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1. Introduction

At macroscales, the rate of heat conducted through an area is
proportional to the thermal conductivity and the temperature gra-
dient, following the Fourier law [1-4]. The basic premise of the
law is that the characteristic length of the object must be greater
than the mean free path of the heat carriers. Using this phenom-
enological law to represent heat fluxes on all the surfaces of an
object, the heat diffusion equation can be derived by simply sum-
ming all these fluxes and equating them to the rate of change of
its internal energy. Even though the Fourier law is generally appli-
cable at the macroscales, it is commonly used at the microscales
to represent thermal heat flux of electrons and phonons [2,5-9].
For example, in the ultra-fast heating of metallic films where
highly non-equilibrium phenomena is observed, the two-temper-
ature model (TTM) is used to simulate thermal conduction of elec-
trons and phonons [9-11]. The TTM basically consists of two
coupled diffusion equations where heat fluxes of electrons and
phonons are calculated separately. This formulation is also em-
ployed in the electron-phonon hydrodynamic equation (EPHDEs)

* Corresponding author.
E-mail addresses: twong@swinburne.edu.my (B.T. Wong), mfrancoeur@mech.
utah.edu (M. Francoeur), menguc@engr.uky.edu, pinar.menguc@ozyegin.edu.tr
(M. Pinar Mengiic).

0017-9310/$ - see front matter © 2011 Elsevier Ltd. All rights reserved.
doi:10.1016/j.ijheatmasstransfer.2010.10.039

to express the thermal flux of electrons and the heat flux of pho-
nons as a function of corresponding thermal conductivity and
temperature gradient [2,9,12]. However, when the characteristic
length of an object is smaller than the mean free path, which is
commonly observed at nanoscales, heat conduction no longer
obeys the Fourier law, mainly due to the impact of ballistic prop-
agation by the heat carriers. At such scales, thermal conductivity
and temperature gradient are reduced while discontinuity in the
temperature distribution near the boundary exists [13-20]. There-
fore, either the general Boltzmann transport equation (BTE) or the
phonon radiative transport equation (PRTE) is required to cor-
rectly model the phonon transport [1,2,21-26]. The energy equa-
tions for electrons and phonons in the TTM and the EPDHEs where
the diffusion approximation is assumed are to be substituted by
the corresponding BTE in the intensity form in order to account
for the ballistic behaviors of heat carriers. This can be done only
when the average mean free path of electrons/phonons exceeds
the physical length of the system. Typical electron and phonon
mean free paths range from 1 to 500 nm depending on the wave-
length and energy [1,2,23,27]. An object with characteristic
dimensions less than the mean free paths would generally exhibit
(semi-) ballistic behavior.

Among analytical and numerical methods available to solve the
BTE [1,2,4,23,26,28], Monte Carlo (MC) simulations are proven to
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Nomenclature

Cy speed of light in vacuum [m/s]

D density of states [m3-s]

E energy [eV]

f particle distribution function [-]

g power density/volumetric heat generation [W/m?]

&1 Weyl component of the dyadic Green’s function be-

tween layers s and [ [m]
i complex constant, (—1)"/2 [-]

k wavenumber [m™!]

kr thermal conductivity [W/m-K]

kg Boltzmann’s constant [eV/K]

N number of phonons or ensembles -]

Ny number of division in phonon frequency domain [-]
p polarization branch [-]

P probability [-]

R cumulative probability distribution function [-]
Ran a random number [-]

S distance of interaction [m]

T temperature [K]

t time [s]

group velocity [m/s]

width of the geometry [m]

length of the geometry [m]

depth (or thickness) of the geometry [m]

N < X

Symbols

u direction cosine [-]

T relaxation time [s]

() mean energy of a Planck oscillator, |

B parallel component of the wavevector [rad/m]

Y perpendicular component of the wavevector ( =7 +i)y")
[rad/m]

& dielectric function (= &, + ig]!)

p, 0,z polar coordinate system

o) angular frequency [rad s™!]

Subscripts

* complex conjugate

0 equilibrium

E electric

en ensemble

gen heat generation

H magnetic

ini initial

LA longitudinal acoustic

m medium

ph phonon

ref reference

TA transverse acoustic

w monochromatic

be the most flexible and accurate, yet they can be slow and expen-
sive in terms of computational resources depending on the levels
of physics included in the simulation. Many researchers have used
MC simulations for phonon transport at nanoscales because of its
flexibility in accounting complicated geometries and the correct
phonon dispersion relation and different polarization branches
[14,16-20,25,29-31]. While the simulation has been successfully
used for predicting thermal conductivities of nanostructures such
as nanowires and nanofilms [14,18-20,31-34], there is plenty of
room for improvement in the algorithm, especially for treating
the phonon-phonon scattering mechanisms. On the other hand,
the effect of external heat generation on phonon transport near
ballistic limit has never been studied, which is the focus of this
work.

To explore phonon transport at nanoscales, here we introduce a
new MC simulation procedure to solve phonon transport within a
3D-rectangular geometry, as depicted in Fig. 1. The model is a rect-
angular system (X x Y x Z) where constant temperature is applied
at both ends along the Z-dimension while the other surfaces are as-
sumed insulated. Depending on the dimensions of (X x Y), the
geometry can be considered as a Znm thin film with infinite X
and Y, a nanorod with comparable magnitudes of X, Y, and Z, or a
nanowire where Z >> X and Y. The 2D top view of the geometry
is also provided in Fig. 1 to illustrate phonon activities during the
transport process. Phonons are emitted from the constant temper-
ature boundaries while additional phonons are generated within
the medium/material as a result of external heating. We do not
prescribe the type of external heating in the simulations because
this is irrelevant as long as the heating process directly produces
energetic phonons corresponding to the amount of the volumetric
heat generation specified. The constant temperature boundaries
are assumed to be perfect absorbers. In the simulations, the insu-
lated surfaces along the Z-dimension can be of specular or diffusive
type. As the names implied, a specularly insulated surface acts like
a mirror while a diffusive insulated surface reflects phonons diffu-
sively upon encountering. Reflection in the latter can be regarded
as the effect of surface roughness.

