
Turk J Elec Eng & Comp Sci
(2020) 28: 1824 – 1840
c⃝ TÜBİTAK

doi:10.3906/elk-1907-215

Turkish Journal of Electrical Engineering & Computer Sciences

http :// journa l s . tub i tak .gov . t r/e lektr ik/

Research Article

Deep reinforcement learning for acceptance strategy in bilateral negotiations

Yousef RAZEGHI1, Ozan YAVUZ1, Reyhan AYDOĞAN1,2∗
1Department of Computer Science, Özyeğin University, İstanbul, Turkey

2Interactive Intelligence Group, Delft University of Technology, Delft, Netherlands

Received: 28.07.2019 • Accepted/Published Online: 04.03.2020 • Final Version: 29.07.2020

Abstract: This paper introduces an acceptance strategy based on reinforcement learning for automated bilateral
negotiation, where negotiating agents bargain on multiple issues in a variety of negotiation scenarios. Several acceptance
strategies based on predefined rules have been introduced in the automated negotiation literature. Those rules mostly
rely on some heuristics, which take time and/or utility into account. For some negotiation settings, an acceptance
strategy solely based on a negotiation deadline might perform well; however, it might fail in another setting. Instead of
following predefined acceptance rules, this paper presents an acceptance strategy that aims to learn whether to accept its
opponent’s offer or make a counter offer by reinforcement signals received after performing an action. In an experimental
setup, it is shown that the performance of the proposed approach improves over time.

Key words: Deep reinforcement learning, automated bilateral negotiation, acceptance strategy

1. Introduction
Automated negotiation [1] is an important study field in artificial intelligence, where intelligent agents negotiate
on behalf of their users on multiple issues with the aim of maximizing their own utility. Bidding strategy [2–
4], opponent modeling [5–7], and acceptance strategy are the main challenges in automated negotiation.
Agents exchange offers consecutively between each other to reach an agreement in a given negotiation scenario.
This interaction is governed by a certain protocol determining the rules of encounter. The alternative offers
protocol [8] is 1 of the most widely used protocols in bilateral negotiation. According to this protocol, an
agent initiates the negotiation with an offer and its opponent can accept or reject this offer. If the opponent
accepts the current offer, negotiation ends with an agreement and the utility of the agreement for each agent is
calculated with respect to their preference profiles. Otherwise, the opponent agent takes the turn and makes a
counter offer. This process continues in a turn-taking fashion until an agreement is reached or the negotiation
deadline for the session expires. If there is no agreement at the end of the negotiation, each agent gets the
reservation value (i.e. the best alternative to a negotiated agreement, abbreviated as BATNA). That is the
utility of the best alternative for the negotiating party if the negotiation fails to result in an agreement. The
turn-taking fashion of taking actions in automated negotiation makes it an appropriate environment for applying
reinforcement learning [9] (RL), where the agents can learn the best actions to be taken based on the feedback
given during these interactions.

RL is the process of finding an optimal policy in an environment based on feedback received from the
environment in response to the agents’ actions. In other words, agents learn from their experiences. In RL,
∗Correspondence: reyhan.aydogan@ozyegin.edu.tr

This work is licensed under a Creative Commons Attribution 4.0 International License.
1824

https://orcid.org/0000-0002-0007-630X
https://orcid.org/0000-0002-7946-198X
https://orcid.org/0000-0002-5260-9999

RAZEGHI et al./Turk J Elec Eng & Comp Sci

there are a number of states that the agent may be situated in. An action is any possible move that the agent
can make in the given state. The goal of the agent is to select the action maximizing its expected value. An
RL agent receives feedback from its environment for each action it takes and this feedback can be formulated
as a reward. The agent has to learn the outcomes of its actions in the long run, which is known as the credit
assignment problem. In RL problems, an environment is modeled as a Markov decision process (MDP) with
inputs (actions taken by the agent) and outputs (observations and rewards sent to the agent). The agent may
aim to learn a policy that aims to maximize its reward while interacting with the environment. In this work,
our negotiating agent employs RL in order to determine whether or not it should accept its opponent’s current
offer. Accordingly, it accepts the given offer or makes a counter offer.

The existing works on acceptance strategies for automated negotiation are mostly based on predefined
rules, which take remaining time and/or utility of the negotiation outcome into account. For instance, AC-next
[10] is 1 of the most widely used acceptance strategies, where an agent accepts its opponent’s offer if the utility
of the opponent’s offer is higher than or equal to the utility of its own next offer. Furthermore, these predefined
rules can be combined to form more complex acceptance strategies as proposed by Baarslag et al. [10]. In
the present work, we aim to develop an acceptance strategy that learns when to accept the opponent’s offer
using RL, while some recent works [11, 12] employ RL in order to learn what to bid. The sequential flow of
operations in the negotiation framework makes agent-based negotiation an appropriate field to implement and
assess the RL algorithms on agents. Since our aim is to design and develop a domain-independent acceptance
strategy applicable to any given negotiation scenarios, GENIUS [13] (Generic Environment for Negotiation with
Intelligent multi-purpose Usage Simulation) environment is chosen as our negotiation platform. An advantage
of the GENIUS environment involves the BOA (bidding, opponent model, accepting) framework [14], which
enables developing negotiation components (i.e. bidding strategy, opponent modeling, and acceptance strategy)
separately. This framework enables researchers to develop and study individual parts of the negotiation strategy.

The primary goal of our approach is the development of an acceptance strategy that can negotiate and
achieve reasonable results with different opponents regardless of the negotiation domain. During the negotiation,
it is observed that our agent learns what to bid and when to accept its opponents counter offer and improves its
performance over time. The main contribution of this paper is designing and developing a domain-independent
acceptance strategy using RL. The developed strategy is compared with AC-next acceptance strategy and in
some cases the proposed approach performs better than AC-next, while in other cases the performance is similar
to AC-next.

