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Özyeğin University
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Abstract

We consider learning approximate Nash equilibria for discrete-time mean-field games with
stochastic nonlinear state dynamics subject to both average and discounted costs. To this
end, we introduce a mean-field equilibrium (MFE) operator, whose fixed point is a mean-
field equilibrium, i.e., equilibrium in the infinite population limit. We first prove that this
operator is a contraction, and propose a learning algorithm to compute an approximate
mean-field equilibrium by approximating the MFE operator with a random one. Moreover,
using the contraction property of the MFE operator, we establish the error analysis of
the proposed learning algorithm. We then show that the learned mean-field equilibrium
constitutes an approximate Nash equilibrium for finite-agent games.

Keywords: Mean-field games, approximate Nash equilibrium, fitted Q-iteration algo-
rithm, discounted-cost, average-cost.

1. Introduction

We consider learning approximate Nash equilibria in discrete-time stochastic dynamic games
with a large population of identical agents in a mean-field interaction. The usual approach
to analyse these game models is to study the infinite-population limit of the problem. This
idea was utilized in the works of Huang et al. (2006), Lasry and P.Lions (2007), where
mean-field games (MFGs) were introduced to obtain an approximate Nash equilibria for
continuous-time differential games with a large number of agents interacting via a mean-
field term (i.e., the empirical distribution of the local states). For studies of continuous-time
mean-field games with various models and cost functions, see Huang et al. (2007); Tembine
et al. (2014); Huang (2010); Bensoussan et al. (2013); Cardaliaguet (2011); Carmona and
Delarue (2013); Gomes and Saúde (2014); Moon and Başar (2016a).
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Our goal in this paper is to learn approximate Nash equilibria for a class of stochastic
dynamic games by considering stationary mean-field games in the infinite population limit.
In particular, we establish an algorithm to learn stationary or oblivious mean-field equilib-
rium (see Weintraub et al. (2005, 2008)) in the infinite population limit and make use of
the learned equilibrium in the finite agent setting as an approximate Nash equilibrium.

In stationary mean-field games, a generic agent competes against a stationary mean-field
term that time-homogeneously models the collective behaviour of other agents (Weintraub
et al. (2005)), and therefore solves a Markov decision process (MDP) with a constraint
on the stationary distribution of the state. The stationary mean-field equilibrium, which
consists of a policy and a state measure, is the concept of equilibrium in the infinite-
population limit. This pair must satisfy the Nash certainty equivalence (NCE) principle
(Huang et al. (2006)), which states that the policy should be optimal under a given state
measure, and when the generic agent applies this policy the resulting stationary distribution
of the agent’s state must be the same as the state measure. The existence of stationary
mean-field equilibrium can be established via Kakutani’s fixed point theorem under quite
mild assumptions. Furthermore, it can be shown that when the number of agents is large
enough, the policy in stationary mean-field equilibrium is an approximate Nash equilibrium
for a finite-agent setting (Adlakha et al. (2015)).

In the literature, Weintraub et al. (2010) propose an algorithm for computing oblivious
equilibrium in a stationary mean-field industry dynamics model. Adlakha et al. (2015)
study a stationary mean-field game model with a countable state-space under an infinite-
horizon discounted-cost criterion. Huang and Ma (2019) consider stationary mean-field
games with binary action space, where they establish the existence and the uniqueness
of the stationary mean-field equilibrium. Light and Weintraub (2022) consider stationary
mean-field games with a continuum of states and actions, and establish a novel uniqueness
result for stationary mean-field equilibrium Gomes et al. (2010) study both stationary and
non-stationary mean-field games with a finite state space over a finite horizon and establish
the existence and uniqueness of the mean-field equilibrium for both cases. Elliot et al.
(2013); Moon and Başar (2015); Nourian and Nair (2013); Moon and Başar (2016b) consider
discrete-time mean-field games with linear state dynamics. Saldi et al. (2018, 2019) consider
a discrete-time non-stationary mean-field game with Polish state and action spaces under
the discounted-cost optimality criterion for fully-observed case and partially-observed case,
respectively. Saldi et al. (2020) consider a discrete-time risk-sensitive non-stationary mean-
field game with Polish state and action spaces. Biswas (2015); Wiecek (2019); Wiecek and
Altman (2015); Saldi (2020) study discrete-time non-stationary mean-field games subject
to the average-cost optimality criterion.

We point out that, except the linear model and the paper of Weintraub et al. (2010),
the studies mentioned above only establish the existence and uniqueness of the mean-field
equilibrium, and they propose no algorithm with convergence guarantee to compute this
mean-field equilibrium when the model is known. In our recent work (Anahtarci et al.
(2020a)), we study this problem for a very general class of models, propose a value iter-
ation algorithm, and prove the convergence of this algorithm to the stationary mean-field
equilibrium. In this current paper, we generalize this algorithm to the model-free setting
using fitted Q-iteration (see Antos et al. (2007a)); that is, we propose a learning algorithm
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to compute an equilibrium solution for discrete-time stationary mean-field games under the
discounted-cost and average-cost optimality criteria.

Learning in stationary mean-field games has become prominent in recent years. In the
continuous-time setup, Yin et al. (2014) develop a learning algorithm for a mean-field oscil-
lator game model to obtain approximate Nash equilibrium. In the discrete case, Kash et al.
(2011) consider the learning of equilibrium policy in static anonymous games with count-
ably many players. Yang et al. (2018b) establish a learning algorithm for classical stochastic
games via mean-field approximation by factoring the Q-function in terms of actions. Subra-
manian and Mahajan (2018, 2019) consider learning gradient-based equilibria in stationary
mean-field games and develop a two-time scale stochastic gradient ascent algorithm, respec-
tively. Guo et al. (2019) develop a Q-learning algorithm to obtain stationary mean-field
equilibria for finite state-action stationary mean-field games, where the convergence analy-
sis depends on contractivity assumptions on the operators involved in the algorithm. Elie
et al. (2019) establish a fictitious play iterative learning algorithm to compact state-action
non-stationary mean-field games under finite-horizon discounted cost criterion, where the
dynamics of the state and the one-stage cost function satisfy certain structure. They also
propose an error analysis of the learning algorithm for the game model with deterministic
state dynamics. Carmona et al. (2019a) study linear-quadratic mean-field control and es-
tablish the convergence of policy gradient algorithm. Fu et al. (2019) develop an actor-critic
algorithm to learn mean-field equilibrium for linear-quadratic mean-field games. Yang et al.
(2018a) consider a mean-field game in which agents can control their transition probabilities
without any restriction. In this case, the action space becomes the set of distributions on
the state space. Using this specific structure, they can transform a mean-field game into an
equivalent deterministic Markov decision process by enlarging the state and action spaces,
and then, apply classical reinforcement learning algorithms to compute mean-field equilib-
rium. Carmona et al. (2019b) apply a similar analysis to mean-field control problems, and
the convergence of the Q-learning algorithm for deterministic systems is established.

In this paper, we develop a learning algorithm that guarantees convergence in a discrete-
time stationary mean-field game with nonlinear stochastic state dynamics. We take into
account the average cost criterion, in contrast to earlier research that mainly dealt with
discounted cost or finite-horizon total cost criteria. It’s also important to note that the
majority of the aforementioned works with convergence guarantees focus on finite state and
finite action settings, whereas we assume that the action space is a compact and uncountable
subset of a finite dimensional Euclidean space. In general, it is more challenging to deal
with this assumption. Furthermore, we prove that our algorithm converges to the global
stationary mean-field equilibrium rather than local stationary mean-field equilibria. We
also establish easily verifiable conditions on the system components for the convergence of
the learning algorithm, which is lacking in some of the prior works mentioned above.

Our learning algorithm performs two-steps in each iteration. In the first step, given any
mean-field term, an optimal policy is learned via a fitted Q-iteration algorithm. Then, using
this optimal policy and the current mean-field term, the next mean-field term is computed
in the second step by an empirical estimate of the transition probability, which is obtained
via simulation. We prove that the policy obtained by this algorithm is close to the mean-
field equilibrium policy, and can therefore be used as an approximate Nash equilibrium for
a finite-agent game if the number of agents is sufficiently large.
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The error analysis of our learning process depends crucially on the determination of the
contraction of the operator providing the stationary mean-field equilibrium. It is necessary
to prove that the optimal policy is Lipschitz continuous with respect to the current mean-
field term since the optimal policy corresponding to the current mean-field term affects
the next mean-field term through the value iteration algorithm. Although establishing
the Lipschitz continuity of the optimal Q function with respect to the mean-field term is
straightforward, it is quite challenging to do the same for the optimal policy. To overcome
this problem, we assume that the function in the optimality equation is strongly convex
and has Lipschitz continuous gradient. In our recent work (Anahtarci et al. (2020b)) we
provide a different approach by introducing a strongly convex regularization function in the
one-stage cost function that helps us to obtain Lipschitz continuity of the optimal policy
with respect to the mean-field term via duality between strong convexity and smoothness,
therefore eliminating the need for strong convexity and smoothness assumptions on the
system components when establishing the Lipschitz regularity of the optimal policy with
respect to the mean-field term. Although this regularization approach allows us to relax
the assumptions on the system components, it adds bias to the equilibrium solution since
regularization in general favours randomized policies over deterministic policies, and causes
the regularized stationary mean-field equilibrium to deviate from the true stationary mean-
field equilibrium as a result of the additional regularization term in the one-stage cost
function.

