
Public Review for

Common Media Client Data (CMCD):
Initial Findings

A. Bentaleb, M. Lim, M. N. Akcay, A. C. Begen, R. Zimmermann

In September 2020, the Consumer Technology Association (CTA) published
the CTA-5004: Common Media Client Data (CMCD) standard. With
CMCD, a media client can send information to the content delivery network
servers along with the object requests. This information can be quite use-
ful in log association/analysis, quality of service/experience monitoring and
delivery enhancements. This paper demonstrates how CMCD can be used
to improve the performance of adaptive streaming. The work leverages the
recent dash.js implementation of CMCD, coupled with an NGINX module
to parse CMCD information and a bandwidth allocation logic (at the server)
using the CMCD data. Specifically, the authors developed a proof-of-concept
system that conforms to the client and server-side CMCD specification. On
the server side, the authors implemented a CMCD-aware HTTP server using
NGINX that runs a buffer-aware bandwidth allocation algorithm, and on
the client side, they used the dash.js client with CMCD support on head-
less Chrome browser instances, instrumented using Puppeteer. The authors
evaluated this system in a number of multi-client shared-network scenarios
through network emulation. The results show a great potential for CMCD.
The authors emphasize that the more streaming client implementations and
content delivery networks start adopting this standard, the greater the ben-
efits will be. Given the recency of the CMCD standard, this study must
be one of the first on this topic, and we are delighted to have it as part of
the technical program at NOSSDAV’21. Moreover, we applaud the effort of
the authors for making all their code freely and openly available in a clean
and easy-to-use format. We believe that this will be a useful asset to other
researchers working in this area, facilitating further research building on this
work.

Public review written by
Andra Lutu

Telefonica Research, Spain

ACM NOSSDAV 2021

25

Common Media Client Data (CMCD): Initial Findings
Abdelhak Bentaleb★, May Lim★, Mehmet N. Akcay+, Ali C. Begen+ and Roger Zimmermann★

★National University of Singapore, +Ozyegin University
{bentaleb,maylim,rogerz}@comp.nus.edu.sg, necmettin.akcay@ozu.edu.tr, ali.begen@ozyegin.edu.tr

ABSTRACT
In September 2020, the Consumer Technology Association
(CTA) published the CTA-5004: Common Media Client Data
(CMCD) specification. Using this specification, a media client
can convey certain information to the content delivery network
servers with object requests. This information is useful in log
association/analysis, quality of service/experience monitoring
and delivery enhancements. This paper is the first step toward
investigating the feasibility of CMCD in addressing one of the most
common problems in the streaming domain: efficient use of shared
bandwidth by multiple clients. To that effect, we implemented
CMCD functions on an HTTP server and built a proof-of-concept
systemwith CMCD-aware dash.js clients.We show that even a basic
bandwidth allocation scheme enabled by CMCD reduces rebuffering
rate and duration without noticeably sacrificing the video quality.

CCS CONCEPTS
• Multimedia information systems → Multimedia streaming.

KEYWORDS
CMCD, adaptive streaming, DASH, HLS, CDN, bandwidth
allocation, ABR.

ACM Reference Format:
Abdelhak Bentaleb, May Lim, Mehmet N. Akcay, Ali C. Begen and Roger
Zimmermann. 2021. Common Media Client Data (CMCD): Initial Findings.
InWorkshop on Network and Operating System Support for Digital Audio and
Video (NOSSDAV’21), Sept. 28-Oct. 1, 2021, Istanbul, Turkey. ACM, New York,
NY, USA, 8 pages. https://doi.org/10.1145/3458306.3461444

1 INTRODUCTION
With rapid demand growth for premium streaming services,
viewer expectations for high media quality and low rebuffering
are constantly increasing. Regardless of the device and type of
the network used, an HTTP adaptive streaming (HAS) client
runs an adaptive bitrate (ABR) scheme to select a suitable
representation (e.g., resolution and bitrate) that fits the transient
network conditions during the streaming session. The ABR trades
off the streaming quality with rebuffering rate/duration. Today,
all streaming services (free or premium, small or large scale) use
content delivery networks (CDN) for better reach, lower latency
and higher quality, that is, to manage that trade-off better.

NOSSDAV’21, Sept. 28-Oct. 1, 2021, Istanbul, Turkey
© 2021 Copyright held by the owner/author(s).
ACM ISBN 978-1-4503-8435-3/21/09.
https://doi.org/10.1145/3458306.3461444

The streaming performance of, and hence, the viewer quality-
of-experience (QoE) delivered by different CDN servers can vary
substantially. A server that is performing well for one client
watching a content does not necessarily deliver a good performance
for other clients watching the same or a different content. Also, a
sudden increase in the number of clients streaming a live event,
a scenario referred to as flash crowd, may have a significant
transient impact on the CDN performance. In addition, the network
conditions might change unexpectedly. Given that a streaming
client keeps a limited amount of media in its playback buffer, the
client needs to react in real time and make the right decision(s) (e.g.,
switching to a more appropriate representation, redirecting to a
different server in the CDN or switching to another CDN) at the
right time. This is essential to maintain a good viewer experience.

The everlasting task has been to meet the evolving quality
expectations of diverse viewers with devices of heterogeneous
capabilities. Approaches considered to date range from client and
server-side solutions, to network-based or hybrid ones [13]. For
instance, researchers and developers focused on developing better
rate adaptation and transport-layer algorithms [33, 36], improving
CDN and server selection rules [5, 17], and the use of multiple
CDNs [15, 19], developing in-network and data-driven networking
approaches [12, 18, 28] as well as using centralized entities to
improve media delivery based on information coming from various
components [24, 27, 32]. The use of a control plane framework and
enabling a communication platform between different streaming
elements was standardized by MPEG, a method which is called
Server and Network Assisted DASH (SAND) [3], published as
ISO/IEC 23009-5 in 2017 after two years of development.

Generally speaking, information exchange is useful. It is most
useful, however, when the information is relevant, actionable
and up-to-date. Thus, in a system using the SAND concepts,
an important question is what information is relevant and
actionable. While the SAND standard offered a framework to enable
communications and information exchange, it purposely left this
question for further research and innovation.

In September 2020, the Consumer Technology Association (CTA)
finalized a specification that attempted to answer this question.
The specification is called CTA-5004: Common Media Client Data
(CMCD) [1]. CMCD defines data that is collected by a media client
and sent to the CDN along with its HTTP requests. At minimum,
as depicted in Figure 1, session identification enables CDN logs
to be combined per media session and correlated with client logs
leading to a clearer picture of CDN’s delivery performance, player
software issues and viewer experience. Additionally, CDN servers
can fine-tune the midgress traffic by intelligently reacting to the
time constraints implicit in media segment requests. Using prefetch
hints, CDNs can also make segments available at the edge ahead
of a request, which improves delivery performance. Besides, buffer
level information is instrumental in prioritizing the requests.