The rest of this paper is organized as follows: Section 2 explains the proposed acceptance strategy by
providing the definitions and formulation of problem used for adapting RL. Section 3 describes the experimental
setup, demonstrates the achieved results in both training and testing negotiation sessions, and also includes
an explanation of the methodologies used for generalization and regularization of the model. Section 4 briefly
discusses the related works. Section 5 concludes the paper and discusses future work.

2. Proposed acceptance strategy

Our negotiation environment consists of 2 agents negotiating on multiple issues (e.g., travel destination, location,
and date) within a certain time limit. The agents take their actions in a turn-taking fashion by following
the alternating offers protocol [8]. There are 2 possible actions, which consist of accepting or rejecting the
opponent’s offer. The preferences of agents are represented by means of an additive utility function [15], where
overall utility of an outcome is calculated by the weighted sum of the each individual utility value of each issue.

1825

RAZEGHI et al./Turk J Elec Eng & Comp Sci

In our negotiation setup, the negotiating agents can only access their own utility function. That is, they do
not know their opponent’s utility function. If the agents reach an agreement, they receive the utility of that
agreement before the deadline. Otherwise, each agent gets the reservation value as the final utility. The goal of
the agents is to maximize their utility gained at the end of the negotiation.

In the present work, we use a variant of the Q-learning algorithm, called deep Q-network (DQN), to learn
what to bid and when to accept. We first explain the fundamentals of Q-learning and then present how we
adopt the DQN in negotiation. Q-learning is an off-policy reinforcement learning algorithm in which an agent
receives a reinforcement signal called immediate reward after performing an action and aims to maximize its
total reward. In Q-learning, agents try to learn the values (Q values) of each state-action pair. That means the
agent estimates the value of taking an action a in a given state s . For this purpose, it maintains a table of
state-action values. The agent learns the values of its actions with Q-learning updates and performs its actions
based on ϵ -greedy policy. ϵ is a constant value between 0 and 1 that determines the probability of choosing a
random action and 1 - ϵ determines the probability of choosing an action where its action value is the maximum.
By this method, for each action that the agent performs, it explores the environment with ϵ probability and
exploits the environment based on its experience with 1 ϵ probability.

When our agent makes an offer, there is uncertainty about the acceptance of the offer by the opponent.
Because the opponent’s response to our agent’s offer is influential in the step transitions, our agent waits for the
opponent’s response to update the Q function after making an offer. After each state transition, the Q function
is updated as follows:

Q(S,A)← Q(S,A) + α[r + γmaxaQ(S’, A)−Q(S,A)]. (1)

In Equation 1, the Q(S,A) is the Q function yielding the overall expected reward of doing action A in
state S . S′ is the transitioned state and r stands for the immediate reward received by transitioning from
state S to S′ after taking the action A . γ represents a constant, namely the discount factor, which scales the
temporal difference (TD) approximation. The expression [r+γmaxaQ(S′, A)−Q(S,A)] is called the TD error,
which is the magnitude of Q value update on Q(S,A) and is scaled by the α , which is the learning rate.

Keeping track of state-action values by using the tabular approach is infeasible when the state space is
vast. To remedy this, we propose to use DQN in which a neural network is used to approximate the Q function
with artificial neural networks (ANNs) for learning when to accept in negotiation. The DQN takes the state as
the input and values of actions as the output.

For the proposed acceptance strategy in bilateral negotiations, a state can be represented as a 5-tuple as
follows: < ∆O,D,MNU,R,C > , where

• ∆O : The difference between the reservation value and the utility of the received offer made by the
opponent. It is a real number between between –1.0 and 1.0.

• D: Scaled remaining time. It is a real number between 0 and 1. The value of 1 denotes the end of the
negotiation (i.e. negotiation deadline).

• MNU: The utility of the agent’s next offer, a real number between zero and one.

• R: The target utility, which is the minimum utility that the agent aims to gain. R is taken as 0.8 in our
work.

• C: Current utility value of the opponent’s offer. It is a real number between 0 and 1. Higher values mean
that the offer is more preferred by the agent.

1826

RAZEGHI et al./Turk J Elec Eng & Comp Sci

Note that the target utility is the minimum utility value that the agent aims to achieve at the end of
the negotiation to get a positive return. The received utility, on the other hand, is the utility value the agent
gets at the end of the negotiation. The immediate reward that the agent receives after each step transition is
calculated as follows:

r =


−2|t−f | t > ru

2|t−f | t < ru

0 the step transition is nonterminal,

(2)

where

• t : Target utility

• f : Final utility

• ru : Received utility

The state transitions result in terminal or nonterminal states. Nonterminal states are those in which
the agents have not reached an agreement yet and continue negotiating. Therefore, the reward is zero for
nonterminal states. Terminal states are the states in which 1 of the agents accepts an offer from its opponent
or when the negotiation deadline expires without an agreement. The reward in the terminal states is calculated
as shown in Equation 2.

As illustrated in Figure 1, there is a feedback loop between the agent and the environment. The current
state S is the input to the neural network and the output is 2 numbers indicating the expected reward of
performing actions, namely accept and reject. A state transition happens when an action is performed. Then
the next action is performed with respect to the new state with the same process. This feedback loop shapes
the learning process of the model.

∆O

D

MNU

R

C

State S
Environment
(GENIUS)

Action

Reward

Observation

Deep Q Network

Figure 1. Proposed negotiation architecture.

Algorithm 1 illustrates the proposed approach for our acceptance strategy where NN stands for neural
network.