The paper is organized as follows. In Section 2, we introduce the mean-field game and
define the mean-field equilibrium. In Section 3 and Section 6, we introduce MFE operator
when the model is known for discounted-cost and average-cost, respectively. In Section 4
and Section 7, we formulate the finite-agent version of the game problem for discounted-
cost and average-cost, respectively. In Section 5 and Section 8, we propose and perform
the error analysis of the learning algorithm for the unknown model and prove that learned
mean-field equilibrium constitutes an approximate Nash equilibrium for finite-agent games
for discounted-cost and average-cost, respectively. In Section 9, we propose a numerical
example. Section 10 concludes the paper.

Notation. For a finite set E, we let P(E) and M(E) denote the set of all probability
distributions on E and the set of real-valued functions on E, respectively. In this paper,
P(E) is always endowed with l1-norm ‖ · ‖1. We let m(·) denote the Lebesgue measure
on appropriate finite dimensional Euclidean space Rd. For any a ∈ Rd and ρ > 0, let
B(a, ρ) := {b : ‖a− b‖ ≤ ρ}, where ‖ · ‖ denotes the Euclidean norm. Let Q : E1 × E2 → R,
where E1 and E2 are two sets. Then, we define Qmin(e1) := infe2∈E2 Q(e1, e2). The notation
v ∼ ν means that the random element v has distribution ν.

2. Mean-field games and mean-field equilibria

In this paper, we consider a discrete-time mean-field game with state space X and action
space A. Here, X is a finite set with the discrete metric dX(x, y) = 1{x6=y} and A is a

convex and compact subset of a finite dimensional Euclidean space RdimA equipped with
the Euclidean norm ‖ · ‖1. The state dynamics evolve according to the transition probability

1. In this work, by updating several definitions appropriately, all results are still true if one metrizes the
finite dimensional Euclidean space RdimA with lp-norm for p ≥ 1.
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p : X×A×P(X)→ P(X); that is, given the current state x(t), action a(t), and state-measure
µ, the next state x(t+ 1) is distributed as follows:

x(t+ 1) ∼ p(·|x(t), a(t), µ).

In this model, a policy π is a conditional distribution on A given X; that is, π : X→ P(A).
Let Π denote the set of all policies. A policy π is deterministic if π( · |x) = δf(x)( · ) for some
f : X→ A. Let Πd denote the set of all deterministic policies.

Although we name this model as mean-field game, it is indeed neither a game nor a
Markov decision process (MDP) in the strict sense. This model is in between them. Similar
to the MDP model, we have a single agent with Markovian dynamics that has an objective
function to minimize. However, similar to the game model, this agent should also compete
with the collective behaviour of other agents. We model this collective behaviour by an
exogenous state-measure µ ∈ P(X)2. By law of large numbers, this measure µ should be
consistent with the state distribution of this single agent when the agent applies its optimal
policy. The precise mathematical description of the problem is given as follows.

If we fix a state-measure µ ∈ P(X), which represents the collective behaviour of the other
agents, the evolution of the state and action of a generic agent is governed by transition
probability p : X × A × P(X) → P(X), policy π : X → P(A), and initial distribution η0 of
the state; that is,

x(0) ∼ η0, x(t) ∼ p( · |x(t− 1), a(t− 1), µ), t ≥ 1,

a(t) ∼ π( · |x(t)), t ≥ 0.

For this model, a policy π∗ ∈ Π of a generic agent is optimal for µ if

Jµ(π∗) = inf
π∈Π

Jµ(π),

where

Jµ(π) = Eπ
[ ∞∑
t=0

βtc(x(t), a(t), µ)

]
or

Jµ(π) = lim sup
T→∞

1

T
Eπ
[T−1∑
t=0

c(x(t), a(t), µ)

]
.

Here, the first cost function is the discounted-cost with discount factor β ∈ (0, 1) and the
second cost function is the average-cost. The measurable function c : X×A×P(X)→ [0,∞)
is the one-stage cost function. With these definitions, to introduce the optimality criteria
of the model, we need the following two set-valued mappings.

2. In classical mean-field game literature, the exogenous behaviour of the other agents is in general modelled
by a state measure-flow {µt}, µt ∈ P(X) for all t, which means that total population behaviour is non-
stationary. In this paper, we only consider the stationary case; that is, µt = µ for all t. Establishing a
learning algorithm for the non-stationary case is more challenging and is a future research direction.
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The first set-valued mapping Ψ : P(X)→ 2Π is defined as

Ψ(µ) = {π ∈ Π : π is optimal for µ when η0 = µ}.

Hence, Ψ(µ) is the set of optimal policies for a given state-measure µ when the initial
distribution η0 is equal to µ as well.

We define the second set-valued mapping Λ : Π → 2P(X) as follows: for any π ∈ Π, the
state-measure µπ ∈ Λ(π) if it satisfies the following fixed point equation:

µπ( · ) =
∑
x∈X

∫
A
p( · |x, a, µπ)π(da|x)µπ(x).

Note that if µπ ∈ Λ(π) and η0 = µπ, then x(t) ∼ µπ for all t ≥ 0 under policy π. If there
is no assumption on the transition probability p : X × A × P(X) → P(X), we may have
Λ(π) = ∅ for some π. However, under Assumption 1, we always have Λ(π) non-empty,
which will be proved in Lemma 3.

We can now define the notion of equilibrium for mean-field games via the mappings Ψ,
Λ as follows.

Definition 1 A pair (π∗, µ∗) ∈ Π × P(X) is a mean-field equilibrium if π∗ ∈ Ψ(µ∗) and
µ∗ ∈ Λ(π∗); that is, π∗ is an optimal policy for µ∗ and µ∗ is the stationary distribution of
the states under policy π∗ and initial distribution µ∗.

In the literature, the existence of mean-field equilibria has been established for the
discounted-cost in Saldi et al. (2018) and for the average-cost in Wiecek (2019); Saldi (2020).
Our aim in this paper is to develop a learning algorithm for computing an approximate
mean-field equilibrium in the model-free setting. To that end, we define the following
relaxed version of mean-field equilibrium.

Definition 2 Let (π∗, µ∗) ∈ Πd × P(X) be a mean-field equilibrium. A policy πε ∈ Πd is
an ε-mean-field equilibrium policy if

sup
x∈X
‖πε(x)− π∗(x)‖ ≤ ε.

Note that in above definition, we require that π∗ is deterministic. Indeed, this is the case
under the assumptions stated below. Therefore, without loss of generality, we can place
this restriction on π∗.

With this definition, our goal now is to learn an ε-mean-field equilibrium policy under
the model-free set-up. To this end, we will impose certain assumptions on the components
of the mean-field game model. Before doing this, we need to give some definitions. Let
us define Mτ (X) as the set of real-valued functions on X bounded by ‖c‖∞/(1 − τ). Here,
τ = β if the objective function is discounted-cost and τ = βav (see Assumption 3) if the
objective function is average-cost. Let F : X×Mτ (X)× P(X)× A→ R be given by

F : X×Mτ (X)× P(X)× A 3 (x, v, µ, a) 7→ c(x, a, µ) + ξ
∑
y∈X

v(y) p(y|x, a, µ) ∈ R,

where ξ = β if the objective function is discounted-cost and ξ = 1 if the objective function
is average-cost. We may now state our assumptions.
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Assumption 1

(a) The one-stage cost function c satisfies the following Lipschitz bound:

|c(x, a, µ)− c(x̂, â, µ̂)| ≤ L1 (dX(x, x̂) + ‖a− â‖+ ‖µ− µ̂‖1) , (1)

for every x, x̂ ∈ X, a, â ∈ A, and µ, µ̂ ∈ P(X).

(b) The stochastic kernel p( · |x, a, µ) satisfies the following Lipschitz bound:

‖p(·|x, a, µ)− p(·|x̂, â, µ̂)‖1 ≤ K1 (dX(x, x̂) + ‖a− â‖+ ‖µ− µ̂‖1) , (2)

for every x, x̂ ∈ X, a, â ∈ A, and µ, µ̂ ∈ P(X).

(c) There exists α > 0 such that for any a ∈ A and δ > 0, we have

m (B(a, δ) ∩ A) ≥ min {αm(B(a, δ)),m(A)} .

(d) For any x ∈ X, v ∈Mτ (X), and µ ∈ P(X), F (x, v, µ, ·) is ρ-strongly convex. Moreover,
the gradient ∇F (x, v, µ, a) : X×Mτ (X)×P(X)×A→ Rd of F with respect to a satisfies
the following Lipschitz bound:

sup
a∈A
‖∇F (x, v, µ, a)−∇F (x̂, v̂, µ̂, a)‖ ≤ KF (dX(x, x̂) + ‖v − v̂‖∞ + ‖µ− µ̂‖1) ,

for every x, x̂ ∈ X, v, v̂ ∈Mτ (X), and µ, µ̂ ∈ P(X).