26

This work is licensed under a Creative Commons Attribution International 4.0 License.

https://doi.org/10.1145/3458306.3461444
https://doi.org/10.1145/3458306.3461444
https://creativecommons.org/licenses/by/4.0/
https://www.acm.org/publications/policies/artifact-review-and-badging-current

NOSSDAV’21, Sept. 28-Oct. 1, 2021, Istanbul, Turkey Abdelhak Bentaleb, May Lim, Mehmet N. Akcay, Ali C. Begen and Roger Zimmermann

CDN Cloud

CDN Servers

Clients

Media
Origination

Encoding
Packaging

CDN ServersAggregated
Analytics

Media CMCD Client analytics CDN logs

Figure 1: The CMCD-enabled HAS-based media delivery.

We make two contributions in this paper:
(1) This is the first study investigating the feasibility of the

newly rectified CMCD specification and demonstrating
its capabilities in improving viewer experience in one of
the well-known problematic scenarios [7]. We evaluated
the CMCD-aware system in a multi-client shared-network
scenario through network emulation. We varied the number
of clients to emulate an access link with 5–10 and an
aggregation link with 20–30 concurrent streaming sessions.

(2) We implemented a proof-of-concept system that conforms
with the client and server-side CMCD specification [1]. Our
system consists of the open-source dash.js clients [20] and
NGINX [4] server with a JavaScript module (NJS application).
The entire system is publicly available at [37] to allow the
scientific community and industry to debate its merits and
perform further investigations.

In the rest of this paper, we highlight the related work in Section 2,
provide a technical overview of CMCD in Section 3, present our
CMCD-aware system in Section 4 and its evaluation in Section 5,
and conclude the paper with future directions in Section 6.

2 RELATEDWORK
2.1 Client-Side Solutions
To cope with dynamic network conditions, most streaming
applications run a custom client-side ABR scheme that selects an
appropriate quality level at decision epochs. The last decade has
seen a large number of ABR scheme proposals at various levels of
sophistication. Here, we mention a few of them and the interested
readers are referred to [13]. Different techniques use throughput
measurements [14, 31], playback buffer occupancy [26, 40], control
theory [39] or game theory [11]. Other methods combine different
heuristics (e.g., throughput and buffer) [42], are congestion control
aware [36] or use learning-based techniques [33].

2.2 Server-Side Solutions
Server-side solutions use a rate control technique at the server
without any cooperation from the client. Therefore, the client’s
ABR scheme is implicitly controlled by the server’s rate control. To
that end, some methods [8, 25, 30] used traffic shaping, a tracker-
assisted adaptation strategy [22], feedback control theory [21] or a
multi-source solution [19]. This study can also be considered as a
server-side solution, although the server in this case acts based on
data provided by the client.

2.3 Network-Based Solutions
Network-based approaches have long been a focus of intense
research. They are based on data collections from various network
entities to aid in media delivery optimization. Network-based
solutions can be further classified into: (𝑖) In-network solutions:
Some papers use software-defined networking (SDN) for bitrate
guidance to assist clients in their ABR decisions [12], rate
allocation [35], finding the best delivery path to re-route video
traffic [16], or enabling multi-path capabilities [9]; (𝑖𝑖) SAND
solutions: SAND [3] implements a control plane that defines
asynchronous communication interfaces including between client-
to-network, network-to-client and network-to-network. It enables
the collection of various status information from network entities
involved in media delivery including servers, caches, clients and
other network entities along the media path. All this data is
stored on a centralized server that helps improve media delivery
and assist clients in their ABR decisions (see e.g., [34, 38]); (𝑖𝑖𝑖)
Data-driven solutions: A data-driven technique mixes SAND with
AI capabilities for improved decision making. It uses a logically
centralized controller that maintains a global view of real-time
network conditions by gathering QoE metrics from many media
sessions and then uses this global view to make suitable decisions
regarding the ABR of individual sessions. Among existing works
are [24, 28]; and (𝑖𝑣) Commercial solutions: E.g., Conviva, Datazoom,
Nice People at Work and SSIMWAVE.

3 TECHNICAL OVERVIEW OF CMCD
With CMCD amedia client can convey information to a CDN server
using one of three methods [1]: through a custom HTTP request
header, as a query argument orwithin a JSON object.While different
systems may prefer or require a specific method, here we use the
query argument method where the CMCD parameters are listed in
⟨key, value⟩ pairs and carried as a query argument in the request:

Object-URL?CMCD=<cmcd-key1=value1,...,keyN=valueN>

CMCD defines two types of identifiers: Content ID and Session

ID. Both are unique strings, with the former used to identify the
content that is being streamed while the latter is a session identifier
that is randomized for privacy reasons. They allow the CDN to
correlate the CMCD data sent at different times and by different
clients, and identify the source(s) of a problem. The specification
describes several parameters, some of which are listed in Table 1.

Upon receiving a valid CMCD parameter, the server interprets
its value according to the description in [1]. The server organizes
the received CMCD parameters for different sessions based on the
session IDs and then performs a set of suitable actions. Unknown
parameters or malformed ones are categorically ignored.

4 SYSTEM IMPLEMENTATION
To investigate the feasibility of CMCD and test its capabilities in
the context of video delivery, we implemented a proof-of-concept
system. The system, depicted in Figure 2, consists of an NGINX
server acting as the HTTP server with CMCD capabilities and
a varying number of CMCD-aware clients based on the dash.js
client [20]. The source code for the entire system is available at [37].

27

Common Media Client Data (CMCD): Initial Findings NOSSDAV’21, Sept. 28-Oct. 1, 2021, Istanbul, Turkey

Table 1:Example parameters from [1] and the oneswe added.
Parameter Key Type Unit
Encoded bitrate br integer Kbps
Buffer length bl integer ms
Buffer starvation bs boolean -
Deadline dl integer ms
Measured throughput mtp integer Kbps
Requested max. throughput rtp integer Kbps
Object type ot token -
Max buffer (new) com.example-bmx integer ms
Min buffer (new) com.example-bmn integer ms

4.1 CMCD-Aware Clients
We used the initial CMCD implementation offered by the dash.js
client (v3.1.3) to build our CMCD-aware client. This implementation
is mainly given in the CmcdModel.js class, which is responsible
for collecting the required values for the set of the CMCD
parameters that are retrieved from different classes of the client.
For example, CmcdModel.js acquires the current buffer length

(bl) from BufferController.js and the measured throughput (mtp)
from ThroughputHistory.js. After collecting the required values, it
generates the final CMCD query string to be sent with the HTTP
GET request using HTTPLoader.js. Figure 3 shows the workflow of
the CmcdModel.js class.