1827

RAZEGHI et al./Turk J Elec Eng & Comp Sci

Determine_Acceptability() is called after receiving an offer from the opponent and our agent makes its
decision based on the RL-based acceptance strategy. The DQN is trained after an action is performed. Note
that at the initial state (e.g., when no party has made any counter offer), the previous state is null and the
action is performed without any training (lines 3–5). After the initial state, first, the DQN is trained with
respect to the Q-learning update rule as shown in Equation 1 and then the action is performed. Note that
the DQN is trained in the code block as shown between lines 2 and 15, and the action is performed as shown
between lines 16 and 27. The agent explores with a probability of ϵ , which means taking a random action (lines
24–27). Furthermore, it exploits and chooses the best action according to the Q-function with a probability of
1− ϵ (lines 16–23).

Algorithm 1 Acceptance strategy based on Q-learning.
1: procedure determine_acceptability()
2: < VA, VR >←NN.predict(SCur)
3: if SPrev == null then
4: SPrev← getCurrentState()
5: else
6: < VAPrev, VRPrev >←NN.predict(SPrev)
7: if VA > VR then
8: ActMax←Accept
9: else

10: ActMax←Reject
11: end if
12: r← 0
13: VRPrev← r+γ *SCur[ActMax]
14: NN.train(SPrev, < VAPrev, VRPrev >)
15: end if
16: With 1-ϵ probability do:
17: Begin
18: if VA>VR then
19: return Accept
20: else
21: return Reject
22: end if
23: End
24: With ϵ probability do:
25: Begin
26: return Randomly(Accept|Reject)
27: End
28: end procedure

• VA : The Q-value of accept action in the current state

• VR : The Q-value of reject action in the current state

• NN : The neural network

• SCur : Current state

• SPrev : Previous state

1828

RAZEGHI et al./Turk J Elec Eng & Comp Sci

• APrev : The Q-value of accept action in the previous state

• RPrev : The Q-value of reject action in the previous state

• ActMax : The action with the maximum Q-value

Since our aim is to propose an acceptance strategy based on deep reinforcement learning that can generalize
over several domains and opponent agents during bilateral negotiations, we first trained the model of the agent
while negotiating with several agents in different negotiation scenarios (i.e. domain with 2 conflicting preference
profiles). The problem with training by letting our agent negotiate with different opponents in a variety of
domains is that the agent is specialized in terms of the current opponent in the given domain (i.e. overfitting
the current setup). That is, the agent forgets his previous negotiation experiences with other agents in other
domains.

Due to environmental constraints, setting sessions that can include different domains and several oppo-
nents at the same time is impossible. We overcome this problem by generating virtual states and feeding them
through experience replay memory, which is used already for previous negotiation sessions. Experience replay
memory is a stack in which state transitions with rewards belonging to the previous and current episodes are
stored. In this approach, the DQN is fed by taking random samples from this memory. To prevent overfitting
in the DQN, we applied L2 regularization to the DQN, which adds the squared magnitude of neural network
weight coefficients as a penalty term to the loss function of the DQN.

3. Experimental evaluation

In order to evaluate the performance of the proposed approach, we implemented a negotiating agent adopting
our RL-based acceptance strategy in the BOA framework of the GENIUS environment. This environment hosts
a variety of negotiation scenarios (i.e. negotiation domain and a pair of preference profiles) and negotiating
agents. In this platform, an agent can negotiate with an opponent in different negotiation scenarios. Recall that
we adopt experience replay memory to maintain the state and action pairs from different negotiation sessions.
Therefore, our agent using the DQN learns the optimal acceptance conditions in different negotiation settings.
In the following sections, we will describe how we trained our RL-based agent (Section 3.1) and present the
experiment results with respect to the performance of the agent in the test environment (Section 3.2).

3.1. Training session

For training purposes, a well-known negotiation domain England–Zimbabwe [16] is used. In this scenario, there
are 576 possible outcomes in total. Figure 2 demonstrates the utility distribution of available bids for this
scenario, where the Nash point is (0.91, 0.73). The difficulty level to reach an agreement is considered medium.
For each profile, our agent negotiates with its opponent 600 times. That is, the training data involve 600
negotiation sessions (i.e. epochs). Note that our agent plays both sides (600 times for England and 600 times
for Zimbabwe); it makes 1200 negotiation sessions in total. The deadline for the negotiations is 180 s. If agents
cannot reach an agreement before the deadline, they receive a zero utility.

In our setup, the opponent agent employs the Gahboninho [17] negotiation strategy. This agent is
selfish and stubborn. At the beginning for a certain period, this agent insists on making bids with the utility
of 0.9. Afterwards, the agent becomes more selfish and hardheaded and at the very end of the negotiation
Gahboninho concedes to avoid disagreement. Recall that an agent consists of the following components in the
BOA framework:

1829

RAZEGHI et al./Turk J Elec Eng & Comp Sci

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Utility of Agent A

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

U
ti

li
ty

 o
f

A
ge

n
t

B

All bids Pareto Nash

Figure 2. Utility distribution for England–Zimbabwe.

• Bidding strategy: This model defines the amount of concessions with respect to negotiation flow; thus,
it determines the estimated utility of its next offer and what bid will be offered.

• Opponent modeling: A learning model is designed to predict the preference profile of the opponent
and/or the opponent’s strategy based on the exchanged bids during the negotiation.

• Acceptance strategy: It determines whether to accept the received bid from the opponent.

As a bidding strategy, we pick the bidding strategy of AgentK [18]. AgentLG and NTFT (i.e. not tit-
for-tat) are used for the opponent preference modeling and opponent strategy modeling, respectively. As an
acceptance strategy, our agent implements the RL-based acceptance strategy proposed in the present paper.

Our agent starts the negotiation by taking random actions and explores the action space during the
negotiation session in order to find the optimal acceptance strategy over time. The agent decreases the
exploration ratio over time and it gradually exploits its learned model and tries to take the action giving
maximum expected rewards.