Let us motivate these assumptions. First, assumptions (a) and (b) are standard con-
ditions in stochastic control theory to obtain a rate of convergence bound for learning
algorithms. Assumption (c) is needed to bound the l∞-norm of Lipschitz continuous func-
tions on A with their l2-norm. Assumption (d) is imposed to guarantee Lipschitz continuity
of the optimal policy with respect to the corresponding state-measure. Indeed, this con-
dition is equivalent to the standard assumption that guarantees Lipschitz continuity, with
respect to unknown parameters, of the optimal solutions of the convex optimization prob-
lems (Bonnans and Shapiro, 2000, Theorem 4.51).

Example 1 Let us consider the industry dynamics model, introduced in Weintraub et al.
(2005, 2008), where the state x(t) ∈ X of the system gives the quality level of the firm, and
the state lives in the finite set X = {0, . . . ,m}. Given the mean-field term µ, the state of
the system evolves in the following form:

x(t+ 1) = min{x(t) + h(a(t), µ, w(t)),m},

where a(t) ∈ A = [0,K] is the action, which denotes the investment of the agent to increase
its quality, h : A×P(X)×W→ X, and w(t) ∈W is the independent noise3. In this model,
the problem is to maximize the discounted reward, which is equivalent to minimizing the

3. The state dynamics of the model in Weintraub et al. (2005, 2008) does not depend on the mean-field
term µ. For generality, we assume that there is such a dependence in our example.
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negative of the discounted reward. Therefore, in the minimization formulation, one-stage
cost function has the following form:

c(x, a, µ) = c2(a)− c1(x, µ),

where c1(x, µ) is the profit of the firm and c2(a) is the cost of the investment. For this model,
Assumption 1-(c) is true with α = 1. To have Assumption 1-(d), we need to assume that:
(i) c2(a) is differentiable and ρ-strongly convex (this is true if, for instance, d2c2/da

2 ≥ ρ),
(ii) P[h(a, µ, w) = l] is convex in a and continuously differentiable in (a, µ), for all l ∈ X.
Indeed, for any x, v, and µ, the function F (x, v, µ, a) has the following form:

F (x, v, µ, a) = c2(a)− c1(x, µ) + ξ
∑
y∈X

v(y)P[min{x+ h(a, µ, w),m} = y]

= c2(a)− c1(x, µ) + ξ

 ∑
x≤y<m

v(y)P[h(a, µ, w) = y − x] + v(m)P[h(a, µ, w) ≥ m− x]


= c2(a)− c1(x, µ) + ξ

 ∑
0≤y<m

v(y)P[h(a, µ, w) = y − x] +

m∑
l=m−x

v(m)P[h(a, µ, w) = l]

 ,
where the last equality is true since P[h(a, µ, w) = y − x] = 0 if y < x. Since c2(a) is
ρ-strongly convex and P[h(a, µ, w) = l] is convex in a, the function F (x, v, µ, a) is ρ-strongly
convex in a. Moreover, for every x, x̂ ∈ X, v, v̂ ∈Mτ (X), and µ, µ̂ ∈ P(X), we have

sup
a∈A
|∇F (x, v, µ, a)−∇F (x̂, v̂, µ̂, a)| ≤ sup

a∈A
|∇F (x, v, µ, a)−∇F (x̂, v, µ, a)|

+ sup
a∈A
|∇F (x̂, v, µ, a)−∇F (x̂, v̂, µ, a)|+ sup

a∈A
|∇F (x̂, v̂, µ, a)−∇F (x̂, v̂, µ̂, a)|. (3)

To bound the terms in the sum (3), let us define the following constants:

Θ1 := sup
µ,a,l
|∇aP[h(a, µ, w) = l]|

Θ2 := sup
a,µ

m−1∑
l=0

|∇aP[h(a, µ, w) = l]−∇aP[h(a, µ, w) = l + 1]|

Θ3 := sup
a

m∑
l=0

sup
µ
‖∇a,µP[h(a, µ, w) = l]‖

Θ4 := sup
a,µ

m∑
l=0

|∇aP[h(a, µ, w) = l]|,

where ∇aP[h(a, µ, w) = l] and ∇a,µP[h(a, µ, w) = l] are the gradients of P[h(a, µ, w) = l]
with respect to a and (a, µ), respectively. Since P[h(a, µ, w) = l] is continuously differentiable
with respect to (a, µ), and the sets A and P(X) are compact, the constants above are well-
defined.

Without loss of generality, suppose x ≤ x̂. Considering the first term in the sum (3),
for all a ∈ A we have

|∇F (x, v, µ, a)−∇F (x̂, v, µ, a)|
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≤ ξ
∣∣∣∣ ∑

0≤y<m
v(y)∇aP[h(a, µ, w) = y − x] +

∑
m−x≤l≤m

v(m)∇aP[h(a, µ, w) = l]

∑
0≤y<m

v(y)∇aP[h(a, µ, w) = y − x̂] +
∑

m−x̂≤l≤m
v(m)∇aP[h(a, µ, w) = l]

∣∣∣∣
≤ ξ
∣∣∣∣ ∑

0≤y<m
v(y)

y−x−1∑
l=y−x̂

(∇aP[h(a, µ, w) = l]−∇aP[h(a, µ, w) = l + 1])

∣∣∣∣
+ ξ

∣∣∣∣ ∑
m−x̂≤y<m−x

v(m)∇aP[h(a, µ, w) = l]

∣∣∣∣
≤ ξ ‖c‖∞

1− τ
(Θ2 + Θ1) |x− x̂|. (4)

For the second term in the sum (3), for all a ∈ A we have

|∇F (x̂, v, µ, a)−∇F (x̂, v̂, µ, a)|

≤ ξ
∣∣∣∣ ∑
x̂≤y<m

v(y)∇aP[h(a, µ, w) = y − x̂] +
∑

m−x̂≤l≤m
v(m)∇aP[h(a, µ, w) = l]

∑
x̂≤y<m

v̂(y)∇aP[h(a, µ, w) = y − x̂] +
∑

m−x̂≤l≤m
v̂(m)∇aP[h(a, µ, w) = l]

∣∣∣∣
≤ ξΘ4 ‖v − v̂‖∞. (5)

Finally, for the third term in the sum (3), for all a ∈ A, we have

|∇F (x̂, v̂, µ, a)−∇F (x̂, v̂, µ̂, a)|

≤ ξ
∣∣∣∣ ∑
x̂≤y<m

v̂(y)∇aP[h(a, µ, w) = y − x̂] +
∑

m−x̂≤l≤m
v̂(m)∇aP[h(a, µ, w) = l]

∑
x̂≤y<m

v̂(y)∇aP[h(a, µ̂, w) = y − x̂] +
∑

m−x̂≤l≤m
v̂(m)∇aP[h(a, µ̂, w) = l]

∣∣∣∣
≤ ξ ‖c‖∞

1− τ

∣∣∣∣ ∑
0≤l≤m

(
∇aP[h(a, µ, w) = l]−∇aP[h(a, µ̂, w) = l]

)∣∣∣∣. (6)

By the mean-value theorem, there exists µ̃ such that

∇aP[h(a, µ, w) = l]−∇aP[h(a, µ̂, w) = l] = ∇a,µP[h(a, µ̃, w) = l] · (µ− µ̂)

Hence, (6) can be bounded from above as follows:

(6) ≤ ξ ‖c‖∞
1− τ

Θ3 ‖µ− µ̂‖1. (7)

Bringing together the upper bounds in (4), (5), and (7), we get

sup
a∈A
|∇F (x, v, µ, a)−∇F (x̂, v̂, µ̂, a)|

9
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≤ max

{
ξ
‖c‖∞m

1− τ
(Θ2 + Θ1), ξΘ4, ξ

‖c‖∞
1− τ

Θ3

}
(dX(x, x̂) + ‖v − v̂‖∞ + ‖µ− µ̂‖1) (8)

=: KF (dX(x, x̂) + ‖v − v̂‖∞ + ‖µ− µ̂‖1) .

since |x − x̂| ≤ mdX(x, x̂). Hence, Assumption 1-(d) is true for this model under the
conditions (i) and (ii). Note that the bound in (8) is fairly crude. By using further properties
of the transition probability and the one-stage cost function in addition to conditions (i) and
(ii) in specific examples, one can significantly improve this bound. Moreover, instead of the
l1-norm on the set of distributions on the state space X, if we use Wasserstein distance
of order 1, it is also possible to improve the bound in (8) by altering the related analysis
according to this distance.

In this paper, we first consider learning in discounted-cost MFGs. Then, we turn our
attention to the average-cost case. In the sequel, we first introduce a mean-field equilibrium
(MFE) operator for discounted-cost, which can be used to compute mean-field equilibrium
when the model is known. We prove that this operator is a contraction. Then, under
model-free setting, we approximate this MFE operator with a random one and establish
a learning algorithm. Using this learning algorithm, we obtain ε-mean-field equilibrium
policy with high confidence. To obtain the last result, it is essential that MFE operator
is contraction. After we complete the analysis for discounted-cost, we study average-cost
setting by applying the same strategy.

Before we move on to the next section, for completeness, let us prove the following
result.

Lemma 3 Under Assumption 1, for any π, the set Λ(π) is non-empty.