In the following sections, a modified MC simulation procedure
used in this formulation is first explained in detail including all
the phonon scattering properties and algorithms for determining
scattering processes of phonons. These procedures are general
and can be adapted for simulating phonon transport in any mate-
rial; in this work we explicitly use the properties of silicon. Simu-
lations for other materials will be carried out in another study. The
MC simulations are verified against known analytical solutions at
the ballistic and diffusive limits. Next, the impacts of ballistic pho-
non transport on temperature distribution are studied for different
heat generation distributions. Finally, we provide discussions and
potential future works on the applications of the MC results
coupled with near-field thermal radiation, laser heating, or elec-
tron-beam heating.

2. A modified Monte Carlo simulation in phonon transport

A typical MC simulation strategy for phonon transport is rela-
tively straight forward: we initialize, launch, and trace phonon
ensembles in terms of temperature, frequency, polarization, and
positions. Local temperature distribution varies depending on the
positions of these ensembles. A general flowchart of the MC simu-
lation is shown in Fig. 2. The simulation starts by initializing all the
phonon ensembles (including those to be launched from the con-
stant-temperature boundary and within the material due to heat
generation at each At). These ensembles are moved ballistically
from one position to another within the time interval of At, assum-
ing that ensemble properties remain unaltered. Ensembles that hit
a constant-temperature boundary are recorded in terms of energy
for heat flux calculation and then deleted. Those that encounter an
insulated surface are assumed to be reflected specularly or diffu-
sively. Otherwise, ensembles reside at the corresponding locations
after the ballistic movement. Once the propagation phase is com-
plete, local temperature distribution is calculated based on the
positions of the ensembles. It is important to notice that local pho-
non distribution function after the propagation phase is different
from the equilibrium distribution (i.e., the Bose-Einstein distribu-
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tion). Only the local distribution of total phonon energy is known.
Although a medium can still be in a non-equilibrium state, it is
possible to calculate “pseudo-temperature” distribution assuming
that equilibrium exists [14]. Discussions on how the “pseudo-
temperature” is calculated is provided later. When the local (pseu-
do-) temperature distribution is known, the corresponding phonon
scattering properties can be evaluated properly. The probabilities
of scattering for the ensembles are calculated based on the scatter-
ing properties of phonons at the “pseudo-temperature.” If an
ensemble is scattered, its frequency and polarization are reset
based on the equilibrium distributions. Details involving all the
above steps are given in the following sections.

Our MC simulation for phonon transport differs from those in
the literature [14,16-17,32] in the ways of handling the phonon
initialization and scattering procedures. In our preliminary calcula-
tions we have observed that initializing all the phonons for a given
temperature in the simulation was utterly time-consuming, and it
required significant amount of computational resources to store
histories of phonons, even if a scaling factor was used. In addition,
a large amount of phonon ensembles was required to minimize
statistical noises in the temperature distribution. To overcome this
drawback, we set a “reference temperature” above which phonons
are initialized over the entire frequency spectrum. In other words,
only phonons in addition to those of the “reference temperature”
are simulated and temperature is never allowed to fall below the
reference value. The advantage of this method is that computa-
tional resources and statistical noises can be minimized. The “ref-
erence temperature” is usually set to the lowest temperature in the
medium. It is possible that phonons below the reference tempera-
ture, which are not considered in the simulation, are scattered
through N- or U- processes. However, these events happen over
the entire domain and every possible direction, and therefore yield
no effect to the overall heat transfer since they cancel out each
other. We compared MC simulations with and without the pre-
scribed reference temperature, and both demonstrated statistically
similar results. Extending this type of MC method to other applica-
tions/problems should require careful consideration since temper-
ature should not fall below the reference temperature throughout
the entire domain.

In order to utilize this adjustment, the remaining MC proce-
dures should be changed accordingly, which are discussed below.

2.1. Phonon descriptions - dispersion relation, density of states, and
group velocity

For the sake of simplicity, dispersion relation of silicon in any
given direction is assumed to be identical to that in the (001) direc-
tion. The data points of the dispersion relation for silicon are pro-
vided by Brockhouse [35]. Quadratic expressions are used to fit
these dispersion data. Using the fitted expressions, calculating
the angular frequency with known wave vector or vice versa can
be achieved easily during a MC simulation. The dispersion relation
used in this work is shown in Fig. 3, and the quadratic expressions
for the LA- and TA-dispersion relations are obtained as:

o = 9280k — 2.234 x 10 "k*(LA), )

o = 5240k — 2.278 x 107 7K*(TA). 2)

When the dispersion relation is known, the phonon density of states
for a given polarization branch, D(w, p), is calculated as:

K

D(w, p) :W7

3)

and the group velocity of the phonon, vg(w, p), is given as:

vy(,p) =07 )

2.2. Determining properties of phonon ensembles — quantity,
frequency, velocity, and polarization

To start a MC simulation, the required number of statistical
ensembles needs to be specified and initialized. This is done by
first calculating the total actual number of phonons present in
the medium. Since a “reference temperature” is set in the simula-
tion, only phonons that are created beyond the reference are ini-
tialized. Therefore, the initial number of phonons available for
carrying excess heat in the medium above the reference is calcu-
lated as:

Nonini = XYZ> > "[fo(wi, Tii, P) = fo(@i, Treg, P)ID(p, @) Ay, (5)
p i

where the index p includes two transverse acoustic (TA) and one
longitudinal acoustic (LA) polarization branches of phonons. Here,
the equilibrium distribution function (i.e. fo) corresponds to the
Bose-Einstein distribution, given as:

1
fol@.T) = exp(hw/kT) —1° ®)
Since it is impossible to track all these phonons individually, a scal-

ing factor, Wicqing, is used to represent the actual number of pho-
nons that each statistical ensemble carries:

w Nph.ini (7)

scaling = N )
en,m

where N, , is the initial number of statistical ensembles used to
represent the total actual number of phonons present in the med-
ium. The “reference temperature” is set to be the initial tempera-
ture meaning that Ngf,‘_?,fi’ =0 according to Eq. (5) and that the
initial number of statistical ensembles in the medium is null.
Therefore, we use the temperature at the isothermal boundary to
obtain another scaling factor. At each time step, At, the excess
number of phonons emitted from a boundary with constant tem-
perature of T or T; in reference to T,.sat each time step is computed
as:

Ny
Npng = XYAE D> “[fo(3, Tr) — fo(i, Trep)|[Dg (1) - AD(ei, p) A,
p i=1

i=

8)
where (7, - ) is the phonon group velocity normal to the bound-
ary. Thus, the scaling factor becomes:

Nph,R

Wscalmg Nen.R . (9)
In Eq. (9), Npnr is to be replaced with Ny, to calculate the scaling
factor, if the latter is larger than the former. We implemented this
in our algorithm although one can choose the reverse approach to
obtain the scaling factor. Once the scaling factor is determined, it re-
mains identical throughout the entire simulation for consistency.
Using the convention given, the number of statistical ensembles
to be launched from the Tg-boundary is simply N,z while from
the T;-boundary is

Nph‘L

N enl = .
Wscaling

(10)

The next step is to determine the frequency of a phonon ensemble
launched from the Tg-boundary. This is done by first constructing
the CPDF of the number of phonons over the frequency spectrum
as:
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i Ny
Ri=> N />N (11)
= =

where
Nj = Awy{[fo(w;, Tr) — fo(®j, Trer)|D(j, LA) + 2D(w;, TA)}. (12)

In Eq. (11), the frequency spectrum is divided into N, intervals. Then
a random number, denoted as Ran,,, is drawn such that:

Ri 1 < Ran, < R;, (13)
and the actual frequency of the statistical ensemble is calculated as:

Aw;

5
Similarly, equations (11)-(14) are used to determine the frequency
of a phonon ensemble originated from the T;-boundary with the
exception that Ty is replaced with Tj.

When the frequency of the ensemble is known, we can then
determine its polarization by computing the ratio of the LA-pho-
nons to the total number of phonons in all polarization branches
in the o interval, which is given as:

_ fo(@i, Tr) — fo(i, Trer)ID(;, LA)
~ [fo(wi, Tr) — fo(i, Trep)][D(y, LA) + 2D(;, TA)]

® = w; + (2Ran, — 1) (14)

Pa; (15)
A random number, Ranp, is then drawn to compare with P4 ;. If Ranp
is less than P4, then the ensemble belongs to the LA polarization
branch; otherwise, it belongs to the TA polarization branch. The
same procedures are applicable for the T;-boundary. With the fre-
quency and polarization branch known, the group velocity of the
ensemble can be determined easily using Eqgs. (1), (2), and (4). Addi-
tional phonon ensembles are launched within the medium as a re-
sult of the external heat generation; these discussions are provided
in Section 2.8.

2.3. Sampling initial launching and scattering angles

The launching and scattering angles of phonons are assumed to
be isotropic, i.e., uniform in all directions. Sampling of the initial
launching directions of ensembles originated from an isothermal
boundary is slightly different from those launched within the med-
ium. At the isothermal boundary, assuming that the emission is
isotropic and diffuse, the initial launching directions are sampled
from the hemispherical solid angle where the total emission angle
is expressed as:

21 m/2
/ / cos 0sin 0dod¢ = T, (16)
0 0

and the cos 0 accounts for surface area of emission at different 0.
Building the CPDF of Eq. (16) in terms of 0 yields:

0
R(0) = 2/ cos @ sin0' do' = sin® 0. (17)
0

Therefore, by replacing R(0) with a random number, Rany, the polar
angle of emission from the boundary is sampled as:

0 =sin"' \/Rany, (18)

and the azimuthal/zenith angle is sampled as:
¢ = 2mRan,. (19)

For ensembles that are launched within the medium, the polar an-
gle is sampled from the total solid angle, which is given as:

2n T
/ / sin 0dod¢ = 4. (20)
0 0

The CPDF for sampling 0 is then derived as:

0
R(e)zl/ sin6do =1 (1 - coso). (21)
2 Jo 2
and
0 = cos™'(1 — 2Rany). (22)

The zenith angle remains identical as given by Eq. (19). For ensem-
ble scattering, the direction of propagation is also reset following
Egs. (19) and (22).

2.4. 3-D tracking/tracing algorithms

In the case of anisotropic scattering, a fixed coordinate frame
and a moving one are needed to track the ensembles; the scatter-
ing angles are always drawn with respect to the moving coordinate
frame. However, when one assumes isotropic scattering, only a
fixed coordinate frame is required as scattering is equally distrib-
uted in all directions. Direction cosines and distances between
interaction points are crucial for calculating positions of the
ensembles within the medium. Knowing the coordinates of an
ensemble at its previous position (X, Yoid, Zod), the scattered
direction cosines ((/x, /'y, ';), and the distance of interaction
(S=vgat), the new coordinates of the ensemble (Xnews Ynews Znew)
are obtained from the following relations:

Xnew = Xold + M;S (23)
Ynew = Yo + :u;/Sv (24)
Znew = Zold + ,U/ZS (25)

The direction cosines of the ensemble with 0 and ¢ known are ex-
pressed as:

L, = €os ¢ sin 0, (26)
M, = sin¢sino, (27)
Wz = coso. (28)

2.5. “Pseudo-temperature” calculation

Once the statistical ensembles of phonons start to propagate
and interchange between small control volumes (or computational
elements) within the entire computation domain, the resultant lo-
cal phonon distribution loses its thermodynamic equilibrium. In
order to calculate the local temperature, however, it is necessary
to assume that the total energy carried by ensembles of phonons
in a local computational element is equal to the total phonon en-
ergy computed using the Bose-Einstein distribution for the same
volume. The temperature obtained under such condition is called
as a “pseudo-temperature,” denoted as Tpseuqo. Therefore, the fol-
lowing equation needs to be solved for the Tpsuq0 at each time step:

- E(x.y,2)
E E hailfo(wi, Tpseudo) — fo (i, Trep)1Di(wi, P)AW; = ===,
2 i is 1 pseudo e i AxAyAZ

(29)

which varies locally. E(x, y, z) is the total energy carried by phonon
ensembles within a computational element with (AxAyAz) volume.
Eq. (29) can be solved using any numerical method prior the actual
MC simulation to construct a table containing a list of the total en-
ergy in the computational element with corresponding Tpseudo-
Computations can be minimized during the simulation by accessing
the table to draw the correct Tpeeuqo ONCe the total energy is
calculated.
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2.6. Phonon scattering treatment in MC simulation

Scattering of phonons consists of two types, following either a
Normal (N) or an Umklapp (U) process [1,4,23]. Both processes
tend to restore equilibrium; however, only U-processes resist heat
conduction. In this work, only three-phonon scattering is ac-
counted during MC simulation although it is probable that four-
phonon scattering and beyond may occur at high temperatures,
which will be left to future studies. In the three-phonon scattering
processes, two phonons can be combined to yield one phonon or a
phonon can be decomposed into two separate phonons. Both N-
and U-processes follow energy conservation as:

h(,()] + hCl)z — h(l)3. (30)

The indices 1, 2, and 3 indicate three different phonons, respec-
tively, and the process given in Eq. (30) is reversible. In addition,
phonon scattering follows momentum conservation. For N-process,
it is given as:

k1+k2<—>k3. (31)

The Kk’s are the wave vectors of phonons. For U-process, it follows
that:

k] =+ k2 e k3 + G, (32)

where G is the lattice reciprocal vector. Details and physics involved
in phonon scattering will not be further discussed here because
they are covered extensively elsewhere [1,4,16-17,23].