NGINX

NJS App Bandwidth
Allocation

HTTP

NetEm

CMCD-aware Server (NGINX)
CMCD-aware Clients

(dash.js)

Config

Figure 2: The implemented CMCD-aware system.

In a nutshell, the CMCD workflow is as follows:
(1) The CmcdModel.js class registers itself to call-back events

from various auxiliary classes such as (1a) manifest loaded,
(1b) playback rate changed, (1c) buffer level changed and (1d)
playback sought, and updates its internal state when it receives
a valid payload from one of those events.

(2) The HTTPLoader.js class asks the CmcdModel.js class to
generate the CMCD query string, which in turn (2a) obtains
the CMCD parameter values from its internal state or, if not
present, the auxiliary classes. The set of CMCD parameters is
assigned based on the object type to be requested (a manifest,
media segment or initialization segment). The CmcdModel.js
internally distinguishes different types of the objects since
media segments may be augmented with additional CMCD
parameters as needed. For example, for media segment requests,
one may designate the segment type (e.g., video, audio, etc.) and
its duration.

(3) The CmcdModel.js class returns the CMCD query string to the
HTTPLoader.js class.

(4) The HTTPLoader.js class then sends the HTTP GET request
with the CMCD query argument for the requested object. Once
the server receives the request, it performs the appropriate
action(s) based on the CMCD parameter values, as exemplified
in the next section.

(2
a)

: G
en

er
at

e
C

M
C

D
 q

ue
ry

 s
tri

ng

(4): HTTP GET

(1) Register callback events

(1a) Manifest Loaded

(1b) Playback Rate Changed

(1c) Buffer Level Changed

CmcdModel Auxiliary
Classes HTTPLoader

(3) return CMCD query string

(2) getQueryParameter()

(1d) Playback Sought

Figure 3: The CMCD workflow in dash.js.

4.2 CMCD-Aware Server
We used NGINX [4] with the NGINX JavaScript (NJS) module to run
the HTTP server and an NJS middleware application. NJS extends
the NGINX configuration syntax to implement a basic application
for bandwidth allocation and simplify the communication with the
dash.js clients.

The CMCD-aware server’s components are depicted in Figure 2.
NGINX is acting as a frontend proxy server for the backend
execution of the NJS application. NGINX also has a built-in HTTP
server that stores the segments of different representations for
various video content and their corresponding manifest files to
serve the clients. The NJS application includes three main functions:
request processing and parsing, bandwidth allocation logic, and
decision execution. NGINX consists of modules that are controlled
by directives specified in the configuration file (nginx.conf), which
enables the HTTP server and NJS application (cmcd_njs.js) to
leverage the required functionalities. Below, we provide details
for the NJS application (cmcd_njs.js) functions:
(1) Request processing and parsing: This function processes each

HTTP request received by NGINX with a URL path. It parses
the query string to retrieve the values for the CMCD parameters
and stores them in a JavaScript object (cmcd_params).

(2) Bandwidth allocation logic: This function is responsible for
managing and dynamically allocating the bandwidth for each
client with the aim of maintaining good viewer experience. It
uses the received CMCD parameter values to make appropriate
decisions. Inspired by the idea of a buffer-rate map function [26],
we designed a simple and yet robust buffer-aware bandwidth
allocation algorithm that finds a good relationship between the
current buffer level and the bandwidth that should be allocated
to a client. For this purpose, we use the following CMCD
parameters: buffer length (bl), max buffer (com.example-bmx),
min buffer (com.example-bmn), buffer starvation (bs) and
object type (ot). Here, max buffer and min buffer are not from
the CMCD specification but we added them to CmcdModel.js
as they are an integral part to our buffer-aware bandwidth
allocation algorithm given in Listing 1.
Our goal is to find a buffer length (bl)-to-rate (r) mapping
function F(bl)→ 𝑟 that can avoid (or at least reduce the number
or duration of) rebufferings while not noticeably decreasing the

28

NOSSDAV’21, Sept. 28-Oct. 1, 2021, Istanbul, Turkey Abdelhak Bentaleb, May Lim, Mehmet N. Akcay, Ali C. Begen and Roger Zimmermann

average video bitrate for each client. To achieve this goal, we
define three situations for the client’s buffer variation between
the minimum (𝐵𝑚𝑖𝑛) and maximum (𝐵𝑚𝑎𝑥) levels: (S1) buffer
underflow (bl < 𝐵𝑚𝑖𝑛), (S2) buffer overflow (bl > 𝐵𝑚𝑎𝑥) and (S3)
buffer safe (𝐵𝑚𝑖𝑛 ≤ bl ≤ 𝐵𝑚𝑎𝑥). The algorithm then allocates
the bandwidth as follows:
(S1): The bandwidth allocation is fixed to the maximum rate

capacity (𝑟 = 𝐶𝑚𝑎𝑥).
(S2): The bandwidth allocation is fixed to the minimum rate

capacity (𝑟 = 𝐶𝑚𝑖𝑛).
(S3): The bandwidth allocation is computed using

𝑟 = 𝐶𝑚𝑖𝑛 + ((1 − ((𝑏𝑙 − 𝐵𝑚𝑖𝑛)/𝐵𝑟𝑎𝑛𝑔𝑒)) ×𝐶𝑟𝑎𝑛𝑔𝑒),

where 𝐵𝑟𝑎𝑛𝑔𝑒 = 𝐵𝑚𝑎𝑥 − 𝐵𝑚𝑖𝑛 , 𝐶𝑟𝑎𝑛𝑔𝑒 = 𝐶𝑚𝑎𝑥 − 𝐶𝑚𝑖𝑛 ,
𝐶𝑚𝑎𝑥 = 𝛼 × 𝐶 , 𝐶𝑚𝑖𝑛 = (1 − 𝛼) × 𝐶 and 𝐶 denotes the
available total network capacity. Here, 𝛼 is the bandwidth safety
factor, which is set to 0.9 in our tests following the dash.js
implementation [20].