Proof Recall that for any π ∈ Π, the state-measure µπ ∈ Λ(π) if it satisfies the following
fixed-point equation:

µπ( · ) =
∑
x∈X

∫
A
p( · |x, a, µπ)π(da|x)µπ(x). (9)

Let us define the set-valued mapping Lπ : P(X) → 2P(X) as follows: given µ ∈ P(X), a
probability measure µ̂ ∈ Lπ(µ) if it is an invariant distribution of the transition probability∫
A p( · |x, a, µ)π(da|x); that is

µ̂( · ) =
∑
x∈X

∫
A
p( · |x, a, µ)π(da|x) µ̂(x).

Note that the transition probability
∫
A p( · |x, a, µ)π(da|x) is Feller continuous, and since X

is finite, the sequence of n-step transition probabilities are tight for any x ∈ X. Therefore,
we can apply Krylov-Bogoliubov theorem (Hairer, 2006, Theorem 4.17), and obtain that
Lπ(µ) is non-empty for each µ ∈ P(X). Moreover, Lπ(µ) is also convex for each µ ∈ P(X).
If we can prove that Lπ has a closed graph, by Kakutani’s fixed point theorem (Aliprantis
and Border, 2006, Corollary 17.55), we can conclude that Lπ has a fixed point µ̂; that is, µ̂
satisfies (9). Hence, µ̂ ∈ Λ(π).

10
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To this end, let (µn, µ̂n) → (µ, µ̂), where µ̂n ∈ Lπ(µn) for each n. Note that Lπ has a
closed graph if µ̂ ∈ Lπ(µ). For each n, we have

µ̂n(y) =
∑
x∈X

∫
A
p(y|x, a, µn)π(da|x) µ̂n(x), ∀y ∈ X.

For all y ∈ X, the left part of the above equation converges to µ(y) since µ̂n → µ̂ and the
right part of the same equation converges to∑

x∈X

∫
A
p(y|x, a, µ)π(da|x) µ̂(x)

since µ̂n → µ̂ and
∫
A p(y| · , a, µn)π(da| · ) converges to

∫
A p(y| · , a, µ)π(da| · ) continuously

by Assumption 1 (Langen, 1981, Theorem 3.5)4. Hence, we have

µ̂( · ) =
∑
x∈X

∫
A
p( · |x, a, µ)π(da|x) µ̂(x).

In other words, µ̂ ∈ Lπ(µ), and so, Lπ has a closed graph. This completes the proof.

3. Mean-field equilibrium operator for discounted-cost

In this section, we introduce a mean-field equilibrium (MFE) operator for discounted-cost,
whose fixed point is a mean-field equilibrium. We prove that this operator is a contraction.
Using this result, we then establish the convergence of the learning algorithm that gives
approximate mean-field equilibrium policy. To that end, in addition to Assumption 1, we
impose the assumption below. But, before that, let us define the constants:

cm := ‖c‖∞, Qm :=
cm

1− β
, QLip :=

L1

1− βK1/2
. (10)

Assumption 2 We assume that

3K1

2

(
1 +

KF

ρ

)
+
K1KFQLip

ρ(1− β)
< 1,

where QLip > 0.

This assumption is used to ensure that the MFE operator is a contraction, which is
crucial to establish the error analysis of the learning algorithm. Note that using Banach
fixed point theorem, one can also compute the mean-field equilibrium by applying the MFE

4. Suppose g, gn (n ≥ 1) are uniformly bounded measurable functions on metric space E. The sequence of
functions gn is said to converge to g continuously if limn→∞ gn(en) = g(e) for any en → e where e ∈ E. In
this case, (Langen, 1981, Theorem 3.5) states that if µn → µ weakly, then

∫
E
gn(e)µn(de)→

∫
E
g(e)µ(de).

If E is finite with discrete metric, then weak convergence of probability measures on E is equivalent to
l1-convergence.

11
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operator recursively to obtain successive approximations (i.e., Picard iteration). However,
even if it is restrictive, it is not possible to prove convergence of the learning algorithm
without a contraction condition. In addition, imposing a contraction condition is a common
method in learning mean-field games (see Guo et al. (2019); Fu et al. (2019)).

Note that, given any state-measure µ, the value function Jµ of policy π with initial state
x is given by

Jµ(π, x) := Eπ
[ ∞∑
t=0

βtc(x(t), a(t), µ)

∣∣∣∣x(0) = x

]
.

Then, the optimal value function is defined as J∗µ(x) := infπ∈Π Jµ(π, x) for all x ∈ X. Using
J∗µ, we can characterize the set of optimal policies Ψ(µ) for µ as follows. Firstly, J∗µ(x) is
the unique fixed point of the Bellman optimality operator Tµ, which is a β-contraction with
respect to the ‖ · ‖∞-norm:

J∗µ(x) = min
a∈A

[
c(x, a, µ) + β

∑
y∈X

J∗µ(y) p(y|x, a, µ)

]
=: TµJ

∗
µ(x).

Additionally, if f∗ : X → A attains the minimum in the equation above for all x ∈ X as
follows

min
a∈A

[
c(x, a, µ) + β

∑
y∈X

J∗µ(y) p(y|x, a, µ)

]
= c(x, f∗(x), µ) + β

∑
y∈X

J∗µ(y) p(y|x, f∗(x), µ),

then the policy π∗(a|x) = δf∗(x)(a) ∈ Πd is optimal for µ and for any initial distribution η0.
We refer the reader to (Hernández-Lerma and Lasserre, 1996, Chapter 4) and (Hernández-
Lerma and Lasserre, 1999, Chapter 8) for these classical results in MDP theory.

We can also obtain a similar characterization by using the optimal Q-function instead
of the optimal value function J∗µ. Indeed, we define the optimal Q-function as

Q∗µ(x, a) = c(x, a, µ) + β
∑
y∈X

J∗µ(y) p(y|x, a, µ).

Note that Q∗µ,min(x) := mina∈AQ
∗
µ(x, a) = J∗µ(x) for all x ∈ X, and so, we have

Q∗µ(x, a) = c(x, a, µ) + β
∑
y∈X

Q∗µ,min(y) p(y|x, a, µ) =: HµQ
∗
µ(x, a),

where Hµ is the Bellman optimality operator for Q-functions. It is straightforward to prove
that Hµ is a ‖ · ‖∞-contraction with modulus β and the unique fixed point of Hµ is Q∗µ.
Hence, we can develop a Q-iteration algorithm to compute Q∗µ, and the policy π∗(a|x) =
δf∗(x)(a) ∈ Πd is optimal for µ and for any initial distribution η0, if Q∗µ(x, f∗(x)) = Q∗µ,min(x)
for all x ∈ X. The advantage of Q-iteration algorithm is that one can adapt this algorithm
to the model-free setting via Q-learning.

Let us recall the following fact about l1 norm on the set probability distributions on
finite sets (Georgii, 2011, p. 141). Suppose that there exists a real valued function g on a
finite set E. Then, for any pair of probability distributions µ, ν on E, we have∣∣∣∣∣∑

e

g(e)µ(e)−
∑
e

g(e) ν(e)

∣∣∣∣∣ ≤ span(g)

2
‖µ− ν‖1, (11)

12
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where span(g) := supe∈E g(e)− infe∈E g(e) is the span-seminorm. Using this result, we can
prove the following fact about optimal value functions.

Lemma 4 For any µ ∈ P(X), the optimal value function Q∗µ,min is QLip-Lipschitz contin-
uous; that is,

|Q∗µ,min(x)−Q∗µ,min(y)| ≤ QLip dX(x, y).

Proof Fix any µ ∈ P(X). Let u : X→ R be K-Lipschitz continuous for some 0 < K < L1.
Then g = u/K is 1-Lipschitz continuous and therefore, for all a ∈ A and z, y ∈ X we have∣∣∣∣∑

x

u(x)p(x|z, a, µ)−
∑
x

u(x)p(x|y, a, µ)

∣∣∣∣ = K

∣∣∣∣∑
x

g(x)p(x|z, a, µ)−
∑
x

g(x)p(x|y, a, µ)

∣∣∣∣
≤ K

2
‖p( · |z, a, µ)− p( · |y, a, µ)‖1 (by (11))

≤ KK1

2
dX(z, y), (by Assumption 1)

since supx g(x) − infx g(x) ≤ 1. Hence, the contractive operator Tµ maps a K-Lipschitz
function u to a L1 + βKK1/2-Lipschitz function, indeed, for all z, y ∈ X

|Tµu(z)− Tµu(y)|

≤ sup
a

{
|c(z, a, µ)− c(y, a, µ)|+ β

∣∣∣∣∑
x

u(x)p(x|z, a, µ)−
∑
x

u(x)p(x|y, a, µ)

∣∣∣∣}
≤ L1dX(z, y) + β

KK1

2
dX(z, y) =

(
L1 + β

KK1

2

)
dX(z, y).

Now we apply Tµ recursively to obtain the sequence {Tnµ u} by letting Tnµ u = Tµ(Tn−1
µ u),

which converges to the optimal value function Q∗µ,min by Banach fixed point theorem.
Clearly, by mathematical induction, we have for all n ≥ 1, Tnµ u is Kn-Lipschitz contin-

uous, where Kn = L1
∑n−1

i=0 (βK1/2)i + K(βK1/2)n. Since K < L1, then Kn ≤ Kn+1 for
all n and therefore, Kn ↑ QLip. Hence, Tnµ u is QLip-Lipschitz continuous for all n, and
therefore, Q∗µ,min is also QLip-Lipschitz continuous.