In the training phase, we first analyze the utility of the agreements. Figure 3 demonstrates the average
utilities of the agreements over 10 negotiation sessions for our agent negotiating with Gahboninho for both
preference profiles. The graph on the left-hand side shows the results when our agent negotiates under preference
profile-1. Similarly, the graph on the right-hand side shows the results while negotiating under preference profile-
2. The dashed red horizontal line in Figure 3 shows the average of all utilities for the 600 negotiations. In the
rest of the paper, we use the same notation while reporting our results. Note that each session point in the
figure represents ten consecutive negotiation sessions. Recall that our agent negotiates with the same opponent
600 times for each preference profile. It can be seen that the performance of our agent improves after getting
a certain amount of experience (i.e. 25 negotiation session points in this case). The increasing trend in terms

1830

RAZEGHI et al./Turk J Elec Eng & Comp Sci

of received utility indicates the learning capability of our agent. Furthermore, it can be noted that there are
some fluctuations in the utilities of agreements, especially after the significant rise in utility. Recall that most
of the bidding strategies have a stochastic nature. Therefore, even the same agents negotiating with the same
opponent may end up with a different negotiation outcome. This fluctuation can be explained due to the
stochastic nature of bidding strategies. Another observation is that our agent learned to reject offers at the
early phases of the negotiations to get better offers from the opponent over time. Note that our opponent starts
conceding when approaching the deadline.

0 20 40 60

Sessions

0.5

0.6

0.7

0.8

U
ti
li
ty

Mean

Profile-1

0 20 40 60

Sessions

0.5

0.6

0.7

0.8

U
ti
li
ty

Mean

Profile-2

Figure 3. Utility changes in the RL acceptance party.
As a baseline negotiation strategy, we used an agent that randomly negotiates. Figure 4 shows the

average utility changes of the agreements for the randomly negotiating agent. When we compare these results
with those obtained with the RL acceptance strategy shown in Figure 3, it is obvious that our agent receives
much higher utility.

Furthermore, we also analyze the negotiation outcome in terms of distance to the Nash product solution
(i.e. the bid whose utilities for both parties is the maximum), in terms of distance to Pareto solutions (i.e. the
bid whose utility cannot be improved for 1 party without worsening the utility of the other party), and social
welfare (i.e. sum of agents’ utilities). Assessment of the training session results reveals a noticeable change
in the agent’s behavior in terms of Nash, Pareto, and social welfare metrics. Figure 5 demonstrate the utility
changes for our agent according to different performance metrics. As in Figures 5a and 5b, it is observed that
the distance to Pareto is close to zero in the former negotiation sessions, while the distance increases over time.
Note that having a zero distance to Pareto means that the agreement is 1 of the Pareto optimal outcomes. It is
worth noting that if the utility of our opponent is the highest (no matter what we received), it is automatically
a Pareto optimal outcome. Recall that an outcome is Pareto optimal if the agents cannot improve the utility of
the outcome for 1 of the agents without worsening the others. Since in the former sessions our opponents aim
to get the best offer for themselves, the distance to Pareto is around zero. Recall that the best offers for each
agent are always Pareto optimal outcomes according to the definition of Pareto optimal solutions. However, it
increases when our agent starts learning when to accept.

1831

RAZEGHI et al./Turk J Elec Eng & Comp Sci

0 20 40 60

Sessions

0.5

0.51

0.52

0.53

0.54

0.55

U
ti
li
ty

Mean

Profile-1

0 20 40 60

Sessions

0.48

0.5

0.52

0.54

0.56

0.58

0.6

U
ti
li
ty

Mean

Profile-2

Figure 4. Utility changes in the random behavior agent.

Recall that the Nash product bid in the negotiation is the bid where the product of the utilities for each
agent is the maximum. The distance to the Nash solution (Euclidean distance) is almost steady in the initial
negotiations. Because our agent explores more than exploits its experience, it accepts its opponent’s offer too
early and the opponent gets the utilities close to 1. However, as our agent’s acceptance strategy improves,
fluctuations occur because the variance in the final utilities increases, as shown in Figures 5b-5e. Similar applies
to the social welfare too as shown in Figures 5c-5f. Note that the social welfare is the sum of the agents’ utilities.

3.2. Test session
In automated negotiation, it is important to design agents that can negotiate with different opponents. In
order to assess the performance of the proposed RL-based acceptance strategy, we tested our agent with various
opponents and negotiation scenarios. For opponent strategies, we picked the following 6 strategies: Agent
Smith [19], Nozomi [20], Yushu [21], FSEGA [22], IAMHaggler [23], and Pars Agent [24].

These 6 agents were the top rated ones in previous years at the International Automated Negotiating
Agents Competition (ANAC) [25]. A brief description of the opponent agent’s strategies is provided below:

• Agent Smith: This agent models the opponent’s preferences during the negotiation. It initially makes
the best offer for itself (i.e. offer with the maximum utility). Afterwards, it compromises over time towards
the interest of its opponent.

• Yushu: Using a combination consisting of the ten last received bids and an estimation about the remaining
round, the agent calculates a target utility and makes its offer with that target utility. Note that Yushu
also considers the minimum utility value it may accept while making its offers.

• FSEGA: It divides the negotiation into 3 phases. In the first 85% of the negotiations, it aims to model its

1832

RAZEGHI et al./Turk J Elec Eng & Comp Sci

opponent by analyzing the exchanged bids. In the second phase (85%–95%), it does not concede. In the
last phase (95%–100%), FSEGA employs a concession-based strategy due to the time limit and sends bids
accordingly that are just higher than the reservation value. This agent always accepts the best available
offer; otherwise, it offers a new bid.

• IAMHaggler: This agent constructs an opponent model using Bayesian learning. As a starting point
the agent offers a bid with the maximum utility and continuously selects a target utility based on various
factors such as opponent model, remaining time, and received bid utility.