In the current MC simulation, the parameter involved to ac-
count for the phonon scattering is the total relaxation time (i.e.,
Tnu), Which includes both N- and U-processes. According to the
Mathiessen rule, it is given as [1,23]:

1 1 1

— =t 33)
Tnvw TN Ty

The CPDF of phonon scattering between t and t + At is written as:

Rscat =1- exp (ﬁ) (34)
TNy
In order to determine if a phonon ensemble is scattered after a time
step of At, a random number Rang.,, is drawn and compared to Rycq-
If Rans.,, is less than Ryq4, the ensemble is scattered. Hence ensem-
ble frequency, polarization, and direction are reset. Relaxation times
are typically temperature and frequency dependent; therefore,
these quantities are to be calculated at each time step. For silicon,
these properties are well-documented. Here, we use the relaxation
times expressions proposed by Holland [36] for three-phonon scat-
tering and employed by many researchers in MC simulations
[14,16-17] since these expressions produced good fit for the ther-
mal conductivity of silicon in different temperature range. The in-
verse relaxation times for N- and U-processes are given as follows:

LA-phonons and N&U-processes — Tj,y, = Biw?T?, (35)

BTCOT4 V o< W12,
0 V o> W12,
(36)

TA-phonons and N-process — Tyl y = {

0 vV o<,
TA-phonons and U- process — T4, =

sinh(haw/kgT)

(37)

where B;, By, and By are constants to be determined using bulk
thermal conductivity data, and w,; is the frequency corresponding
to k/kmax = 0.5 based on the TA-dispersion curve. The values of these
constants will be given later.

. 2
By vV o= oy,

During the process of phonon scattering, the frequency/energy
of each scattered phonon ensemble is reset while additional energy
may be added or removed. Thus it is crucial to include an addi-
tional step to counteract this imbalance of energy within a control
volume. A destruction/creation scheme for phonons can be imple-
mented to prevent any excess energy gain or loss, and the added/
deleted phonons are to be drawn from the equilibrium phonon dis-
tribution [14]. However, as discussed by Lacroix et al. [16], the
rates of phonon creation and destruction are not equal if scattering
processes in the MC simulation are implemented in this way. They
suggested modifying the CPDF of sampling the scattered phonon
frequency such that phonons with higher scattering rates would
have higher probabilities of being drawn at the equilibrium. To
do so, Eq. (11) is modified accordingly:

i Ny
Ri = ZNszcaj/ ZNszcaja (38)
j=1 j=1

where R, the CPDF for scattering, is given by Eq. (34) and N; fol-
lows Eq. (12). Notice that our Nj's are in a different form compared
to those shown by Lacroix et al. [16] because of Ty, This way of
accounting scattering processes in the MC simulation also conve-
niently remove the requirement of a destruction/creation scheme
for phonon ensembles since energy conservation is achieved statis-
tically in the simulation. Hence, whenever an ensemble is scattered
during the simulation, its frequency will be reset using Egs. (12),
(13), (14), and (38), and its direction will be re-sampled following
Egs. (19) and (22).

2.7. Boundary conditions

Two types of boundary condition are used here: adiabatic and
isothermal boundaries. An ensemble that encounters an adiabatic
boundary is reflected, which can be either specular or diffuse. In
the case of specular reflection, the ensemble is simply reflected
with respect to the normal vector of the boundary. For diffusive
reflection, the direction cosines of the ensemble are reset randomly
according to the isotropic scattering phase function, and the
ensemble is re-launched without altering its energy. When an
ensemble hits to an isothermal boundary, it is deleted.

2.8. Accounting external heat generation

Heat generation is included in our MC simulation by imple-
menting a phonon creation scheme. It is assumed that the type
of heat generation, whether Joule, laser or electron-beam heating,
is not important as long as the rate of phonon production by the
source is known. This requires the distribution of the volumetric
power generated within the material, g”(x,y,z), to be determined
before the MC simulation. When g”(x,y, z) is known, the amount
of energy generated within each computational element and at
each time step is calculated as:

Egen(x,y,2) = §" AxAyAzAL, (39)

and it will be added to E(x, y, z) in Eq. (29) for Tpseuqo calculation. In
what follows, phonon ensembles are generated continuously within
the corresponding computational volume based on the Tpseudo
through Egs. (11)-(14) for frequency, Eq. (15) for polarization
branch, and Egs. (19) and (22) for direction of propagation until
the total energy added to the volume satisfies the amount in Eq.
(39), such that:

Nen gen

Z h(l)iwscaling ~ Egen(xvy’z)v (40)

i=1

where Nepgen is the number of ensembles generated for a given time
step and subject to change during the simulation.
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3. Results and discussions

In the following sections, we first verify the MC simulations
against the Stefan-Boltzmann law at the ballistic limit and then
against the Fourier law at the diffusion limit. At the ballistic limit
where phonon scattering is negligible, temperature between two
isothermal boundaries follows the Stefan-Boltzmann law (SBL),
which is given as:
=i, (41)
When the medium is highly scattering, heat conduction can be de-
scribed accurately using the heat diffusion equation, and it is ex-
pressed as [3]:

V- (krVT)+8" =0, (42)
where the thermal conductivity of silicon is given as [37]:

5
ky = ].SSTE;;3 10 43)
Next the MC results with heat generation are compared against the
heat diffusion equation when the medium is acoustically thick for
various temperature ranges and film thicknesses. After the verifica-
tions, discussions on heat generation in silicon thin films near bal-
listic limit are provided. Particularly, MC results are consistently
compared to the heat diffusion equation to access the validity of
the diffusion approach.