1 function bufferAwareBandwidthAllocation(req) {

2 var cmcd_params = processQueryArgs(req);

3 var r = 0;

4 var C = getAvailibleTotalCapacity ();

5 if (!('bl' in cmcd_params) || !('com.example -bmn'

in cmcd_params) || !('com.example -bmx' in
cmcd_params) || !('ot' in cmcd_params)) {

6 return 0; /* Disable bandwidth allocation */

7 }

8 if (cmcd_params['ot'] != 'v' && cmcd_params['ot']

!= 'av') { /* not video object */

9 return 0; /* Disable bandwidth allocation */

10 }

11 /* Buffer -to-rate mapping */

12 var 𝐶𝑚𝑖𝑛 = C x (1 - 𝛼);

13 var 𝐶𝑚𝑎𝑥 = C x 𝛼;

14 var 𝐵𝑚𝑖𝑛 = cmcd_params['com.example -bmn'];

15 var 𝐵𝑚𝑎𝑥 = cmcd_params['com.example -bmx'];

16 var Bufferlength = cmcd_params['bl'];

17 /* Case S1 */

18 if (Bufferlength < 𝐵𝑚𝑖𝑛 || ('bs' in cmcd_params)){

19 r = 𝐶𝑚𝑎𝑥 ;

20 }

21 /* Case S2 */

22 else if (Bufferlength > 𝐵𝑚𝑎𝑥) {

23 r = 𝐶𝑚𝑖𝑛 ;

24 }

25 /* Case S3 */

26 else {

27 var 𝐵𝑟𝑎𝑛𝑔𝑒 = 𝐵𝑚𝑎𝑥 - 𝐵𝑚𝑖𝑛 ;

28 var 𝐶𝑟𝑎𝑛𝑔𝑒 = 𝐶𝑚𝑎𝑥 - 𝐶𝑚𝑖𝑛 ;

29 r = ((1 - ((Bufferlength - 𝐵𝑚𝑖𝑛) / 𝐵𝑟𝑎𝑛𝑔𝑒)) *

𝐶𝑟𝑎𝑛𝑔𝑒) + 𝐶𝑚𝑖𝑛 ;

30 }

31 return r;

32 }

Listing 1: Buffer-aware bandwidth allocation algorithm.

Note that the bandwidth allocation logic may differ depending
on the implementation choices, streaming scenarios under con-
sideration, desired objectives and available CMCD parameters.
The main objective of our bandwidth allocation algorithm is to
reduce the impact of the rebuffering events, which is the most
influential factor in maintaining a good viewer experience [41].

Thus, our algorithm allocates more bandwidth to the requests
from the clients that will more likely experience a rebuffering.

(3) Decision execution: This function is responsible for applying
the given bandwidth allocation decisions to the corresponding
client requests. As configured in nginx.conf, it uses the
limit_rate directive of the http module for per-request
bandwidth allocation in NGINX.

An alternative approach to our bandwidth allocation logic is to
have the client compute an appropriate value and send it using the
requested max. throughput (rtp) parameter. This way, the server
skips the computation part and only uses the limit_rate directive,
which means less load on the server. However, in this case, the
client does not know the value of𝐶 and as this value plays a critical
role in the bandwidth allocation logic, we expect this alternative
approach to perform worse than its server-side counterpart.

5 PERFORMANCE EVALUATION
5.1 Scenarios and Setup
To evaluate the CMCD-aware system, we created two scenarios: (𝑖)
an access link with 5–10 and (𝑖𝑖) an aggregation link with 20–30
concurrent streaming sessions, and we present our findings from
the following three cases using these scenarios:

• Case 1: Scenario (𝑖) with on-demand video sessions,
• Case 2: Scenario (𝑖𝑖) with on-demand video sessions, and
• Case 3: Scenario (𝑖) with low-latency live video sessions.

Our setup is shown in Figure 2. To run the tests, we used one
physical machine running Ubuntu 18.04.5 LTS with dual 20-core
Intel E5-2630 v4 @ 2.20GHz processors and 192 GB memory. We
ran the CMCD-aware dash.js (v3.1.3) clients on a Google Chrome
browser (v88) with headless mode enabled using Puppeteer1, which
ran on top of Node.js. We used the default ABR scheme of dash.js,
termed Dynamic (throughput-based + buffer-based heuristics). To
emulate a realistic network based on our scenarios, we used tc
NetEm at the server to throttle the total bandwidth available to
the clients according to the bandwidth profiles Cascade and Spike
defined by DASH-IF [41] and described in Table 2. We varied the
bandwidth every 30 seconds depending on the scenario and looped
the profile throughout the test, which was equivalent to the video
duration.

Table 2: Bandwidth profiles used in the tests.

Profile
Name

Values
(Mbps)

of
Clients

Access
Link

CascadeX5 50, 20, 10, 5, 10, 20 5SpikeX5 50, 10
CascadeX10 100, 40, 20, 10, 20, 40 10SpikeX10 100, 20

Aggregation
Link

CascadeX20 200, 80, 40, 20, 40, 80 20SpikeX20 200, 40
CascadeX30 300, 120, 60, 30, 60, 120 30SpikeX30 300, 60

On the HTTP server, we used two on-demand video datasets that
were created based on Akamai’s encoding recommendations [6].
1https://pptr.dev/

29

https://pptr.dev/

Common Media Client Data (CMCD): Initial Findings NOSSDAV’21, Sept. 28-Oct. 1, 2021, Istanbul, Turkey

Both datasets were generated using the H.264 codec at 30 fps. Every
video was chopped into segments of four seconds each (𝜏 = 4 s).
The first dataset (#1) consisted of a 10-minute animation video (Big
Buck Bunny) and an ABR ladder of five representations: {180p@0.4
Mbps, 360p@0.8 Mbps, 432p@1.5 Mbps, 576p@2.5 Mbps, 720p@4.0
Mbps}. The second dataset (#2) had four four-minute long videos
that covered a wide range of categories including sports (v1), movie
(v2), animation (v3) and gaming (v4). These videoswere downloaded
from YouTube at the highest possible quality using youtube-dl2 and
encoded at 144p, 240p, 360p, 480p, 720p and 1080p, respectively at
the six bitrates below:

• v1: {0.5, 0.7, 1.0, 1.5, 3.5, 5.0} Mbps,
• v2: {0.7, 1.0, 1.5, 2.0, 3.0, 6.0} Mbps,
• v3: {0.4, 0.7, 1.0, 1.5, 2.5, 4.0} Mbps,
• v4: {0.2, 0.5, 0.7, 1.0, 3.5, 4.5} Mbps.

To run Case 3, we incorporated the chunked encoding setup
given in Twitch’s grand challenge on the topic [41]. Specifically, we
used (𝑖) an FFmpeg live encoder to generate chunks of one frame
(33 milliseconds at 30 fps), segments of one second and using an
animation video (Big Buck Bunny) with an ABR ladder of {360p@0.2
Mbps, 480p@0.6 Mbps, 720p@1.0 Mbps}, (𝑖𝑖) an origin server that
pushes available chunks to the clients using HTTP/1.1 chunked
transfer encoding (CTE), and (𝑖𝑖𝑖) a dash.js client with the low-
latency flag enabled and target latency set to three seconds.