• Pars Agent: The Pars agent employs a bidding strategy that is a combination of time-dependent,
random, and frequency-based strategies to make a bid with high utility that is close to the opponent’s
offers. This behavior increases the possibility of reaching an agreement sooner. This agent took second
place in the individual utility category in ANAC2015 [26].

• Nozomi: At the beginning, Nozomi sends an offer with the maximum utility. Based on the opponent’s
last offer and remaining time, it chooses to compromise or insist.

0 20 40 60
Sessions

0

0.2

0.4

0.6

D
is

ta
n

ce
 t

o
 P

ar
et

o

Mean

Profile-1

(a)

0 20 40 60
Sessions

0

0.2

0.4

0.6

0.8

D
is

ta
n

ce
 t

o
 N

as
h

Mean

Profile-1

(b)

0 20 40 60
Sessions

0.8

1

1.2

1.4

1.6

S
o

ci
al

 W
el

fa
re

Mean

Profile-1

(c)

0 20 40 60
Sessions

0

0.2

0.4

0.6

D
is

ta
n

ce
 t

o
 P

ar
et

o

Mean

Profile-2

(d)

0 20 40 60
Sessions

0

0.2

0.4

0.6

D
is

ta
n

ce
 t

o
 N

as
h

Mean

Profile-2

(e)

0 20 40 60
Sessions

0.8

1.2

1.6

S
o

ci
al

 W
el

fa
re

Mean

Profile-2

(f)

Figure 5. Nash and Pareto metrics of agent behavior.

1833

RAZEGHI et al./Turk J Elec Eng & Comp Sci

Three different negotiation scenarios (i.e. party, Amsterdam, and airport) are used to evaluate the
performance of the proposed acceptance strategy. We choose domains different from the one used in training
in order to evaluate the generalization ability of the proposed RL model. The utility distribution of bids in the
test domains is demonstrated in Figures 6a-6b-6c). Note that the Nash product outcomes are denoted by the
black marker, while the Pareto efficient outcomes are shown by the pink marker.

In the party domain, there are 6 negotiation issues with varying values (i.e. 4, 4, 4, 4, 3, 4 values for
the issues foods, drinks, location, invitations, music, and cleanup, respectively), which result in 45 × 3 = 3072

possible outcomes, while the Amsterdam trip domain consists of 6 negotiation issues (i.e. 4, 3, 7, 3, 3, 4 values
for the issues venue, time of arrival, day of the week, duration, transportation, and souvenirs. respectively)
resulting in 33 × 42 × 7 = 3024 possible outcomes. Although the size of their outcome space is almost the
same, utility distributions in those scenarios are different from each other. The airport size selection domain
consists of 3 issues (i.e. 10, 7, 6 values for the issues cost, noise, and accident level per million passenger miles,
respectively) and 10 × 7 × 6 = 420 possible outcomes exist in this domain. This domain is sparser than the
others.

We compare the performance of our acceptance strategy with that of the AC-next [10] acceptance strategy,
which is the most widely used acceptance strategy in automated negotiation. When the agents employ the AC-
next acceptance strategy, they accept the received offer if its utility is higher than or equal to the utility of the
agent’s next bid.

In the experiments, we keep the BOA components for bidding strategy, opponent modeling, and opponent
modeling strategy the same for those agents. We only change the acceptance strategy to compare their
performance. Each negotiation is repeated 10 times and the deadline of each negotiation is set to 10 s. Since
each scenario has 2 profiles, each acceptance strategy was tested on both negotiation profiles to assess the overall
performance.

Figure 7 shows the average utilities of our agent for both acceptance strategies. According to those
results, it can be seen that when our agent negotiates with the opponent except FSEGA, the performance of
the RL acceptance strategy is almost the same as that of the AC-next strategy. For instance, while negotiating
against Yushu, both agents with AC-next and with our proposed acceptance strategy gained around 0.71. In
some cases, the agent with our strategy got higher utility (0.94 versus 0.91 against IAMHaggler), while in other
cases the agent with AC-next gained higher utility (0.63 versus 0.72 against FSEGA) on average. The agent
reaches agreements with higher utilities when it employs the AC-next strategy for the Amsterdam trip scenario.
For the Amsterdam trip domain in Figure 6, it seems that most of the bids are distributed on the right top
side of the outcome space. In other words, most of the bids have high utility for both sides. We observed that
in many cases agents fail to reach an agreement when our agent employs the RL acceptance strategy for the
Amsterdam trip scenario. On the other hand, the RL acceptance strategy outperforms the AC-next strategy
for the party and airport site selection scenarios where the utility of the bids is distributed sparsely.

4. Related Work
Bakker et al. recently introduced a reinforcement learning framework for automated negotiating agents [27].
They focus on learning the bidding strategy (i.e. what to bid rather than what to accept). In particular, the
agent aims to learn to determine the utility interval of its next offer by considering the utility of its previous
and current offers, the utility of its previous and current opponent’s offers, and time. They define ten utility
intervals, called bins (e.g., [0-0.1], [0.1-0.2], ..., [0.9-1.0]) and the agent tries to learn which interval it should

1834

RAZEGHI et al./Turk J Elec Eng & Comp Sci

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Utility of Agent A

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

U
ti

li
ty

 o
f

A
ge

n
t

B

(a) Party domain

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Utility of Agent A

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

U
ti

li
ty

 o
f

A
ge

n
t

B

(b) Amsterdam trip

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Utility of Agent A

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

U
ti

li
ty

 o
f

A
ge

n
t

B

(c) Airport Site Selection

All bids Pareto Nash

Figure 6. Domain information.