Before introducing the mean-field equilibrium (MFE) operator, we first define the set C
on which the Q-functions live. We let C consist of all Q-functions Q : X×A→ R such that
Q(x, ·) is QLip-Lipschitz and ρ-strongly convex for every x ∈ X with ‖Q‖∞ ≤ Qm, and the
gradient ∇Q of Q with respect to a satisfies the bound

sup
a∈A
‖∇Q(x, a)−∇Q(x̂, a)‖ ≤ KF dX(x, x̂),

for every x, x̂ ∈ X.
The MFE operator defined as a composition of the operators H1 and H2, where H1 :

P(X)→ C is defined as H1(µ) = Q∗µ (optimal Q-function for µ), and H2 : P(X)×C → P(X)
is defined as

H2(µ,Q)(·) :=
∑
x∈X

p(·|x, fQ(x), µ)µ(x), (12)

13
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where fQ( · ) := arg mina∈AQ( · , a) is the unique minimizer of Q ∈ C by ρ-strong convex-
ity. Here, H1 computes the optimal Q-function given the current state-measure, and H2

computes the next state-measure given the current state-measure and the corresponding
optimal Q-function. Therefore, the MFE operator is given by

H : P(X) 3 µ 7→ H2 (µ,H1(µ)) ∈ P(X). (13)

In this section, our goal is to prove that H is a contraction.

Remark 5 Note that we can alternatively define the operator H2 as a mapping from C to
P(X) as follows: H2(Q) = µ if µ satisfies the following fixed point equation:

µ(·) :=
∑
x∈X

p(·|x, fQ(x), µ)µ(x).

Notice that H2 is a well-defined operator since such a state-measure µ ∈ P(X) exists for
any Q by Lemma 3. Hence, we may define the MFE operator as H(µ) := H2(H1(µ)).
In this case, one can prove that this operator has the same contraction coefficient as the
original MFE operator given in (13). However, although the original H2 operator in (12)
can effortlessly be approximated via computing the empirical estimate of p(·|x, fQ(x), µ) for
each x ∈ X, which is possible since |X| < ∞, approximating the new H2 operator is quite
costly. Indeed, we need to compute a fixed point of some equation in this case. Therefore,
there is no advantage to replace original H2 with the new one.

In the following lemma, we prove that H1 is Lipschitz continuous, which will later used
to prove that H operator is a contraction.

Lemma 6 The mapping H1 is Lipschitz continuous on P(X) with the Lipschitz constant
KH1, where

KH1
:=

QLip

1− β
.

Proof First of all, H1 is well-defined; that is, it maps any µ ∈ P(X) into C. Indeed, recall
that Q∗µ is the fixed point of the contractive operator Hµ:

Q∗µ(x, a) = c(x, a, µ) + β
∑
y∈X

Q∗µ,min(y) p(y|x, a, µ).

Then, using Assumption 1-(a),(b),(d), it is straightforward to prove that H1(µ) ∈ C. Indeed,
the only non-trivial fact is the QLip-Lipschitz continuity of Q∗µ on X × A. To this end, let
(x, a), (x̂, â) ∈ X× A be arbitrary. Then,

|Q∗µ(x, a)−Q∗µ(x̂, â)|

= |c(x, a, µ) + β
∑
y

Q∗µ,min(y)p(y|x, a, µ)− c(x̂, â, µ)− β
∑
y

Q∗µ,min(y)p(y|x̂, â, µ)|

≤ L1(dX(x, x̂) + ‖a− â‖) + β
K1QLip

2
(dX(x, x̂) + ‖a− â‖),

14
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where the last inequality follows from (11) and Lemma 4. Hence, Q∗µ is QLip-Lipschitz
continuous.

Now, we prove that H1 is KH1-Lipschitz on P(X). For any µ, µ̂ ∈ P(X), we have

‖H1(µ)−H1(µ̂)‖∞ = ‖Q∗µ −Q∗µ̂‖∞

= sup
x,a

∣∣∣∣∣c(x, a, µ) + β
∑
y

Q∗µ,min(y)p(y|x, a, µ)− c(x, a, µ̂)− β
∑
y

Q∗µ̂,min(y)p(y|x, a, µ̂)

∣∣∣∣∣
≤ L1 ‖µ− µ̂‖1 + β

∣∣∣∣∣∑
y

Q∗µ,min(y)p(y|x, a, µ)−
∑
y

Q∗µ,min(y)p(y|x, a, µ̂)

∣∣∣∣∣
+ β

∣∣∣∣∣∑
y

Q∗µ,min(y)p(y|x, a, µ̂)−
∑
y

Q∗µ̂,min(y)p(y|x, a, µ̂)

∣∣∣∣∣
≤ L1 ‖µ− µ̂‖1 + β

K1QLip

2
‖µ− µ̂‖1 + β ‖Q∗µ −Q∗µ̂‖∞,

where the last inequality follows from (11) and Lemma 4.

Now, using Lemma 6, we can prove that H is a contraction on P(X).

Proposition 7 The mapping H is a contraction with contraction on P(X) constant KH ,
where

KH :=
3K1

2

(
1 +

KF

ρ

)
+
K1KFKH1

ρ
.

Proof Fix any µ, µ̂ ∈ P(X). Note that, since Q∗µ = HµQ
∗
µ, the mapping fQ∗µ(x) is the unique

minimizer of F (x,Q∗µ,min, µ, ·). Similarly, fQ∗µ̂(y) is the unique minimizer of F (y,Q∗µ̂,min, µ̂, ·).
For any x, y ∈ X, we define a = fQ∗µ(x) and r = fQ∗µ̂(y)−fQ∗µ(x). As a is the unique minimizer

of a strongly convex function F (x,Q∗µ,min, µ, ·), by the first-order optimality condition, we
have

∇F
(
x,Q∗µ,min, µ, a

)
· r ≥ 0.

For a+ r and F (y,Q∗µ̂,min, µ̂, ·), by first-order optimality condition, we also have

∇F
(
y,Q∗µ̂,min, µ̂, a+ r

)
· r ≤ 0.

Therefore, by ρ-strong convexity of F in Assumption 1-(d) and (Hajek and Raginsky, 2019,
Lemma 3.2), we have

−∇F (y,Q∗µ̂,min, µ̂, a) · r ≥ −∇F (y,Q∗µ̂,min, µ̂, a) · r +∇F (y,Q∗µ̂,min, µ̂, a+ r) · r
≥ ρ ‖r‖2. (14)

Similarly, by Assumption 1-(d), we also have

−∇F (y,Q∗µ̂,min, µ̂, a) · r ≤ −∇F (y,Q∗µ̂,min, µ̂, a) · r +∇F (x,Q∗µ,min, µ, a) · r
≤ ‖r‖ ‖∇F (x,Q∗µ,min, µ, a)−∇F (y,Q∗µ̂,min, µ̂, a)‖

15
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≤ KF ‖r‖
(
dX(x, y) + ‖Q∗µ,min −Q∗µ̂,min‖∞ + ‖µ− µ̂‖1

)
≤ KF ‖r‖

(
dX(x, y) + ‖Q∗µ −Q∗µ̂‖∞ + ‖µ− µ̂‖1

)
. (15)

Combining (14) and (15) yields

ρ ‖r‖2 ≤ KF ‖r‖
(
dX(x, y) + ‖Q∗µ −Q∗µ̂‖∞ + ‖µ− µ̂‖1

)
.

Since r = fQ∗µ̂(y)− fQ∗µ(x), we obtain

‖fQ∗µ̂(y)− fQ∗µ(x)‖ ≤ KF

ρ

(
dX(x, y) + ‖Q∗µ −Q∗µ̂‖∞ + ‖µ− µ̂‖1

)
=
KF

ρ
(dX(x, y) + ‖H1(µ)−H1(µ̂)‖∞ + ‖µ− µ̂‖1)

≤ KF

ρ
(dX(x, y) +KH1‖µ− µ̂‖1 + ‖µ− µ̂‖1) . (16)

Therefore, fQ∗µ(x) is Lipschitz continuous with respect to (x, µ).
Now, using (16), we have

‖H2(µ,H1(µ))−H2(µ̂,H1(µ̂))‖1 =
∑
y

∣∣∣∣∑
x

p(y|x, fQ∗µ(x), µ), µ)µ(x)

−
∑
x

p(y|x, fQ∗µ̂(x), µ̂) µ̂(x)

∣∣∣∣
≤
∑
y

∣∣∣∣∑
x

p(y|x, fQ∗µ(x), µ)µ(x)

−
∑
x

p(y|x, fQ∗µ̂(x), µ̂)µ(x)

∣∣∣∣
+
∑
y

∣∣∣∣∑
x

p(y|x, fQ∗µ̂(x), µ̂)µ(x)

−
∑
x

p(y|x, fQ∗µ̂(x), µ̂) µ̂(x)

∣∣∣∣
(I)

≤
∑
x

∥∥∥p(·|x, fQ∗µ(x), µ)− p(·|x, fQ∗µ̂(x), µ̂)
∥∥∥

1
µ(x)

+
K1

2

(
1 +

KF

ρ

)
‖µ− µ̂‖1

≤ K1

(
‖fQ∗µ(x)− fQ∗µ̂(x)‖+ ‖µ− µ̂‖1

)
+
K1

2

(
1 +

KF

ρ

)
‖µ− µ̂‖1

≤ KH ‖µ− µ̂‖1. (17)

Note that (16) and Assumption 1-(b) lead to

‖p(·|x, fQ∗µ̂(x), µ̂)− p(·|y, fQ∗µ̂(y), µ̂)‖1 ≤ K1

(
1 +

KF

ρ

)
.
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Hence, (I) follows from Lemma 32. This completes the proof.