In the clients and NJS application, we investigated two buffer
configurations for Cases 1 and 2: (𝑎) [𝐵𝑚𝑖𝑛 = 𝜏 | 𝐵𝑚𝑎𝑥 = 𝜏 × 𝛽] and
(𝑏) [𝐵𝑚𝑖𝑛 = 𝜏 × 3 | 𝐵𝑚𝑎𝑥 = 𝜏 × 𝛽 × 3] where we set 𝛽 = 2, and one
for Case 3: (𝑐) [𝐵𝑚𝑖𝑛 = 1 | 𝐵𝑚𝑎𝑥 = target latency = 3 s].

5.2 Results and Analysis
The primary goal of the three cases is to show the benefits of
reducing rebuffering rate and duration without sacrificing video
quality, when multiple clients compete for the available bandwidth.
In each case, we repeated the tests five times and the tests were
repeated for each bandwidth profile. We compared using CMCD
with buffer-aware bandwidth allocation with not using CMCD (i.e.,
running ABR only) using the following metrics:
• Avg. BR: Average bitrate across all clients (Mbps).
• Min. BR: Average bitrate for the client that consumed the lowest
average bitrate (Mbps).

• Avg. RD: Average total rebuffering duration across all clients (s).
• Max. RD: Total rebuffering duration for the client that suffered
from the longest rebuffering duration (s).

• Avg. RC: Average rebuffering count across all clients.
• Avg. SC: Average bitrate switching count across all clients.
• Avg. LL: Average live latency across all clients (s), Case 3 only.
• Max. LL: Average live latency for the client that experienced the
longest live latency (s), Case 3 only.

5.2.1 Case 1: Access Link with Video-on-Demand Sessions. In this
case, the goal is to show the benefits of using CMCD when ten
clients concurrently run video-on-demand sessions on an access
link. The test used the animation video from dataset (#1). The results
for buffer configuration (𝑎) are highlighted in Table 3.

2https://youtube-dl.org/

Table 3: Case 1 with dataset (#1) and buffer configuration (𝑎).

CMCD NO CMCD CMCD NO CMCD

CascadeX10 SpikeX10

Avg. BR 3.13 3.33 2.61 3.20
Min. BR 2.90 3.12 2.30 2.68
Avg. RD 5.36 20.84 12.43 71.90
Max. RD 10.72 38.84 18.49 83.54
Avg. RC 4.72 11.04 8.68 25.48
Avg. SC 35.80 36.70 49.14 53.90

In Table 3, we see that enabling CMCD with buffer-aware
bandwidth allocation significantly reduces Avg. RD, Max. RD and
Avg. RC for both bandwidth profiles. The reductions are as follows:
Avg. RD by 74% and 83%, Max. RD by 72% and 78%, and Avg. RC
by 57% and 66% for Cascade and Spike, respectively. At the same
time, the reduction in Avg. BR is not negligible, but it is much less
significant. The bandwidth allocation algorithm aims to apportion a
fair share across all the clients (based on their reported buffer levels),
and hence, implicitly controls the decisions taken by the client-side
ABR scheme. Due to this algorithm, Avg. SC is also reduced. The
results for buffer configuration (𝑏) are similar to the ones of (𝑎),
although the percentage of improvement is smaller in this case
since the larger playback buffer size provides more robustness to
the clients and makes rebuffering events less likely.

5.2.2 Case 2: Aggregation Link with Video-on-Demand Sessions.
The goal in this case is to show the benefits of using CMCD when
a variable number (20–30) of concurrent clients stream an on-
demand video and compete at an aggregation link for the available
bandwidth. When the number of clients increases, the competition
for bandwidth significantly intensifies, which impacts QoE of the
clients negatively. The results for Case 2 are given in Tables 4 and 5.

The left and right sides of Table 4 present the results for 20 and
30 clients, respectively, for dataset (#1) and buffer configuration (𝑎).
Enabling CMCD provides a reduction in Avg. RD of 41% and 48%
(15% and 1%), in Max. RD of 38% and 35% (17% and 0%), and in Avg.
RC of 16% and 36% (6% and 1%) for 20 (30) clients using the Cascade
and Spike bandwidth profiles, respectively. We observe that the
benefits of buffer-aware bandwidth allocation start diminishing
when the number of clients increases. This is likely due to the
simplicity of our bandwidth allocation algorithm.

Table 5 shows trends similar to the ones of Table 4. That
is, the CMCD-enabled system achieved a better rebuffering
performance for both bandwidth profiles using dataset (#2) and
buffer configuration (𝑎) with one notable difference: the absolute
values for Avg. RD, Max. RD and Avg. RC were lower in Table 5
(compared to the left side of Table 4) even when we accounted
for the duration difference of the videos in dataset (#1) and (#2).
This was likely because in dataset (#2), four different videos were
streamed by a total of 20 clients as opposed to the same video
being streamed by all 20 clients. In Table 5, the clients obtained a
reduction in Avg. RD of 85% and 67%, in Max. RD of 76% and 55%,
and in Avg. RC of 73% and 46% for Cascade and Spike, respectively.
These improvements in the rebuffering statistics cost a drop in Avg.
BR of 8.5% for the Cascade and 11% for the Spike bandwidth profile.

30

https://youtube-dl.org/

NOSSDAV’21, Sept. 28-Oct. 1, 2021, Istanbul, Turkey Abdelhak Bentaleb, May Lim, Mehmet N. Akcay, Ali C. Begen and Roger Zimmermann

Table 4: Case 2 with dataset (#1) and buffer configuration (𝑎). The number of clients is 20 and 30 on the left and right side of
the table, respectively.

CMCD NO CMCD CMCD NO CMCD CMCD NO CMCD CMCD NO CMCD

CascadeX20 SpikeX20 CascadeX30 SpikeX30

Avg. BR 3.20 3.39 2.78 3.16 3.32 3.34 3.07 3.11
Min. BR 2.88 3.03 2.22 2.55 2.93 2.97 2.33 2.41
Avg. RD 14.42 24.58 32.14 61.87 31.57 37.00 47.99 48.39
Max. RD 27.57 44.43 51.13 78.13 59.86 71.70 70.66 70.21
Avg. RC 9.24 11.05 14.41 22.36 14.17 15.13 19.03 19.26
Avg. SC 38.10 34.84 42.78 50.36 35.86 35.54 46.73 46.81

Table 5: Case 2 with dataset (#2), buffer configuration (𝑎) and
number of clients of 20.