1835

RAZEGHI et al./Turk J Elec Eng & Comp Sci

Air Port Site Selection Amsterdam Trip Party Domain
Profile 1 Profile 2 Profile 1 Profile 2 Profile 1 Profile 2

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9
0
.7
69

0
.7
26

0
.6
84

0
.6
58

0
.7
85

0
.6
660
.7
36

0
.7
26

0
.6
77

0
.6
90 0
.7
85

0
.6
66

U
ti
li
ty

(a) Yushu

Air Port Site Selection Amsterdam Trip Party Domain
Profile 1 Profile 2 Profile 1 Profile 2 Profile 1 Profile 2

0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1

0
.9
50

0
.9
17

0
.9
60

0
.9
05

0
.9
40

0
.9
76

0
.9
50

0
.9
13

0
.9
58

0
.9
51

0
.8
48

0
.8
56

U
ti
li
ty

(b) IAMHaggler

Air Port Site Selection Amsterdam Trip Party Domain
Profile 1 Profile 2 Profile 1 Profile 2 Profile 1 Profile 2

0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1

0
.8
09

0
.8
37

0
.8
56

0
.8
60

0
.8
78

0
.8
71

0
.8
07

0
.8
37

0
.8
50

0
.8
65

0
.8
77

0
.8
50

U
ti
li
ty

(c) Nozomi

Air Port Site Selection Amsterdam Trip Party Domain
Profile 1 Profile 2 Profile 1 Profile 2 Profile 1 Profile 20

0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1

0
.6
17

0
.5
49

1
.0
00

0
.8
93

0
.4
77

0
.2
66

1
.0
00

0
.8
92

0
.5
00

0
.5
00

0
.8
03

0
.6
66U
ti
li
ty

(d) FSEGA

Air Port Site Selection Amsterdam Trip Party Domain
Profile 1 Profile 2 Profile 1 Profile 2 Profile 1 Profile 2

0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1

.0
00

0
.9
89

0
.9
80

0
.9
79

0
.9
79

0
.9
71

1
.0
00

0
.9
89

0
.9
87

0
.9
72

0
.9
82

0
.9
69

U
ti
li
ty

(e) Agent Smith

Air Port Site Selection Amsterdam Trip Party Domain
Profile 1 Profile 2 Profile 1 Profile 2 Profile 1 Profile 2

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0
.8
06

0
.8
09

0
.7
75

0
.7
75 0
.8
41

0
.7
250
.8
01

0
.8
08

0
.7
81

0
.8
02

0
.8
33

0
.7
17

U
ti
li
ty

(f) Pars Agent

Figure 7. Test results compared to AC-next acceptance strategy.

use for preparing its next offer. While they have a tabular learning approach by using Q-learning, we prefer to
adopt a deep reinforcement learning approach by using the DQN. Furthermore, we aim to learn when to accept
rather than what bid to make.

Papangelis et al. [28] use RL to learn a multiissue negotiation policy to design an agent negotiating with
humans. They use Q-learning with function approximation and consider different feature-based representations
of state and action space to handle the large state space. They trained their agent against a simulated user
(SU), which was a hand-crafted negotiation agent based on the agenda paradigm [29]. Their reward function is
similar to ours; they give a penalty if no agreement is reached before the deadline. If an agreement is reached,
the agent receives a reward based on the values of the final offer and the agents preference. They use Q-learning

1836

RAZEGHI et al./Turk J Elec Eng & Comp Sci

in order to find an optimal policy. Similar to our approach, they use greedy in the limit with infinite exploration
(GLIE) to explore more when the agent does have enough experience while exploiting more as the agent gains
experience. Their model is trained by running 20,000 episodes. Human raters are asked to rate which agent
(agenda-based or RL-based) performed better by providing the negotiation transcripts. According to their
results, the RL-based agent outperformed the agenda-based agent. Unlike our environment, their environment
is dynamic; the deadline and agents may change during the negotiation session. In contrast, the deadline
does not change arbitrarily and utility values of negotiated issues do not change during the negotiation in our
framework. While agents make complete offers aiming to find an agreement on all issues at a time, their agent
negotiates issue by issue.

Zou et al. [30] integrate genetic algorithm and reinforcement learning to determine an optimal strategy
in negotiation. Their motivation for applying this kind of technique is negotiating with uncertainty about the
opponent. They state that their technique achieves better results in terms of efficiency, fairness, and strategy
convergence. They also mention that their approach achieves higher reward, shorter negotiation time, and
lower degree of greediness compared to the classical evolutionary models. While an evolutionary RL approach
is adopted in order to determine the optimal negotiation strategy in that study, we use DQN to learn what and
when to accept during the negotiation.

Kröhling et al. [31] address the problem of determining a negotiation strategy during negotiation. They
introduce a conceptual entity as an oracle that can be queried by its agent. The agent tells the current context
during the negotiation and the oracle estimates the utility value of each strategy using the Q function. While
they aim to learn which strategy to use during the negotiation, we focus on learning when to accept the
opponent’s offer.

Rodriguez et al. [32] study bilateral negotiations for electricity market energy contracts. They introduce
a context aware Q-learning approach for energy contracts. In that work, the negotiation issues are the amount
of energy and its price. The context in their study refers to the factors influential in the contract prices such
as current date and time and amount of transacted power in the electricity market. By using context-aware
Q-learning, their agent estimates the values of contracts. Therefore, their study focuses on prenegotiation (i.e.
deciding on what contract to negotiate). On the other hand, our study focuses on developing an RL-based
acceptance strategy for metanegotiations in which the issues of negotiations are fixed and the agents negotiate
on these issues to maximize their utilities.

Sunder et al. [33] develop an agent that negotiates on contracts in industrial scenarios. They use a
policy-based RL approach, namely REINFORCE, in order to learn what to bid in a bilateral negotiation
setting. Different from the aforementioned approaches, the agent learns the content of its next offer rather
than the utility of its next offer. While they employ a policy-based RL approach, we adopted a value-based RL
approach (Q-learning). Our work is complementary to their work, since they aim to learn what to bid while we
focus on learning when to accept.