Remark 8 Note that in the MDP theory, it is normally not required to establish the Lips-
chitz continuity of the optimal policy. Indeed, the Lipschitz continuity of the optimal value
function is in general needed, which can be established straightforward as in Lemma 4. How-
ever, in mean-field games, since the optimal policy fQ∗µ directly affects the behaviour of the
next state-measure through

H2(µ,Q∗µ)(·) =
∑
x

p(·|x, fQ∗µ , µ)µ(x),

one must also establish the Lipschitz continuity of the optimal policy fQ∗µ in this case. This
is indeed the key point in the proof of Proposition 7.

In Anahtarci et al. (2020b), we establish the Lipschitz continuity of the optimal policy
by introducing a regularization term into a one-stage cost function. This significantly re-
laxes conditions on the system components in Assumption 1-(d) and simplifies the analysis.
However, the regularization term adds some bias to the equilibrium solution (i.e., it in gen-
eral favours randomized policies over deterministic policies) and also causes the regularized
stationary mean-field equilibrium to deviate from true stationary mean-field equilibrium as
a result of the additional regularization term in the one-stage cost function.

Under Assumption 1 and Assumption 2, H is a contraction mapping. Therefore, by the
Banach fixed point theorem, H has a unique fixed point. Let µ∗ ∈ P(X) be this unique
fixed point and let Q∗µ∗ = H1(µ∗). Define the policy π∗( · |x) = δfQ∗µ∗ (x)( · ). Then, one can

prove that the pair (π∗, µ∗) is a mean-field equilibrium. Indeed, note that (µ∗, Q
∗
µ∗) satisfies

the following equations

µ∗(·) =
∑
x∈X

p(·|x, a, µ∗)π∗(a|x)µ∗(x), (18)

Q∗µ∗(x, a) = c(x, a, µ∗) + β
∑
y∈X

Q∗µ∗,min(y) p(y|x, a, µ∗). (19)

Here, (19) implies that π∗ ∈ Ψ(µ∗) and (18) implies that µ∗ ∈ Λ(π∗). Hence, (π∗, µ∗) is
a mean-field equilibrium. Hence, we can compute this mean-field equilibrium via applying
H recursively starting from arbitrary state-measure. This indeed leads to a value iteration
algorithm for computing mean-field equilibrium. However, if the model is unknown; that is
the transition probability p and the one-stage cost function c are not available to the decision
maker, we replace H with a random operator and establish a learning algorithm via this
random operator. To prove the convergence of this learning algorithm, the contraction
property of H is crucial, as stated before.

4. Finite-Agent Game for Discounted-cost

The mean-field game model defined in Section 2 is indeed the infinite-population version
of the finite-agent game model with mean-field interactions, which will be described in this
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section. In this model, there are N -agents and for every time step t ∈ {0, 1, 2, . . .} and
every agent i ∈ {1, 2, . . . , N}, xNi (t) ∈ X and aNi (t) ∈ A denote the state and the action of
Agent i at time t, respectively. Moreover,

e
(N)
t ( · ) :=

1

N

N∑
i=1

δxNi (t)( · ) ∈ P(X)

denote the empirical distribution of the agents’ states at time t. For each t ≥ 0, next states
(xN1 (t+1), . . . , xNN (t+1)) of agents have the following conditional distribution given current
states (xN1 (t), . . . , xNN (t)) and actions (aN1 (t), . . . , aNN (t)):

(xN1 (t+ 1), . . . , xNN (t+ 1)) ∼
N⊗
i=1

p
(
·
∣∣xNi (t), aNi (t), e

(N)
t

)
.

A policy π for a generic agent in this model is a conditional distribution on A given X; that
is, agents can only use their individual states to design their actions. The set of all policies
for Agent i is denoted by Πi. Hence, under π ∈ Πi, the conditional distribution of the
action aNi (t) of Agent i at time t given its state xNi (t) is

aNi (t) ∼ π( · |xNi (t)).

Therefore, the information structure of the problem is decentralized. The initial states
{xNi (0)}Ni=1 are independent and identically distributed according to the initial distribution
η0.

We let π(N) := (π1, . . . , πN ), πi ∈ Πi, denote an N -tuple of policies for all the agents in
the game. Under such an N -tuple of policies, for Agent i, the discounted-cost is given by

J
(N)
i (π(N)) = Eπ(N)

[ ∞∑
t=0

βtc(xNi (t), aNi (t), e
(N)
t )

]
.

Since agents are coupled through their dynamics and cost functions via the empirical dis-
tribution of the states, the problem is indeed a classical game problem. Therefore, the
standard notion of optimality is a player-by-player one.

Definition 9 An N -tuple of policies π(N∗) = (π1∗, . . . , πN∗) constitutes a Nash equilibrium
if

J
(N)
i (π(N∗)) = inf

πi∈Πi
J

(N)
i (π

(N∗)
−i , πi)

for each i = 1, . . . , N , where π
(N∗)
−i := (πj∗)j 6=i.

We note that obtaining a Nash equilibria is in general prohibitive for finite-agent game
model due to the decentralized nature of the information structure of the problem and the
large number of agents (see (Saldi et al., 2018, pp. 4259)). Therefore, it is of interest to
seek an approximate Nash equilibrium, whose definition is given below.
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Definition 10 An N -tuple of policies π(N∗) = (π1∗, . . . , πN∗) constitutes a δ-Nash equilib-
rium if

J
(N)
i (π(N∗)) ≤ inf

πi∈Πi
J

(N)
i (π

(N∗)
−i , πi) + δ

for each i = 1, . . . , N , where π
(N∗)
−i := (πj∗)j 6=i.

In finite-agent mean-field game model, if the number of agents is large enough, one
can obtain a δ-Nash equilibrium by studying the infinite-population limit N → ∞ of the
game (i.e., mean-field game). In the infinite-agent case, the empirical distribution of the
states can be modelled as an exogenous state-measure, which should be consistent with the
distribution of a generic agent by the law of large numbers (i.e., mean-field equilibrium);
that is, a generic agent should solve the mean-field game that is introduced in the preceding
section. Then, it is possible to prove that if each agent in the finite-agent N game problem
adopts the policy in mean-field equilibrium, the resulting N -tuple of policies will be an
approximate Nash equilibrium for all sufficiently large N . This was indeed proved in Saldi
et al. (2018).

Note that it is also possible to prove that if each agent in the finite-agent game model
adopts the ε-mean-field equilibrium policy, the resulting policy will be also an approxi-
mate Nash equilibrium for all sufficiently large N -agent game models. Indeed, this is the
statement of the next theorem.

But before, let us define the following constants:

C1 :=

(
3K1

2
+
K1KF

2ρ

)
, C2 :=

(
L1 +

βK1QLip

2

)
K1

1− C1
, C3 :=

(
L1 +

βK1QLip

2

)
.

Note that by Assumption 2, the constant C1 is strictly less than 1.

Theorem 11 Let πε be an ε-mean-field equilibrium policy for the mean-field equilibrium
(π∗, µ∗) ∈ Πd×P(X) given by the unique fixed point of the MFE operator H. Let η0 ∈ Λ(πε).
Then, for any δ > 0, there exists a positive integer N(δ) such that, for each N ≥ N(δ), the
N -tuple of policies π(N) = {πε, πε, . . . , πε} is a (δ+ τε)-Nash equilibrium for the game with

N agents, where τ :=
2C2 + C3

1− β
.

Proof By an abuse of notation, we denote the deterministic mappings from X to A that
induce policies π∗ and πε as π∗ and πε as well, respectively. Note that in view of (16), one
can prove that

‖π∗(x)− π∗(y)‖ ≤ KF

ρ
dX(x, y). (20)

Let µε ∈ Λ(πε). Then, we have

‖µε − µ∗‖1 =
∑
y

∣∣∣∣∑
x

p(y|x, πε(x), µε)µε(x)−
∑
x

p(y|x, π∗(x), µ∗)µ∗(x)

∣∣∣∣
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≤
∑
y

∣∣∣∣∑
x

p(y|x, πε(x), µε)µε(x)−
∑
x

p(y|x, π∗(x), µ∗)µε(x)

∣∣∣∣
+
∑
y

∣∣∣∣∑
x

p(y|x, π∗(x), µ∗)µε(x)−
∑
x

p(y|x, π∗(x), µ∗)µ∗(x)

∣∣∣∣
(I)

≤
∑
x

‖p(·|x, πε(x), µε)− p(·|x, π∗(x), µ∗)‖1 µε(x) +
K1

2

(
1 +

KF

ρ

)
‖µε − µ∗‖1

≤ K1

(
sup
x
‖πε(x)− π∗(x)‖+ ‖µε − µ∗‖1

)
+
K1

2

(
1 +

KF

ρ

)
‖µε − µ∗‖1

≤ K1 ε+

(
3K1

2
+
K1KF

2ρ

)
‖µε − µ∗‖1.

