Show simple item record

dc.contributor.authorBall, J. M.
dc.contributor.authorŞengül, Yasemin
dc.date.accessioned2015-10-30T07:31:10Z
dc.date.available2015-10-30T07:31:10Z
dc.date.issued2014
dc.identifier.issn1572-9222
dc.identifier.urihttp://hdl.handle.net/10679/999
dc.identifier.urihttp://link.springer.com/article/10.1007%2Fs10884-014-9410-1
dc.description.abstractWe consider the equation of motion for one-dimensional nonlinear viscoelasticity of strain-rate type under the assumption that the stored-energy function is λ-convex, which allows for solid phase transformations. We formulate this problem as a gradient flow, leading to existence and uniqueness of solutions. By approximating general initial data by those in which the deformation gradient takes only finitely many values, we show that under suitable hypotheses on the stored-energy function the deformation gradient is instantaneously bounded and bounded away from zero. Finally, we discuss the open problem of showing that every solution converges to an equilibrium state as time t→∞ and prove convergence to equilibrium under a nondegeneracy condition. We show that this condition is satisfied in particular for any real analytic cubic-like stress-strain function.en_US
dc.description.sponsorshipOxford Centre for Nonlinear PDE ; European Commission ; TÜBİTAK
dc.language.isoengen_US
dc.publisherSpringer Science+Business Mediaen_US
dc.relationinfo:eu-repo/grantAgreement/EC/FP7/291053en_US
dc.relationinfo:turkey/grantAgreement/TUBITAK/2213en_US
dc.relation.ispartofJournal of Dynamics and Differential Equations
dc.rightsrestrictedAccess
dc.titleQuasistatic nonlinear viscoelasticity and gradient flowsen_US
dc.typeArticleen_US
dc.peerreviewedyesen_US
dc.publicationstatuspublisheden_US
dc.contributor.departmentÖzyeğin University
dc.contributor.authorID225540
dc.contributor.ozuauthorŞengül, Yasemin
dc.identifier.wosWOS:000366644300005
dc.identifier.doi10.1007/s10884-014-9410-1
dc.subject.keywordsViscoelasticityen_US
dc.subject.keywordsGradient flowsen_US
dc.subject.keywordsNonlinear partial differential equationsen_US
dc.subject.keywordsInfinite-dimensional dynamical systemsen_US
dc.identifier.scopusSCOPUS:2-s2.0-84961349897
dc.contributor.authorFemale1


Files in this item

FilesSizeFormatView

There are no files associated with this item.

This item appears in the following Collection(s)

Show simple item record


Share this page