3.1. Computational parameters

For our MC simulations, we do not specify the total number
of phonon ensembles used inside the material as this quantity
increases starting from the time zero and then reaches a con-
stant value at the steady state. Since the concept of “reference
temperature” is utilized, the initial temperature of the medium
is always set equal to the lower temperature imposed on the
isothermal boundaries. Whenever a temperature difference is ap-
plied between two boundaries, we only define the total number
of ensembles emerges from the hotter boundary within a time
step, At, and the scaling factor will be calculated and used
throughout the simulation. Therefore, the number of ensembles
inside our computational domain will be null initially until the
first time step where ensembles are injected from the hotter
boundary. In the case of an identical temperature at the isother-
mal boundary with heat generation, we specify the scaling factor
instead of the number of ensembles at the hotter boundary. The
typical number of ensembles we used to ensure that statistical
fluctuations on the temperature distribution are less than 5% of
the temperature difference applied is between 500 to 1000,
which are launched at each time step from the hotter boundary.
The actual number of ensembles launched at each time step var-
ies statistically depending on the total amount of incoming pho-
non energy at the boundary and the phonon frequency drawn.
The number of division in the phonon frequency spectrum is
set to be 1000, which is sufficient to produce accurate results.
We did not observe any changes to the simulation results when
the frequency division was increased further to 2000 divisions.
This is in line with the simulation performed by other research-
ers on the same topic, e.g., the work by Mazumder and Majum-
dar in Ref. [14].

The time step is crucial in calculating the thermal conductivity
of the medium. If the chosen time step is much larger than the
combined relaxation time of the medium (see Eq. (34)), then the
scattering probability would always be 1, which produces unreal-

istic scattering behaviors and destroys the proper rate of heat con-
duction. Nevertheless, the time step should also be selected
carefully such that the ballistic distance of the fastest ensemble
in the domain does not exceed the smallest space step (i.e., Ax,
Ay, or Az) in any given time step. The current algorithm deter-
mines the time step automatically before the simulation by detect-
ing the smallest combined relaxation time (or highest combined
scattering rates) and the time for the fastest ensemble to ballisti-
cally penetrate the smallest space step, and then taking half of
whichever quantity that is smaller to be the time step.

The magnitudes for the constants B;, By, and Bry required
in Egs. (35)-(37) are readily available in the literature
[17,32,34,36]. However, these constants are quite different from
each other, and they depend heavily on the form of dispersion
relations used in the simulation. Using the set of values provided
by these works, we were not able to retrieve the correct bulk
thermal conductivity since the dispersion relation in our simula-
tion was fitted using quadratic equations, which was different
from them. In addition, our treatment of scattering mechanism
in the MC simulation is rather different from those in the liter-
ature [17,32,34,36], but similar to the work by Lacroix et al. [16]
although the authors did not explicitly list the scattering expres-
sions and constants. Therefore, we calibrate our MC simulation
based on the bulk thermal conductivity of silicon and retrieve
the set of constants that correspond to our implementation,
starting from those provided by Holland [36]. In Table 1, we list
all the values found elsewhere [17,32,34,36] and in our work for
comparison purpose Figs. 1-3.

3.2. Verification of MC simulations

Fig. 4a and b depict the comparisons between MC results and
predictions by the SBL at the ballistic limit. The thickness of the
film is 100 nm. The temperature difference applied in Fig. 4a is
10-20 K while in Fig. 4b it is 30-40 K. It can be seen that results
computed by the MC simulations match well with the SBL. For
the diffusion limit verifications, we compare two cases: one with
varied thermal conductivity where larger temperature difference
is applied between 250 and 500 K, and the other with constant
thermal conductivity in which very small temperature difference
of 4K (i.e., between 298 and 302 K) is imposed. A film thickness
of 5 um is set for the comparison since heat conduction is diffusive
based on the applied temperature differences. Fig. 4c and d show
temperature distributions computed using the MC simulation
and the heat diffusion equation for the two cases. Good agreement
between the two sets of results is observed.

Next, MC simulations which account for heat generation inside
silicon at the diffusion limit are verified against the heat diffusion
equation (i.e., Eq. (42)). Temperature difference is applied between
two ends of the silicon thin film while the entire film is placed un-
der uniform heat generation. Two different film thicknesses of 5
and 6 pm with applied temperature differences of 300-350 K and
400-450K are used in the comparisons. Results are shown in
Fig. 5. It is observed from Fig. 5a and c that the temperature profiles
predicted by MC simulations for film thicknesses of 5 and 6 pum for
an applied temperature difference of 300-350 K with a heat gener-
ation strength of 2 x 10'> W/m? agree well with the results com-
puted using the heat diffusion equation. When the temperature
difference is raised to 400-450 K, we observe that MC results pro-
duce slightly higher temperature distribution than that of the heat
diffusion equation (see Fig. 5¢). This can be easily explained from
the fact that our simulation give a slightly lower thermal conduc-
tivity at the bulk regime at 400 K and beyond (see Fig. 5d), which
subsequently causes higher temperature distribution in the
simulation.
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Table 1
Comparisons between parameters used in evaluating phonon scattering rates for silicon given in the literature and this work.
Source Parameters
B, Br Bru
[s-K~3]; Eq. (35) [K~3]; Eq. (36) [sec]; Eq. (37)
Holland, 1963 [36] 2.0 x 107 93x 10713 5.5 x 10718
Chen et al., 2005 [32] 1.0 x 1073 93 x 1013 55x 10718
Randrianalisoa and Baillis, 2008 [17] 2.0 x 10724 if 0 < wyp2; 8.03 x 107 else w > Wy, 93 x10° 1 7.4 %1071
Baillis and Randrianalisoa, 2009 [34] 2.0 x 1072 if 0 < wyp2; 94 x 1072 else @ > w12 93 x 107 "3 1.1x 10718
Present study 2.0x 107 93 x 1013 1.7 x 10718
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3.3. Size effect on thermal conductivity

It is well-known that thermal conductivity of a material at a gi-
ven temperature is reduced when the characteristic length of the

Wave vector, & (1/m)

Fig. 3. Data points of the dispersion relation of silicon obtained from Brockhouse
[35] and the quadratic fits of the LA-branch and TA-branch used in the MC
simulation are given.

system decreases below the average mean free path of the heat
carriers, owing to the ballistic heat conduction and the limiting
dimension [4,23]. Under this condition, ballistic transport surfaces
and enables heat carriers to propagate freely without scattering in
a given direction. Thus the net energy exchange between two
points is reduced, and hence lower thermal conductivity is ob-
served. Using the MC simulation, the reduced thermal conductivity
can be easily computed especially for nanofilms and nanowires
[17,32-34,38-43]. Only the cross-plane thermal conductivities
are calculated in our application. The in-plane thermal conductiv-
ity will be studied in another work. Fig. 5d illustrates thermal
conductivities for silicon at 300 and 400 K from a film thickness
of 10 nm to 6 pm. Below 3 pm, the thermal conductivity of silicon
deviates significantly from its bulk value. It is important to note
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diffusion limit.

that thermal conductivities are just derived values from the simu-
lation for the sake of comparison against bulk values. Unlike the
application of the Fourier law where heat flux can be easily calcu-
lated once the thermal conductivity is known assuming a linear
continuous temperature profile, heat flux cannot be obtained with-
out knowing the actual temperature distribution when ballistic
transport is present. This is because discontinuities in the temper-
ature distribution near the isothermal boundaries are evident (see
Fig. 6).