CMCD NO CMCD CMCD NO CMCD

CascadeX20 SpikeX20

Avg. BR 4.19 4.58 4.05 4.55
Min. BR 0.97 0.99 0.99 0.98
Avg. RD 2.01 13.50 4.15 12.60
Max. RD 8.69 36.99 8.69 19.47
Avg. RC 1.10 4.15 2.50 4.60
Avg. SC 8.05 8.10 6.10 6.15

5.2.3 Case 3: Access Link with Low-Latency Live Sessions. Low-
latency live (LLL) streaming [23, 29] has emerged recently as an area
of attention in the streaming field for many researchers. The goal of
LLL streaming is to achieve an end-to-end latency of few seconds
in contrast to the traditional counterparts that exhibit latencies
longer than half a minute. Low latency is achievable thanks to two
key technology enablers: the Common Media Application Format
(CMAF) [2] and CTE (RFC 7230).

Many factors still impact the latency, and therefore, the QoE,
as the live content has to be captured, encoded, packaged and
transferred from a server to a client over unpredictable network
conditions. In Case 3, the goal is to determine whether using CMCD
reduces rebuffering duration and/or count, and helps the latency
stay below the target value set by the application.

The results for Case 3 are given in Table 6, where we see that
upon enabling CMCD, the clients achieved a reduction in Avg. RD
of 20% and 26%, in Max. RD of 25% and 22%, and in Avg. RC of
36% and 21% for Cascade and Spike, respectively. Moreover, the
CMCD-aware clients stayed below the target latency (three seconds)
without any violations, whereas Max. LL surpassed the target value
when CMCD was disabled. We also observed an increase in Avg.
BR by 110% when CMCD was enabled for the Cascade bandwidth
profile since in this case the clients stalled less, and consequently,
requested more segments from a high bitrate representation. These
preliminary results are promising and we plan on conducting
further investigations into using CMCD in LLL scenarios.

6 CONCLUSIONS AND FUTURE DIRECTIONS
The CMCD specification has recently emerged as an active
cooperation paradigm that allows adaptive streaming clients to
convey various player and playback related information to CDN

Table 6: Case 3with buffer configuration (𝑐) and live sessions
of four minutes.

CMCD NO CMCD CMCD NO CMCD

CascadeX5 SpikeX5

Avg. BR 0.44 0.21 0.21 0.20
Min. BR 0.37 0.21 0.20 0.20
Avg. RD 3.56 4.45 3.62 4.91
Max. RD 3.87 5.16 4.27 5.44
Avg. RC 10.50 16.50 13.25 16.75
Avg. SC 21.75 18.00 5.75 3.25
Avg. LL 2.34 2.75 2.28 2.31
Max. LL 2.91 3.38 2.30 3.35

servers. This information is quite useful to the CDN providers in
understanding themain causes of QoE degradation, troubleshooting
as well as improving the entire media distribution pipeline.

In this paper, we developed a proof-of-concept system based
on the CMCD specification. The main objective was to investigate
its uses in improving the performance for concurrently streaming
clients sharing the network bandwidth. To achieve this objective,
we designed a buffer-aware bandwidth allocation algorithm that
found a good mapping between the current client buffer level and
the bandwidth to allocate in order to reduce the chances for a
rebuffering or the rebuffering duration. We evaluated this algorithm
in a number of scenarios. The results show the benefits of using
CMCD in helping to reduce the rebuffering rate and duration
without noticeably sacrificing the video quality.

We would like to continue exploring the use cases for CMCD.
For example, sending device type (or screen size) information as
part of the CMCD query string may allow the server to do a
more appropriate bandwidth allocation as was previously proposed
in [10]. We also would like to better understand the limitations of
CMCD and how it will interact with the new CommonMedia Server
Data (CMSD) work (scheduled to start in Apr. 2021). These efforts
will provide significant insights and help us in the development of
the newer versions of the CMCD and CMSD specifications.

ACKNOWLEDGMENTS
This work was supported in part by Singapore Ministry of
Education Academic Research Fund Tier 2 under MOE’s official
grant number MOE2018-T2-1-103, and in part by grant 31T102-
UPAR-1-2017 from UAE University.

31

Common Media Client Data (CMCD): Initial Findings NOSSDAV’21, Sept. 28-Oct. 1, 2021, Istanbul, Turkey

REFERENCES
[1] CTA-5004: Web Application Video Ecosystem–Common Media Client Data.

[Online] Available: https://cdn.cta.tech/cta/media/media/resources/standards/
pdfs/cta-5004-final.pdf. Accessed on Feb. 20, 2021.

[2] ISO/IEC 23000-19:2020 Information technology – Multimedia application format
(MPEG-A) – Part 19: Common media application format (CMAF) for segmented
media. [Online] Available: https://www.iso.org/standard/79106.html. Accessed
on Feb. 20, 2021.

[3] ISO/IEC 23009-5:2017 Information technology — Dynamic adaptive streaming
over HTTP (DASH) — Part 5: Server and network assisted DASH (SAND).
[Online] Available: https://www.iso.org/standard/69079.html. Accessed on Feb.
20, 2021.

[4] High Performance Load Balancer Web Server. [Online] Available: https://www.
nginx.com/, 2020.

[5] V. K. Adhikari, Y. Guo, F. Hao, M. Varvello, V. Hilt, M. Steiner, and Z.-L. Zhang.
Unreeling Netflix: Understanding and Improving Multi-CDN Movie Delivery. In
IEEE INFOCOM, 2012.

[6] Akamai. The Guide to Best Practices in Premium Online Video Streaming. In
White paper, 2020.

[7] S. Akhshabi, L. Anantakrishnan, A. C. Begen, and C. Dovrolis. What happens
when HTTP adaptive streaming players compete for bandwidth? In ACM
NOSSDAV, 2012.

[8] S. Akhshabi, L. Anantakrishnan, C. Dovrolis, and A. C. Begen. Server-based
traffic shaping for stabilizing oscillating adaptive streaming players. In ACM
NOSSDAV, 2013.

[9] A. A. Barakabitze, L. Sun, I.-H. Mkwawa, and E. Ifeachor. A Novel QoE-
centric SDN-based Multipath Routing Approach for Multimedia Services over
5G Networks. In IEEE ICC, 2018.

[10] A. C. Begen. Spending quality time with the web video. IEEE Internet Comput.,
20(6):42–48, Nov./Dec. 2016.

