquisition of fewer data
points in comparison to the steady-state condition.

Figure 4. Density distribution of (a) LF, (b) CCX, and (c) CCY in training dataset. Density distribution
of (d) LF, (e) CCX, and (f) CCY in test dataset.

According to the results depicted in Figure 5, it can be inferred that the performance of
the KNN predictor (with k = 2) is similar on both the manufactures’ data and experimental
data in terms of the EVS and R2 score. Note that the near-to-unity R2 score means that the
predictor is more successful in its predictions, while lower values of the MAE and RMSE are
more desired in terms of the prediction accuracy. The model based on the manufacturers’
data has a slightly greater RMSE and MAE, possibly due to the size scale of the data. With
the EVS and R2 scores near 1, and a lower RMSE score, the KNN model outperforms the
RNN model. Especially, the EVS and R2 scores of the RNN are significantly lower on the
experimental data. Although both models are similar in terms of training, the difference
between the two models is in how the training dataset is used during prediction. The
RNN selects within a given normalized radius rather than identifying the k-neighbors.
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The skewness in the density distributions appears to have resulted in inaccurate RNN
predictions.

Figure 5. (a) KNN, (c) RNN, (e) Rf, and (g) XGB predictions based on package data sheets. (b) KNN,
(d) RNN, (f) RF, and (h) XGB predictions based on experimental inputs. EVS, MAE, R2 score, and
RMSE for each case are provided in a subtable.
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By looking at the plots and scores regarding the RF, it can be seen that the EVS and
R2 scores of the RF are slightly lower than the KNN and RNN on the experimental data,
while it is the other way around on the manufacturer’s data. Moreover, it performs better
in terms of the RMSE and MAE on the manufacturer’s data but worse on the experimental
data compared to the KNN and RNN. Finally, it can be seen that the performance of the
XGB is much better than all the other predictors in terms of the RMSE and R2 score. The
XGB models could achieve successful learning of the complex relationship between the
input features and target temperatures. For instance, high-power and low-power chips
(different LF) can present exactly the same ccx and ccy values and seemingly the XGB is
more accurate in these instances.

Despite the fact that the WLEDs used in the experiments were from various chip
manufacturers, the machine learning methods demonstrated high reliability in relating
the simplified SPD-related parameters to the junction temperature. Even with the same
bandgap characteristic in the chip, the difference in the phosphor characteristics can be
expected in different packages. For instance, the used Yttrium Aluminum Garnet (YAG)
phosphor from different manufacturers can be doped with different Ce3+ concentrations.
The luminescence quenching temperature can vary depending on the doping or preparation
characteristics of the used phosphor [53]. Even with this in mind, we can see a good
predicting capability of ML algorithms to relate light to temperature characteristics in
solid-state lighting packages. This method can be employed as a reliable and fast tool for
junction temperature estimation by manufacturers, particularly in wafer-level probing or
for covered/coated chips. Furthermore, simple imaging tools capable of recording the color
characteristics and brightness levels of light sources can be equipped with these models
to perform real-time temperature measurements for installed operational devices where
conventional junction temperature measurement methods are not possible.

4. Conclusions

In this study, a new method for predicting the junction temperature of WLEDs based
on optical parameters is proposed. A consolidated database of the color and brightness
characteristics of WLEDs from two major manufacturers is amassed to train four different
ML-based models. The models were tested experimentally with WLED packages from
various manufacturers in order to demonstrate their capability. The XGB model has
shown a better performance with an MAE of 0.525% with a close-to-perfect correlation
capability. The basic LED junction temperature measurements are essential to each unit
in the fabrication or application process. Conventional inspection methods require large
measurement equipment (and in manufacturing, a high-precision alignment stage). This
becomes an issue in the case of micro-LEDs or coated LEDs. The method herein can utilize
a single camera to inspect the brightness and color characteristics of the unit under test
and simultaneously provide a real-time prediction of its junction temperature. The results
herein are restricted to the nominal forward current density of 35 A/cm2, but the procedure
can be extended to other current densities.
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