3.4. Effect of Ballistic phonon transport on thin film heating

Using MC simulations, we studied next the effect of ballistic
transport on the temperature distribution when a uniform heat
source was present in the film. We compared the results against
the heat diffusion equation to demonstrate the error in using the
diffusion approach for solving heat conduction below the average
mean free path of phonons. A temperature difference of 300-
350K was applied on a silicon film with thickness of 10 and
100 nm. We used different source strengths in both cases so that
the elevated temperatures are within the same range for the sake
of comparison. Fig. 6a depicts the temperature distribution inside
a 100 nm silicon film. The MC results are significantly different
from those computed using the heat diffusion equation. We ob-
serve that for the same applied volumetric power generation, the
diffusion method clearly underestimates the temperature distribu-
tion when compared against results from MC simulations. The
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law at the ballistic limit and (c) and (d) against the heat diffusion equation at the

volumetric power generation on the order to 10'7 is not sufficient
to raise temperature beyond 350 K while MC simulation clearly
indicates that the film is heated beyond the temperatures at the
boundaries. The reason for the discrepancy between diffusion
approach and the MC simulation is that for a 100 nm silicon film
the thermal conductivity is reduced from the bulk value as seen
in Fig. 5d. The generated heat inside the film is conducted away
slower than the bulk assumption, resulting higher temperature
distribution. To have better fit against the MC results for the film,
we used the thermal conductivity derived from the MC simulation
at 400 K in the heat diffusion equation; nevertheless, we failed to
set the applicability of the equation even with the modification.
These results are shown by the dotted lines in Fig. 6a. Clearly,
the combined effect of the reduced thermal conductivity due to
the ballistic behavior and the elevated temperature renders the dif-
fusion approach impractical even if one knows the magnitude of
the reduced thermal conductivity derived from any sources. Simi-
lar observations are noted for a 10 nm silicon film (see Fig. 6b) with
the exception that the discrepancy is more pronounced and tem-
perature profiles are close to flat distribution as a result of inten-
sive ballistic phonon transport.

For non-uniform heating pattern inside silicon thin film, we also
observed identical behaviors as those discussed for Fig. 6a and b.
The localized heating profile used here is of a Gaussian type as
shown in Fig. 6¢c. The profile was normalized by the maximum
value at the center of the film. Using different maximum source
values as necessary, we tried to increase the temperature inside
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Fig. 5. (a)-(c) Verification of MC simulation results against the temperature distribution computed using the heat diffusion equation for uniformly distributed heat source. (d)
The thermal conductivity and temperature distribution inside silicon thin film as a function of film thickness.

a film with thickness ranging from 10 to 5 pm and with a constant
temperature of 300 K applied at both surfaces of the film. Results
are depicted in Fig. 6d. At the film thickness of 5 pm, both results
from the MC simulation and diffusion approach agree well as heat
conduction is diffusive. For film thicknesses of 10 and 100 nm, the
heat diffusion equation underestimates the temperature distribu-
tion inside the film. Also, discontinuities near the isothermal
boundaries become increasingly pronounced when the film is re-
duced below 100 nm. Results from these comparisons imply that
for devices with dimension below 100 nm, thermal conduction
should not be modeled using diffusion approach as it would signif-
icantly underestimate heating and lead to device failure if not de-
signed correctly. Although the analysis presented in this work is
limited to phonon transport, similar conclusions can be expected
for electron transport inside a nanodevice in which the thermal
heat flux of electrons is mostly approximated using the Fourier
law, even when the average mean free path of electrons is compa-
rable to the device length.

3.5. Temperature distribution inside a “Nanorod” due to heat
generation

The MC Results discussed thus far are for silicon thin films. In
this section, we study the effect of the diffuse insulated sidewalls
on the temperature distribution when heat source is present and
when the geometry has finite X and Y (see Fig. 1). The values of X

and Y are assumed to be 10 or 20 nm while the thickness Z is either
100 nm or 500 nm for the purpose of comparisons. Based on the
dimensions of the geometry, we termed these “nanorods.” Both
ends of the nanorods are set to be at 300 K at all times. It is then
exposed to non-uniform heat generation based on the profile given
in Fig. 6¢c with a maximum of 5 x 10'” W/m-K for Z= 100 nm and
5 x 10'® W/m-K for Z =500 nm. Results are presented in Fig. 7a,
where we notice that when the insulated sidewalls reflect diffu-
sively, heating inside a nanorod is further increased. This is due
to the fact that the diffuse reflection on the sidewalls and the small
cross section (20 x 20 nm) create additional scattering possibility
for phonons and therefore contribute to the reduction of thermal
conductivity in nanorods. For the same magnitude of heat genera-
tion along the Z-dimension, it is observed that thinner nanorods
(with diffuse reflection on the sidewalls) cause higher temperature
rise as a result of lower thermal conductivity, as evident by com-
paring the temperature profiles computed for the cross section of
(20 x 20 nm) and (10 x 10 nm). It is obvious from Fig. 7a that the
heat diffusion equation fails to predict any significant temperature
rise in the nanorods, which is in line with observations obtained in
the previous sections.