Note that (20) and Assumption 1 lead to

‖p(·|x, π∗(x), µ∗)− p(·|y, π∗(y), µ∗)‖1 ≤ K1

(
1 +

KF

ρ

)
dX(x, y).

Hence, (I) follows from Lemma 32. Therefore, we have

‖µε − µ∗‖1 ≤
K1 ε

1− C1
.

Now, fix any policy π ∈ Πd. For any state-measure µ, it is a well-known fact in MDP
theory that the value function Jµ(π, ·) of π satisfies the following fixed point equation:

Jµ(π, x) = c(x, π(x), µ) + β
∑
y

Jµ(π, y) p(y|x, π(x), µ),

for every x ∈ X. Therefore, we have

‖Jµ∗(π, ·)− Jµε(π, ·)‖∞

= sup
x

∣∣∣∣c(x, π(x), µ∗) + β
∑
y

Jµ∗(π, y) p(y|x, π(x), µ∗)

− c(x, π(x), µε)− β
∑
y

Jµε(π, y) p(y|x, π(x), µε)

∣∣∣∣
≤ L1 ‖µ∗ − µε‖1 + β sup

x

∣∣∣∣∑
y

Jµ∗(π, y) p(y|x, π(x), µ∗)−
∑
y

Jµ∗(π, y) p(y|x, π(x), µε)

∣∣∣∣
+ β sup

x

∣∣∣∣∑
y

Jµ∗(π, y) p(y|x, π(x), µε)−
∑
y

Jµε(π, y) p(y|x, π(x), µε)

∣∣∣∣
(II)

≤
(
L1 +

βK1QLip

2

)
‖µ∗ − µε‖1 + β‖Jµ∗(π, ·)− Jµε(π, ·)‖∞

≤
(
L1 +

βK1QLip

2

)
K1ε

1− C1
+ β‖Jµ∗(π, ·)− Jµε(π, ·)‖∞.
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Here (II) follows from (11) and the fact that Jµ∗(π, ·) is QLip-Lipschitz continuous, which
can be proved as in Lemma 4. Therefore, we obtain

‖Jµ∗(π, ·)− Jµε(π, ·)‖∞ ≤
C2 ε

1− β
. (21)

Similarly, we also have

‖Jµ∗(π∗, ·)− Jµ∗(πε, ·)‖∞ = sup
x

∣∣∣∣c(x, π∗(x), µ∗) + β
∑
y

Jµ∗(π∗, y) p(y|x, π∗(x), µ∗)

− c(x, πε(x), µ∗)− β
∑
y

Jµ∗(πε, y) p(y|x, πε(x), µ∗)

∣∣∣∣
≤ L1 sup

x
‖π∗(x)− πε(x)‖+ β sup

x

∣∣∣∣∑
y

Jµ∗(π∗, y) p(y|x, π∗(x), µ∗)

−
∑
y

Jµ∗(π∗, y) p(y|x, πε(x), µ∗)

∣∣∣∣
+ β sup

x

∣∣∣∣∑
y

Jµ∗(π∗, y) p(y|x, πε(x), µ∗)

−
∑
y

Jµ∗(πε, y) p(y|x, πε(x), µ∗)

∣∣∣∣
(III)

≤
(
L1 +

βK1QLip

2

)
sup
x
‖π∗(x)− πε(x)‖

+ β‖Jµ∗(π∗, ·)− Jµ∗(πε, ·)‖∞

≤
(
L1 +

βK1QLip

2

)
ε+ β‖Jµ∗(π∗, ·)− Jµ∗(πε, ·)‖∞.

Here (III) follows from (11) and the fact that Jµ∗(π∗, ·) is QLip-Lipschitz continuous, which
can be proved as in Lemma 4. Therefore, we obtain

‖Jµ∗(π∗, ·)− Jµ∗(πε, ·)‖∞ ≤
C3ε

1− β
, (22)

where C3 :=
(
L1 +

βK1QLip

2

)
.

Note that we must prove that

J
(N)
i (π(N)) ≤ inf

πi∈Πi
J

(N)
i (π

(N)
−i , π

i) + τ ε+ δ (23)

for each i = 1, . . . , N , when N is sufficiently large. As the transition probabilities and the
one-stage cost functions are the same for all agents, it is sufficient to prove (23) for Agent 1
only. Given δ > 0, for each N ≥ 1, let π̃(N) ∈ Π1 be a deterministic policy such that

J
(N)
1 (π̃(N), πε, . . . , πε) < inf

π′∈Π1

J
(N)
1 (π′, πε, . . . , πε) +

δ

3
.
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On the other hand, by (Saldi et al., 2018, Theorem 4.10)

lim
N→∞

J
(N)
1 (π̃(N), πε, . . . , πε) = lim

N→∞
Jµε(π̃

(N))

≥ lim
N→∞

Jµ∗(π̃
(N))− C2 ε

1− β
(by (21))

≥ inf
π′∈Πd

Jµ∗(π
′)− C2 ε

1− β

= Jµ∗(π∗)−
C2 ε

1− β

≥ Jµ∗(πε)−
C2 ε

1− β
− C3 ε

1− β
(by (22))

≥ Jµε(πε)−
2C2 ε

1− β
− C3 ε

1− β
(by (21))

=: Jµε(πε)− τ ε.

Note that by (Saldi et al., 2018, Theorem 4.10), we also have

lim
N→∞

J
(N)
1 (πε, πε, . . . , πε) = Jµε(πε).

Hence, there exists N(δ) such that for all N ≥ N(δ), we have

J
(N)
1 (π̃(N), πε, . . . , πε) +

δ

3
≥ Jµε(πε)− τ ε

Jµε(πε) +
δ

3
≥ J (N)

1 (πε, πε, . . . , πε).

Therefore, for all N ≥ N(δ), we obtain

inf
π′∈Π1

J
(N)
1 (π′, πε, . . . , πε) + δ + τ ε ≥ J (N)

1 (π̃(N), πε, . . . , πε) +
2δ

3
+ τ ε

≥ Jµε(πε) +
δ

3

≥ J (N)
1 (πε, πε, . . . , πε).

Theorem 11 implies that, by learning ε-mean-field equilibrium policy in the infinite-
population limit, one can obtain an approximate Nash equilibrium for the finite-agent
game problem for which computing or learning the exact Nash equilibrium is in general
prohibitive.

In the next section, we approximate the MFE operator H introduced in Section 3 via
the random operator Ĥ to develop an algorithm for learning a ε-mean-field equilibrium
policy in the model-free setting.
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5. Learning Algorithm for Discounted-cost

In this section, we develop an offline learning algorithm to learn an approximate mean-field
equilibrium policy. To this end, we suppose that a generic agent has access to a simulator,
which generates a new state y ∼ p( · |x, a, µ) and gives the cost c(x, a, µ) for any given state
x, action a, and state measure µ. This is a typical assumption in offline reinforcement
learning algorithms.

Each iteration of our learning algorithm has two stages. Using a fitted Q-iteration
algorithm, we learn the optimal Q-function Q∗µ for a given state-measure µ in the first

stage by replacing H1 with a random operator Ĥ1. The Q-functions are selected from
a fixed function class F which can be defined as a collection of neural networks with a
specific architecture or a linear span of a finite number of basis functions. There will be an
additional representation error in the learning algorithm depending on this choice, which is
generally negligible since Q-functions in C can be well approximated by functions from F .

In the second stage, we update the state-measure by approximating the transition prob-
ability via its empirical estimate by replacing H2 with a random operator Ĥ2. It should
be noted that if the alternative H2 operator mentioned in Remark 5 is used, the random
operator that approximates this alternative H2 operator would be more complicated than
Ĥ2. Indeed, in this case, an empirical estimation of the transition probability might be
insufficient.

We proceed by introducing the random operator Ĥ1. To describe Ĥ1, we need to give
some definitions. Let mA(·) := m(·)/m(A) be the uniform probability measure on A. Let us
choose a probability measure ν on X such that minx ν(x) > 0. For instance, one can choose
ν as the uniform distribution over X. Define ζ0 := 1/

√
minx ν(x). We also choose some

policy πb such that, for any x ∈ X, the distribution πb(·|x) on A has density with respect
to Lebesgue measure m. To simplify the notation, we denote this density by πb(a|x), and
assume that it satisfies π0 := inf(x,a)∈X×A πb(a|x) > 0. Note that the randomized policy πb
is used to generate data for the learning algorithm below. In general, given any mean-field
term, it is enough to consider deterministic policies for optimality. However, as is typical
in reinforcement learning, we employ randomized policies to explore the action space in the
training stage. Because of this, πb is introduced in a stochastic manner. We can now define
the random operator Ĥ1.
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Algorithm 1 Algorithm Ĥ1

Input µ, Data size N , Number of iterations L
Generate i.i.d. samples {(xt, at, ct, yt+1)Nt=1} using

xt ∼ ν, at ∼ πb(·|xt), ct = c(xt, at, µ), yt+1 ∼ p(·|xt, at, µ)

Start with Q0 = 0
for l = 0, . . . , L− 1 do

Ql+1 = arg min
f∈F

1

N

N∑
t=1

1

m(A)πb(at|xt)

∣∣∣∣f(xt, at)−
[
ct + β min

a′∈A
Ql(yt+1, a

′)

]∣∣∣∣2
end for
return QL

Remark 12 Notice that in Algorithm Ĥ1, we use the distribution ν and policy πb to build an
i.i.d. dataset. In fact, instead of using i.i.d. samples, one can use a sample path {xt, at}Nt=1

generated by the policy πb instead of using i.i.d. samples by setting ct = c(xt, at, µ) and
yt+1 = xt+1. Then, in order to establish the error analysis, we have to assume that under
πb, the state process {xt} must be strictly stationary and exponentially β-mixing (see Antos
et al. (2007a)). The main issue in this case, however, is finding a policy πb that meets
the mixing condition. Indeed, since exponentially β-mixing stationary processes forget their
history exponentially fast, they behave like i.i.d. processes when there is a sufficiently large
time gap between two samples. As a result, the error analysis of the exponential β-mixing
case is very close to that of the i.i.d. case. For more information on the error analysis of
Ĥ1 in the exponentially β-mixing case, see Antos et al. (2007b,a).