In order to highlight the major differences between related work and the proposed approach, a comparison
matrix is presented in the following table. While our work proposes using RL for the acceptance strategy, other
works using RL in automated negotiations mostly focus on learning a bidding strategy or negotiation strategy.
While some works adopt a policy gradient approach such as REINFORCE, most of the works use a value-based
approach, particularly Q-learning, as we do. To the best of our knowledge, our work is the first using deep RL
aiming to learn when and what to accept in negotiations.

1837

RAZEGHI et al./Turk J Elec Eng & Comp Sci

Table 1. Comparison matrix of RL-based approaches in automated negotiation.

Work What to learn Method Issue
Zou To pick which concession strategy Evolutionary RL Multi
Papangelis To decide which action to take Q-learning with function approximation Multi
Kröhling To determine a negotiation strategy Tabular Q-learning Single
Rodriguez To decide on what domain to negotiate Tabular Q-learning Multi
Sunder To determine what to bid REINFORCE Multi
Bakker To determine what to bid Tabular Q learning Multi
Ours To decide when and what to accept DQN Multi

5. Conclusion
This paper proposes a novel acceptance strategy model for bilateral negotiations based on deep RL. This
model can be used as an acceptance strategy module under the BOA framework in the GENIUS environment.
Our approach could successfully result in a model that can perform well for negotiations with various agents
in different domains with comparable results in the test session. Compared to other studies on automated
negotiations, our main contribution is using a deep RL approach for learning when the agent should accept its
opponent’s offer. Our experiment results showed that the RL acceptance strategy performs at least as well as
the AC-next strategy, which is the state of the art acceptance strategy in automated negotiations.

In future work, it would be interesting to design models for a bidding strategy that outperforms the
existing RL-based bidding strategies. Another idea is the integration of the proposed acceptance policy in a
human-agent negotiation environment.

Acknowledgments

We would like to sincerely thank Dr Melih Kandemir, and Artificial Intelligence Lab members at Özyeğin
University for their valuable feedback on our work. We appreciate the anonymous reviewers’ constructive
comments on our work.

Razeghi and Yavuz worked collaboratively on this paper under the supervision of Dr. Reyhan Aydoan.

References

[1] Jennings NR, Faratin P, Lumiscio AR. Automated negotiation: prospects, methods and challenges. Group Decision
and Negotiation 2001; 10 (2): 199-215. doi: 10.1023/A:1008746126376

[2] Barslaag T, Gerding EH, Aydoan R, Schraefel MC. Optimal negotiation decision functions in time-sensitive domains.
In: IEEE/WIC/ACM International Conference on Web Intelligence and Intelligent Agent Technology (WI-IAT);
Singapore; 2015. pp. 190-197.

[3] Sánchez-Anguix V, Julián V, Botti V, García-Fornes A. Studying the impact of negotiation environments on
negotiation teams’ performance. Information Sciences 2013; 219 (1): 17-40. doi: 10.1016/j.ins.2012.07.017

[4] Sanchez-Anguix V, Aydoan R, Julian V, Jonker CM. Intra-team strategies for teams negotiating against competitor,
matchers, and conceders. In: Marsa-Maestre I, Lopez-Carmona M, Ito T, Zhang M, Bai Q et al (editors). Novel
Insights in Agent-based Complex Automated Negotiation. Japan: Springer, 2013, pp. 3-22.

[5] Tunal O, Aydoan R, Sanchez-Anguix V. Rethinking frequency opponent modeling in automated negotiation. In:
International Conference on Principles and Practice of Multi-Agent Systems; Nice, France; 2017. pp. 263-279.

1838

RAZEGHI et al./Turk J Elec Eng & Comp Sci

[6] Aydoan R, Yolum P. Ontology-based learning for negotiation. In: IEEE/WIC/ACM Inter-national Joint Conference
on Web Intelligence and Intelligent Agent Technology; Milan, Italy; 2009. pp. 177-184.

[7] Baarslag T, Hendrikx MJC, Jonker CM, Hindriks KV. Learning about the opponent in automated bilateral
negotiation: A comprehensive survey of opponent modeling techniques. Autonomous Agents and Multi-Agent
Systems 2016; 30 (1): 849-898. doi: 10.1007/s10458-015-9309-1

[8] Aydoan R, Festen D, Hindriks KV, Jonker CM. Alternating offers protocols for multilateral negotiation. In: Fujita
K, Bai Q, Ito T, Zhang M, Ren F, Aydoan R, Hadfi R (editors). Modern Approaches to Agent-based Complex
Automated Negotiation, USA: Springer, 2017, pp. 153-167.

[9] Sutton RS, Barto AG. Reinforcement Learning: An Introduction. Cambridge, MA, USA: MIT Press, 2018.

[10] Baarslag T, Hindriks KV, Jonker CM. Effective acceptance conditions in real-time automated negotiation. Decision
Support Systems 2014; 60 (1):68-77. doi: 10.1016/j.dss.2013.05.021

[11] Cai H, Ren K, Zhang W, Malialis K, Wang J et al. Real-time bidding by reinforcement learning in display advertising.
In: The Tenth ACM International Conference on Web Search and Data Mining; Cambridge, UK; 2017. pp. 661-670.

[12] Borissov N, Anandasivam A, Wirström N, Neumann D. Rational bidding using reinforcement learning. In: Altmann
J, Neumann D, Fahringer T (editors). Germany: Springer, 2008, pp. 73-88.

[13] Hindriks KV, Jonker CM, Kraus S, Lin R, Tykhonov D. Genius: negotiation environment for heterogeneous
agents. In: The 8th International Conference on Autonomous Agents and Multiagent Systems-Volume 2; Budapest,
Hungary; 2009. pp. 1397-1398.