3.6. Establishing temperature gradient inside nanostructures

Next, we are interested in determining the order of magnitude
of volumetric power generation required to increase temperature
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of a nanostructure by one degree. This information is useful espe-
cially for determining if an external source is suitable for altering
temperature distribution inside a nanostructure. It is already ob-
served that the heat diffusion equation severely underestimates
temperature distribution when heat source is present and there-
fore overestimates the required power for heating at nanoscales.
Therefore, it is important to carry on MC calculations to determine
the required volumetric power generation with proper physics. For
this purpose we set up a thin film with one end insulated while the
other is maintained at 300 K at all times. We then slowly increase
the uniform heat source across the entire film until the tempera-
ture at the insulated end is raised by one degree. The volumetric
power generation obtained this way is specific to this set of bound-
ary conditions. For example, if both ends of the film are maintained
at a constant temperature, then more power generation would be
needed. Fig. 7b depicts the magnitude of the heat source required
to modify temperature at the adiabatic end by one degree while
the other end is kept at constant temperature. The results obtained
both from the heat diffusion equation and the MC simulation are
shown. Notice that the required power densities predicted by both
the heat diffusion equation and the MC simulation are identical
when the thickness is sufficiently large (i.e., >>3 pum, see Fig. 5d).
Below a film thickness of 100 nm, however, the heat diffusion
equation over-predicts the required power density by an order of

magnitude or higher. To modify the temperature distribution of a
silicon film with thickness below 500 nm, it would require a heat
source with strength in the order of 10'> W/m-K and higher, under
the set of conditions described here.

It is extremely difficult to establish temperature gradient in sil-
icon nanostructures as heat is evenly distributed due to the rela-
tively high value of its thermal conductivity. Based on our
numerous simulation trials, unless the thermal conductivity is in
the order of 107! W/m-K or less (or in other words, nearly non-
conductive) and if the incident power density is comparable to
the those provided in Fig. 7b, the possibility of observing temper-
ature gradient in a nanostructure is nearly null. Uniform tempera-
ture distribution assumption would be a wise choice under the
prescribed conditions where heat conduction does not apply.

3.7. Near-field thermal radiation, pulsed laser, or electron beam as
heat source

Discussions provided in the above sections are not specific to
any external heating process of the nanostructures. Next we dis-
cuss the possibility of using different heating methods such as
near-field thermal radiation, a pulsed laser, or an electron beam
for modifying temperature distribution inside silicon thin films.
Our discussions below do not target on any specific engineering
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applications, but rather we comment on the suitability of using the
diffusion approach or the MC simulation on solving the problem.

3.7.1. Near-field radiative heat transfer between a bulk and a film

In order to estimate the magnitude of volumetric heat genera-
tion due to near-field radiative heating on a silicon thin film,
near-field radiative heat exchange between a film and the bulk ob-
ject needs to be solved. Near-field radiant energy exchanges be-
tween a bulk and a film, separated by a vacuum gap of thickness
d., with perfectly smooth and parallel surfaces is schematically de-
picted in Fig. 8a. It is assumed that the media are in local thermo-
dynamic equilibrium, homogeneous, isotropic, nonmagnetic, and
described by a frequency-dependent dielectric function &.(w) local
in space. The system is invariant along the p-direction and
azimuthally symmetric, such that only variations of the radiative
flux along the z-direction are considered. For simplicity, the
substrate on which the thin film is coated is modeled as a non-
absorbing medium with a refractive index of 1. The bulk is main-
tained at constant temperature T;, while the temperature of the
film varies along the z-direction. The near-field radiative heat flux
between the bulk and the film is calculated starting with the Max-
well equations and using the fluctuational electrodynamics
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Fig. 8. (a) Schematic representation of the geometry considered: the radiative heat
flux is calculated between a bulk (medium 1) and a film (medium 3) submerged in
vacuum and separated by a gap d.. (b) Near-field thermal radiative power density
absorbed by the n-doped (10'7 cm~3) silicon thin film as a function of gap size and
thickness.

formalism, where the source of thermal radiation is modeled as a
stochastic current density [44-46]. The link between the stochastic
current density and the local temperature of the emitting medium
is provided by the fluctuation—-dissipation theorem (FDT). The
monochromatic radiative flux at an arbitrary location z. in film 3
due to the emitting bulk 1 at temperature T; is determined by cal-
culating the time-averaged z-component of the Poynting vector
and by applying the FDT [47-49]:
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where B is the wavevector parallel to the surfaces (i.e., the p-com-
ponent of the wavevector) and ® is the mean energy of a Planck’s
oscillator in thermal equilibrium. The variable gfﬁx, where o in-
volves a summation over the three orthogonal components, is the
electric/magnetic plane wave representation (Weyl component) of
the dyadic Green’s function (DGF). The DGF can be seen as a spatial
transfer function relating the fields observed at z. in layer 3 with
frequency w and wavevector § to a source located at z within med-
ium 1. The Weyl components of the DGF are integrated in Eq. (44)
over the volume of the emitter from z' = —co to 0. Note that the
Weyl components of the DGF needed to compute Eq. (44) have been
given by Francoeur et al. [47].

The near-field radiative flux absorbed by a control volume Az;
within film 3, delimited by the boundaries z;.; and z;, is calculated
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by computing the difference between the flux crossing the bound-
ary z.=z; (ie, at zj*) and the flux crossing the boundary z. = zj,;
(ie. zf ;). For a given separation gap d,, the radiative heat flux ab-
sorbed by the control Az; due to an emitting bulk at temperature T,
is the same as the flux absorbed by medium 1 due to an emitting
control volume Az; at temperature T, [49]. Using this fact, the total
(i.e., integrated over all angular frequencies) net near-field radia-
tive heat flux absorbed within a control volume Az; at temperature
T; due to an emitting bulk maintained at temperature T; is given
by:
2 r 00

ps_ W .
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» (45)

where the spatial integration over the volume of the emitter has
been performed analytically [47] and 7 is the perpendicular compo-
nent of the wavevector (i.e., the z-component of the wavevector).
The heat generation term in a control volume j, due to near-field
thermal radiation, is then calculated by dividing Eq. (45) by the vol-
ume Az;. The frequency-dependent dielectric function of doped sil-
icon has been modeled using the formulation given by Fu and Zhang
[50].

It is important to note that when using Eq. (45) to calculate the
heat generation term, we do not account for the redistribution of
energy inside the film due to radiant energy exchanges between
the control volumes. Indeed, this contribution is negligibly small
compared to heat conduction within the thin layer. Moreover, for
the temperatures involved in the simulations presented hereafter,
near-field thermal radiation emitted by the bulk and absorbed by a
control volume j dominates the value of the heat generation term,
such that radiative transfer between the control volumes does not
affect in a perceptible manner the heat generation term.