[11] A. Bentaleb, A. C. Begen, S. Harous, and R. Zimmermann. Want to play DASH?
a game theoretic approach for adaptive streaming over HTTP. In ACM MMSys,
2018.

[12] A. Bentaleb, A. C. Begen, and R. Zimmermann. SDNDASH: Improving QoE
of HTTP adaptive streaming using software defined networking. In ACM
Multimedia, 2016.

[13] A. Bentaleb, B. Taani, A. C. Begen, C. Timmerer, and R. Zimmermann. A
survey on bitrate adaptation schemes for streaming media over HTTP. IEEE
Communications Surveys & Tutorials, 21(1):562–585, 2019.

[14] A. Bentaleb, C. Timmerer, A. C. Begen, and R. Zimmermann. Bandwidth
Prediction in Low-Latency Chunked Streaming. In ACM NOSSDAV, 2019.

[15] A. Bentaleb, P. K. Yadav, W. T. Ooi, and R. Zimmermann. DQ-DASH: A Queuing
Theory Approach to Distributed Adaptive Video Streaming. ACM TOMM, 16(1),
2020.

[16] D. Bhat, A. Rizk, M. Zink, and R. Steinmetz. Network assisted content distribution
for adaptive bitrate video streaming. In ACM MMSys, 2017.

[17] N. Bouten, M. Claeys, B. Van Poecke, S. Latré, and F. De Turck. Dynamic Server
Selection Strategy for Multi-server HTTP Adaptive Streaming Services. In IEEE
CNSM, 2016.

[18] N. Bouten, R. d. O. Schmidt, J. Famaey, S. Latré, A. Pras, and F. De Turck. QoE-
driven In-network Optimization for Adaptive Video Streaming based on Packet
Sampling Measurements. Elsevier Computer Networks, 81:96–115, 2015.

[19] J. Bruneau-Queyreix, M. Lacaud, and D. Negru. A Multiple-source Adaptive
Streaming Solution Enhancing Consumer’s Perceived Quality. In IEEE CCNC,
2017.

[20] DASH-IF. DASH Reference Client. [Online] Available: https://reference.dashif.
org/dash.js/. Accessed on Feb. 20, 2021.

[21] L. De Cicco, S. Mascolo, and V. Palmisano. Feedback Control for Adaptive Live
Video Streaming. In ACM MMSys, 2011.

[22] A. Detti, B. Ricci, and N. Blefari-Melazzi. Tracker-assisted Rate Adaptation for
MPEG DASH Live Streaming. In IEEE INFOCOM, 2016.

[23] K. Durak, M. N. Akcay, Y. K. Erinc, B. Pekel, and A. C. Begen. Evaluating the
performance of Apple’s low-latency HLS. In IEEE MMSP, 2020.

[24] A. Ganjam, F. Siddiqui, J. Zhan, X. Liu, I. Stoica, J. Jiang, V. Sekar, and H. Zhang.
C3: Internet-scale Control Plane for Video Quality Optimization. In USENIX
NSDI, 2015.

[25] R. Houdaille and S. Gouache. Shaping HTTP Adaptive Streams for a Better User
Experience. In ACM MMSys, 2012.

[26] T.-Y. Huang, R. Johari, N. McKeown, M. Trunnell, and M. Watson. A Buffer-based
Approach to Rate Adaptation: Evidence from a Large Video Streaming Service.
In ACM SIGCOMM, 2014.

[27] J. Jiang, V. Sekar, I. Stoica, and H. Zhang. Shedding Light on the Structure of
Internet Video Quality Problems in the Wild. In ACM CoNEXT, 2013.

[28] J. Jiang, S. Sun, V. Sekar, and H. Zhang. Pytheas: Enabling Data-driven Quality
of Experience Optimization using Group-based Exploration-exploitation. In
USENIX NSDI, 2017.

[29] W. L. Ultra-Low-Latency Streaming Using Chunked-Encoded and Chunked-
Transferred CMAF. Akamai White paper. Online; accessed 10 January 2019.

[30] D. H. Lee, C. Dovrolis, and A. C. Begen. Caching in HTTP adaptive streaming:
friend or foe? In ACM NOSSDAV, 2014.

[31] Z. Li, X. Zhu, J. Gahm, R. Pan, H. Hu, A. C. Begen, and D. Oran. Probe and Adapt:
Rate Adaptation for HTTP Video Streaming at Scale. IEEE Jour. Selected Areas
Comm., 32(4):719–733, 2014.

[32] X. Liu, F. Dobrian, H. Milner, J. Jiang, V. Sekar, I. Stoica, and H. Zhang. A Case
for a Coordinated Internet Video Control Plane. In ACM SIGCOMM, 2012.

[33] H. Mao, R. Netravali, and M. Alizadeh. Neural Adaptive Video Streaming with
Pensieve. In ACM SIGCOMM, 2017.

[34] A. Mehrabi, M. Siekkinen, and A. Ylä-Jääski. Joint Optimization of QoE and
Fairness Through Network Assisted Adaptive Mobile Video Streaming. In IEEE
WiMob, 2017.

[35] M. Mu, M. Broadbent, A. Farshad, N. Hart, D. Hutchison, Q. Ni, and N. Race. A
Scalable User Fairness Model for Adaptive Video Streaming over SDN-assisted
Future Networks. IEEE Jour. Selected Areas Comm., 34(8):2168–2184, 2016.

[36] V. Nathan, V. Sivaraman, R. Addanki, M. Khani, P. Goyal, and M. Alizadeh. End-
to-End Transport for Video QoE Fairness. In ACM SIGCOMM, 2019.

[37] NUS-OzU. CMCD-aware System. [Online] Available: https://github.com/
NUStreaming/CMCD-DASH. Accessed on Feb. 20, 2021.

[38] S. Pham, P. Heeren, C. Schmidt, D. Silhavy, and S. Arbanowski. Evaluation
of shared resource allocation using SAND for ABR streaming. ACM TOMM,
16(2s):1––18, 2020.

[39] Y. Qin, S. Hao, K. R. Pattipati, F. Qian, S. Sen, B. Wang, and C. Yue. ABR Streaming
of VBR-encoded Videos: Characterization, Challenges, and Solutions. In ACM
CoNEXT, 2018.

[40] K. Spiteri, R. Urgaonkar, and R. K. Sitaraman. BOLA: Near-optimal Bitrate
Adaptation for Online Videos. IEEE/ACM Trans. Networking, 28(4):1698–1711,
2020.

[41] Twitch. Grand Challenge on Adaptation Algorithms for Near-Second Latency.
In ACM MMSys, 2020.