[14] Baarslag T, Hindriks KV, Hendrikx MJC, Dirkzwager A, Jonker CM. Decoupling negotiating agents to explore the
space of negotiation strategies. In: Marsa-Maestre I, Lopez-Carmona MA, Ito T, Zhang M, Bai Q et. al. (editors).
Novel Insights in Agent-based Complex Automated Negotiation, Japan: Springer, 2014, pp. 61-83.

[15] Pomerol J, Barba-Romero S. Multicriterion Decision in Management: Principles and Practice. USA: Springer, 2000.

[16] Raiffa H. The Art and Science of Negotiation. Cambridge, MA, USA: Harvard University Press, 1982.

[17] Adar MB, Sofy N, Elimelech A. Gahboninho: Strategy for balancing pressure and compromise in automated
negotiation. In: Ito T, Zhang M, Robu V, Matsuo T (editors). Complex Automated Negotiations: Theories, Models,
and Software Competitions, Germany: Springer, 2013, pp. 205-208.

[18] Kawaguchi S, Fujita K, Ito T. Agent K: Compromising strategy based on estimated maximum utility for automated
negotiating agents. In: Ito T, Zhang M, Robu V, Matsuo T (editors). New Trends in Agent-Based Complex
Automated Negotiations. Germany: Springer, 2012, pp. 137-144.

[19] Last N.G. Agent smith: Opponent model estimation in bilateral multi-issue negotiation. In: Ito T, Zhang M, Robu
V, Matsuo T (editors). New Trends in Agent-based Complex Automated Negotiations. Germany: Springer, 2012,
pp. 167-174.

[20] Baarslag T, Hindriks KV, Jonker MC, Kraus S, Lin R. The first automated negotiating agents competition (ANAC
2010). In: Ito T, Zhang M, Robu V, Matsuo T (editors). New Trends in agent-based complex automated negotiations.
Germany: Springer, 2012, pp. 113-135.

[21] An B, Lesser V. Yushu: A heuristic-based agent for automated negotiating competition. In: Ito T, Zhang M, Robu
V, Matsuo T (editors). New Trends in Agent-Based Complex Automated Negotiations. Germany: Springer, 2012,
pp. 145-149.

[22] Ito T, Zhang M, Robu V, Fatima S, Matsuo T. New Trends in Agent-based Complex Automated Negotiations.
Germany: Springer, 2011.

[23] Williams CR, Robu V, Gerding EH, Jennings NR. Iamhaggler: A negotiation agent for complex environments.
In: Ito T, Zhang M, Robu V, Matsuo T (editors). New Trends in Agent-based Complex Automated Negotiations.
Germany: Springer, 2012, pp. 151-158.

[24] Khosravimehr Z, Nassiri-Mofakham F. Pars agent: Hybrid time-dependent, random and frequency-based bidding
and acceptance strategies in multilateral negotiations. In: Fujita K, Bai Q, Ito T, Zhang M, Ren F et al (editors).
Modern Approaches to Agent-based Complex Automated Negotiation. Germany: Springer, 2017, pp. 175-183.

1839

RAZEGHI et al./Turk J Elec Eng & Comp Sci

[25] Jonker CM, Aydoan R, Baarslag T, Fujita K, Ito T et al. Automated negotiating agents competition (ANAC). In:
The Thirty-First AAAI Conference on Artificial Intelligence; San Francisco, California USA; 2017. pp. 5070-5072.

[26] Fujita K, Aydoan R, Baarslag T, Hindriks KV, Ito T et al. The sixth automated negotiating agents competition
(ANAC 2015). In: Fujita K, Bai Q, Ito T, Zhang M, Ren F et al (editors). Modern Approaches to Agent-based
Complex Automated Negotiation. Germany: Springer, 2017, pp. 139-151.

[27] Bakker J, Hammond A, Bloembergen D, Baarslag T. RLBOA: A modular reinforcement learning framework for
autonomous negotiating agents. In: The 18th International Conference on Autonomous Agents and MultiAgent
Systems (AAMAS’19); Budapest, Hungary; 2019. pp. 260-268.

[28] Papangelis A, Georgila K. Reinforcement learning of multi-issue negotiation dialogue policies. In: The 16th Annual
Meeting of the Special Interest Group on Discourse and Dialogue; Prague, Czech Republic; 2015. pp. 154-158.

[29] Rudnicky A, Xu W. An agenda-based dialog management architecture for spoken language systems. In: IEEE
Automatic Speech Recognition and Understanding Workshop; Sentosa, Singapore; 1999. pp. 1-17

[30] Zou Y, Zhan W, Shao Y. Evolution with reinforcement learning in negotiation. PLOS One 2014; 9 (7): 1-7. doi:
10.1371/journal.pone.0102840

[31] Kröhling D, Hernández F, Martínez E, Chiotti OJA. The importance of context- dependent learning in negotiation
agents. Inteligencia Artificial 2018; 22 (63): 135-149. doi: 10.4114/intartif.vol22iss63pp135-149

[32] Rodriguez-Fernandez J, Pinto T, Silva F, Praça I, Vale Z et al. Context aware Q-learning-based model for decision
support in the negotiation of energy contracts. International Journal of Electrical Power & Energy Systems 2019;
104: 489-501. doi: 10.1016/j.ijepes.2018.06.050

[33] Sunder V, Vig L, Chatterjee A, Shroff G. Prosocial or selfish? agents with different behaviors for contract negotiation
using reinforcement learning. In: Ito T, Aydoğan R, Zhang M (editors). In Advances in Automated Negotiations.
Germany: Springer, 2020, pp. 69-88.

1840

	Introduction
	Proposed acceptance strategy
	Experimental evaluation
	Training session
	Test session

	Related Work
	Conclusion