The near-field thermal radiative power density absorbed by the
n-doped (10'7 cm~3) silicon thin film is depicted in Fig. 8b for two
different film thicknesses (i.e., Z=20 and 100 nm) as a function of
various gap sizes (denoted as d.) between the film and the bulk sil-
icon. The temperature of the bulk silicon above the film is assumed
to be 500 K, which is served as heat source for the film at 300 K.
The power density absorbed within the film starts with a maxi-
mum value at the top surface and decreases exponentially along
the penetration depth. It is observed that the gap size affects the
power density significantly, ranging from 10''-10'” W/m?> where
the gap size is decreased from 100 to 1 nm. Under these conditions,
we can ask if a temperature gradient exist. The answer lies within
Fig. 7b where the minimum required volumetric heat generation
for creating temperature gradient is derived. For a thickness of
20 nm, a uniform power density of ~3 x 10'® W/m? is needed.
However, the power density absorbed by the film due to near-field
thermal radiation heating is evidently below the threshold for all
the gap sizes considered. Clearly, thermal conduction from the
lower bulk object overwhelms the effect of near-field thermal radi-
ative heating. On the other hand, if the bottom surface of the film is
insulated rather than maintained at a constant temperature or if
the film is deposited on a non-conductive substrate, near-field
thermal radiative heating would elevate the film temperature,
but the film would be at a uniform temperature.

The above analysis demonstrates that it is utterly difficult to
establish temperature gradient inside a silicon film with a thick-
ness of 20 nm unless a strong and powerful heating means is uti-
lized. However, this may not be the case for a 100 nm silicon
film where we observe that the minimum required power density

is lowered by an order of magnitude compared to that of 20 nm
film, as shown in Fig. 7b while the near-field thermal radiative
power density does not change significantly near the top surface,
provided the gap size is maintained at a few nm or less. Also, notice
that if the temperature of the top bulk silicon is increased to
1600 K (near melting temperature of silicon at 1687 K), power den-
sity absorbed by the film near the top film surface surpasses
3 x 10" W/m? for creating temperature gradient although it
decreases to below 10> W/m> towards the bottom film surface.
Under these conditions, temperature gradient may be present in
the film.

The above conclusion is drawn based on the specified set of con-
ditions used here including a doping level of 10'” cm~2 for the sil-
icon thin film for near-field enhancement in the thermal radiative
exchange with the bulk silicon. For higher doping levels and dis-
tinct materials, different observations may be obtained depending
on the dispersion relation and optical properties. Simulations with
different set of conditions will be carried out in a future work.

3.7.2. Pulsed laser or electron beam as heat source

The discussions within this work mainly focus on phonon trans-
port. For ultra-fast heating using femto-/pico-seconds pulsed lasers
or electron beams, phonon transport needs to be coupled with
electron transport in order to correctly describe the physics
[11,51]. The most commonly used theory for modeling ultra-fast
heating phenomena is the two-temperature model [2,9-10], which
consists of two parabolic heat diffusion equations for electrons and
phonons, given as:

OTe S
(electrons) C, FTa =V - (keVTe) = Gepn(Te — Tpon) + 4", (46)

Oy
"ot
Through initial intensive heating by the pulsed laser, electrons gain
energetic energy from photons and therefore the electron tempera-
ture increases while phonons remain at their initial temperature. It
is then by electron-phonon scattering, the phonon temperature is
elevated. In this situation, phonons do not directly interact with
the source, which necessitates the coupling between electron and
phonon transport. When average phonon mean free path is larger
than the object dimension, Eq. (47) needs to be replaced with the
BTE, which can be solved using the MC simulation. Same applies
for Eq. (46). However, if the heating power density distribution is
insufficient to establish temperature gradient, then it is not neces-
sary to apply the MC simulation assuming that all the boundaries
are insulated. In other words, the term — G, pu(Tpn — Te) in Eq.
(47) needs to be highly non-uniform in space such that:

(phonons) G, =V - (kpn VTpn) — Ge_pn(Tpn — Te). (47)

2
CeppZ” >> 1, (48)
kMC‘ph
to ensure that temperature gradient exists. Nevertheless, if isother-
mal boundaries are involved in the analysis, the MC simulation is
always required especially when the mean free path is comparable
to the object dimension.

4. Conclusions

In this study, nanoscale phonon transport within silicon struc-
tures with different aspect ratios subjected to internal heat gener-
ation was explored. A new MC simulation algorithm was
developed for phonon transport, which was different from those
available in the literature in the way that a “reference tempera-
ture” was used to eliminate unnecessary additional ensemble trac-
ings. The “reference temperature” was set identical to the initial
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temperature and the transient temperature never falls below this
value. Only phonons in addition to those presented at the “refer-
ence temperature” were simulated to reduce the memory storage
and computational resources. Because of this implementation in
the MC simulation, additional modifications to some of the steps
for phonon initialization, scattering, and pseudo-temperature cal-
culation were required and presented accordingly. Propagations
of phonons in the transverse and longitudinal polarization
branches were also accounted for in the calculations. MC Results
were verified against the Stefan-Boltzmann law at the ballistic
limit and the heat diffusion equation at the diffusion limit. In addi-
tion, phonon transport due to heat generation for various film
thicknesses was also studied and compared against the heat diffu-
sion equation. It was found that the heat diffusion equation signif-
icantly underestimates temperature distribution at nanoscales in
the presence of external heat source due to the reduced thermal
conductivity. Using the reduced thermal conductivity computed
by the MC simulation in the heat diffusion equation, the resultant
temperature distribution was still incorrect compared to that pro-
duced by the MC simulation. This implies that the heat diffusion
equation is not suitable at all for calculating temperature distribu-
tion in the presence of heat source at nanoscales, even if the correct
reduced thermal conductivity is known. This is important because
temperature increase in a nanodevice subjected to heat generation
is much higher than those predicted using diffusion approaches,
and can lead to device failure if not designed properly.

A simple analysis of using different possible heat sources,
including near-field radiative heat transfer, pulsed-laser beam,
and electron-beam for heating silicon thin films was also provided.
To ensure that a temperature gradient exists in nanodevices espe-
cially ones with dimensions smaller than the mean free path of
phonons, a powerful source in the order of 10'> W/m? and above
(for device length less than 200 nm) is required, given the set of
parameters applied here. Otherwise, uniform phonon-temperature
assumption is acceptable for thermal analysis.
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