[42] X. Yin, A. Jindal, V. Sekar, and B. Sinopoli. A Control-theoretic Approach for
Dynamic Adaptive Video Streaming over HTTP. In ACM SIGCOMM, 2015.

32

https://cdn.cta.tech/cta/media/media/resources/standards/pdfs/cta-5004-final.pdf
https://cdn.cta.tech/cta/media/media/resources/standards/pdfs/cta-5004-final.pdf
https://www.iso.org/standard/79106.html
https://www.iso.org/standard/69079.html
https://www.nginx.com/
https://www.nginx.com/
https://reference.dashif.org/dash.js/
https://reference.dashif.org/dash.js/
https://github.com/NUStreaming/CMCD-DASH
https://github.com/NUStreaming/CMCD-DASH

NOSSDAV’21, Sept. 28-Oct. 1, 2021, Istanbul, Turkey Abdelhak Bentaleb, May Lim, Mehmet N. Akcay, Ali C. Begen and Roger Zimmermann

7 APPENDIX
The implementation of the CMCD-DASH system can be found
in [37] (see release-v1.0).

7.1 Prerequisite Software
The CMCD-DASH system consists of a client-side and a server-side
component, both of which were tested on a physical machine that
ran Ubuntu 18.04.5. The following needs to be installed for the
setup and execution:

• Ubuntu 18.04.5: https://www.ubuntu.com/download/desktop
• Node.js: https://nodejs.org/en/
• Grunt: https://gruntjs.com/
• Google Chrome: https://www.google.com/chrome/
• dash.js (v3.1.3): https://github.com/Dash-Industry-Forum/
dash.js

• NGINX (v1.18): http://nginx.org/en/download.html
• tc-NetEm: https://wiki.linuxfoundation.org/networking/netem
• FFmpeg: https://www.ffmpeg.org/download.html
• Git: https://git-scm.com/downloads
• jq: https://stedolan.github.io/jq/

The user can download the prerequisites directly from the URLs
above or use the Ubuntu package manager to install them, i.e., (𝑖)
sudo apt-get update, (𝑖𝑖) sudo apt-get install ⟨package_name⟩.

7.2 Quick Setup
Follow the steps below for a quick setup and testing:

(1) Download the CMCD-DASH system from [37] using git

clone https://github.com/NUStreaming/CMCD-DASH.git

(2) Run the NGINX server:
• Navigate to the cmcd-server/ folder.
• Install the NJS module in NGINX using sudo apt install

nginx-module-njs.
• Open nginx/config/nginx.conf and edit <PATH_TO_CMCD-DASH>
(under "location /media/vod") to indicate the absolute
path to this repository.

• LaunchNGINXusing sudo nginx -c <PATH_TO_CMCD-DASH>/

cmcd-server/nginx/config/nginx.conf (note that the abso-
lute path must be used).

• Reload NGINX using sudo nginx -c <PATH_TO_CMCD-DASH>/

cmcd-server/nginx/config/nginx.conf -s reload, if the
configuration has changed.

• Test the NJS application cmcd_njs.js with CMCD using
http://⟨MachineIP_ADDRESS⟩:8080/cmcd-njs/testProcess
Query?CMCD=bl%3D21300 and verify that it returns a value
of 21300 for buffer length (bl).

(3) Run the dash.js client:
• Navigate to the dash.js/ folder.
• Install the dependencies using npm install.
• Build, watch file changes and launch samples page using

grunt dev.
• Test the dash.js application by navigating to http://⟨Machine

IP_ADDRESS⟩:3000/samples/cmcd-dash/index.html to view
the CMCD-enabled player.

(4) Run the experiment:
• Navigate to the dash-test/ folder.

• Install the dependencies using npm install.
• Edit network_profile in dash-test/package.json to specify
the desired bandwidth profile for the test. The list of avail-
able bandwidth profiles are given in dash-test/tc-network-

profiles/.
• Edit maxCapacityBitsPerS in cmcd-server/nginx/cmcd_njs.

js according to the selected bandwidth profile. Reload the
NGINX config since we made a configuration change.

• Edit client_profile in dash-test/package.json to specify
the desired client profile (with CMCD or NO CMCD).
There are two client profiles:
– client_profile_join_test_with_cmcd.js
– client_profile_join_test_no_cmcd.js

• Update the setup parameters in the two client profile
files based on the target scenario, such as the number
of clients (numClient), minimum buffer (minBufferGlobal),
maximum buffer (maxBufferGlobal), video location (url)
and segment duration (segmentDuration). The set of video
datasets are located in cmcd-server/nginx/media/vod/.

• Start a test using npm run test-multiple-clients. Note
that testing is done in Chrome headless mode by default.

• Alternatively, to do a batch test with consecutive repeated
runs for CMCD and NO CMCD (e.g., a batch test of five
CMCD and five NO CMCD runs), update the parameters
in the two client profile files and batch_test.sh, and then
run the batch test script with sudo bash batch_test.sh.
– Note that the parameter values in batch_test.sh will
overwrite those in package.json, hence, there is no need
to edit the latter for the batch test run.

– Note that the jq tool must be installed to use the batch
test script.

– If the batch test script is terminated prematurely, the
background Chrome processes need to be killed.

• Once the runs are finished, clear any previous tc setup
using sudo bash tc-network-profiles/kill.sh (this must
be run before starting any new run).

• On completing the test run, results are generated in the
results/<timestamp>_multiple_clients/ folder ordered
by the test run’s timestamp.

• To generate summary results across all clients in a test run,
first navigate to the results/ folder and then run python

generate_summary.py.
Refer to the readme.md file in the GitHub repository [37] for

troubleshooting of common issues.

33

https://www.ubuntu.com/download/desktop
https://nodejs.org/en/
https://gruntjs.com/
https://www.google.com/chrome/
https://github.com/Dash-Industry-Forum/dash.js
https://github.com/Dash-Industry-Forum/dash.js
http://nginx.org/en/download.html
https://wiki.linuxfoundation.org/networking/netem
https://www.ffmpeg.org/download.html
https://git-scm.com/downloads
https://stedolan.github.io/jq/

	Abstract
	1 Introduction
	2 Related Work
	2.1 Client-Side Solutions
	2.2 Server-Side Solutions
	2.3 Network-Based Solutions

	3 Technical Overview of CMCD
	4 System Implementation
	4.1 CMCD-Aware Clients
	4.2 CMCD-Aware Server

	5 Performance Evaluation
	5.1 Scenarios and Setup
	5.2 Results and Analysis

	6 Conclusions and Future Directions
	Acknowledgments
	References
	7 APPENDIX
	7.1 Prerequisite Software
	7.2 Quick Setup