We perform an error analysis of the algorithm Ĥ1 before defining the second stage Ĥ2.
To that end, we define the l2-norm of any g : X× A→ R as

‖g‖2ν :=
∑
x∈X

∫
A
g(x, a)2mA(da) ν(x),

and introduce the constants

E(F) := sup
µ∈P(X)

sup
Q∈F

inf
Q′∈F

‖Q′ −HµQ‖ν , (24)

and

Lm := (1 + β)Qm + cm, C :=
L2
m

m(A)π0
, γ = 512C2.

Here E(F) describes the representation error of the function class F . This error is
generally small since everyQ function in C can be very well approximated using, for example,
neural networks with a fixed architecture. As a result, we may consider the error caused
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by E(F) to be negligible. The error analysis of the algorithm Ĥ1 is given by the following
theorem. We define Fmin := {Qmin : Q ∈ F} and let

Υ = 8 e2 (VF + 1) (VFmin + 1)

(
64eQmLm(1 + β)

m(A)π0

)VF+VFmin

, V = VF + VFmin .

Theorem 13 For any (ε, δ) ∈ (0, 1)2 and N ≥ m1(ε, δ, L), with probability at least 1 − δ
we have ∥∥∥Ĥ1[N,L](µ)−H1(µ)

∥∥∥
∞
≤ ε+ ∆,

if βL

1−β Qm < ε
2 , where

m1(ε, δ, L) :=
γ(2Λ)4(dimA +1)

ε4(dimA +1)
ln

(
Υ(2Λ)2V (dimA +1)L

δε2V (dimA +1)

)
,

and

∆ :=
1

1− β

[
m(A)(dimA +1)!ζ0

α(2/QLip)dimA
E(F)

] 1
dimA +1

, Λ :=
1

1− β

[
m(A)(dimA +1)!ζ0

α(2/QLip)dimA

] 1
dimA +1

.

The constant error ∆ is due to the algorithm’s representation error E(F), which is
generally negligible.

Proof For any real-valued function Q(x, a), recall the definition

‖Q‖2ν :=
∑
x∈X

∫
A
Q(x, a)2mA(da) ν(x).

Let Ql be the random Q-function at the lth-step of the algorithm. First, we find an upper
bound to the following probability

P0 := P
(
‖Ql+1 −HµQl‖2ν > E(F)2 + ε′

)
,

for a given ε′ > 0. To that end, we define

L̂N (f ;Q) :=
1

N

N∑
t=1

1

m(A)πb(at|xt)

∣∣∣∣f(xt, at)−
[
ct + β min

a′∈A
Q(yt+1, a

′)

]∣∣∣∣2 .
The normalization with πb(at|xt) is used here to avoid assigning more weight to the actions
that are preferred by the policy, and m(A) is introduced for mathematical convenience.

One can show that (see (Antos et al., 2007b, Lemma 4.1))

E
[
L̂N (f ;Q)

]
= ‖f −HµQ‖2ν + L∗(Q) =: L(f ;Q),

where L∗(Q) is some quantity independent of f . Since we need a similar equation for the
average-cost, let us prove it in detail so that we can refer to this proof in the future. Indeed,
for each t = 1, . . . , N , define

Q̂t := ct + β min
a′∈A

Q(yt+1, a
′).
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Then,

E
[
Q̂t
∣∣xt, at] = HµQ(xt, at).

Note that we can write

E

[(
f(xt, at)−

[
ct + β min

a′∈A
Q(yt+1, a

′)

])2 ∣∣∣∣xt, at
]

= E
[(
f(xt, at)− Q̂t

)2
∣∣∣∣xt, at]

= E
[(
Q̂t −HµQ(xt, at)

)2
∣∣∣∣xt, at]+ (f(xt, at)−HµQ(xt, at))

2 .

Dividing each term by m(A)πb(at|xt), taking the expectation of both sides with respect to
a and x, and using the law of iterated expectation we get

E

[
(f(xt, at)− [ct + βmina′∈AQ(yt+1, a

′)])2

m(A)πb(at|xt)

]

= E


(
Q̂t −HµQ(xt, at)

)2

m(A)πb(at|xt)

+
∑
xt∈X

∫
A

(f(xt, at)−HµQ(xt, at))
2

m(A)πb(at|xt)
πb(at|xt)m(dat) ν(xt)

= E


(
Q̂t −HµQ(xt, at)

)2

m(A)πb(at|xt)

+
∑
xt∈X

∫
A

(f(xt, at)−HµQ(xt, at))
2 mA(dat) ν(xt)

=: L∗(Q) + ‖f −HµQ‖2ν =: L(f ;Q).

Since the samples are i.i.d., this establishes the fact.
Using above discussion, we can obtain the following bound

‖Ql+1 −HµQl‖2ν − E(F)2 ≤ ‖Ql+1 −HµQl‖2ν − inf
f∈F
‖f −HµQl‖2ν

= L(Ql+1;Ql)− inf
f∈F

L(f ;Ql)

= L(Ql+1;Ql)− L̂N (Ql+1;Ql) + L̂N (Ql+1;Ql)− inf
f∈F

L(f ;Ql)

= L(Ql+1;Ql)− L̂N (Ql+1;Ql) + inf
f∈F

L̂N (f ;Ql)− inf
f∈F

L(f ;Ql)

≤ 2 sup
f∈F

∣∣∣L(f ;Ql)− L̂N (f ;Ql)
∣∣∣

≤ 2 sup
f,Q∈F

∣∣∣L(f ;Q)− L̂N (f ;Q)
∣∣∣ .

This implies that

P0 ≤ P

(
sup
f,Q∈F

∣∣∣L(f ;Q)− L̂N (f ;Q)
∣∣∣ > ε′

2

)
. (25)

For any f,Q ∈ F , we define

lf,Q(x, a, c, y) :=
1

m(A)πb(a|x)

∣∣∣∣f(x, a)− c− β min
a′∈A

Q(y, a′)

∣∣∣∣2 .
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Let LF := {lf,Q : f,Q ∈ F}. Note that {zt}Nt=1 := {(xt, at, ct, yt+1)}Nt=1 are i.i.d. and

1

N

N∑
t=1

lf,Q(zt) = L̂N (f ;Q) and E[lf,Q(z1)] = L(f ;Q).

Recall the constant Lm := (1 + β)Qm + cm. One can prove that 0 ≤ lf,Q ≤ L2
m

m(A)π0
=: C.

Then, by Pollard’s Tail Inequality (Pollard, 1984, Theorem 24, p. 25), we have

P0 ≤ P

(
sup
f,Q∈F

∣∣∣∣∣ 1

N

N∑
t=1

lf,Q(zt)− E[lf,Q(z1)]

∣∣∣∣∣ > ε′

2

)

≤ 8E
[
N1

(
ε′

16
, {zt}Nt=1,LF

)]
e
−N ε′2
512C2 .

For any lf,Q and lg,T , we also have (see (Antos et al., 2007b, pp. 18))

1

N

N∑
t=1

|lf,Q(zt)− lg,T (zt)| ≤
2Lm

m(A)π0

(
1

N

N∑
t=1

|f(xt, at)− g(xt, at)|

+ β
1

N

N∑
t=1

∣∣∣∣min
b∈A

Q(yt+1, b)−min
b∈A

T (yt+1, b)

∣∣∣∣ ).
This implies that, for any ε > 0, we have

N1

(
2Lm

m(A)π0
(1 + β) ε, {zt}Nt=1,LF

)
≤ N1

(
ε, {(xt, at)}Nt=1,F

)
N1

(
ε, {yt+1}Nt=1,Fmin

)
(I)

≤ e (VF + 1)

(
2eQm

ε

)VF
e (VFmin + 1)

(
2eQm

ε

)VFmin

, (26)

where (I) follows from Lemma 31. Therefore, we have the following bound on the probability
P0:

P0 ≤ 8

{
e2 (VF + 1) (VFmin + 1)

(
64eQmLm(1 + β)

m(A)π0ε′

)VF+VFmin

}
e
−N ε′2
512C2 . (27)

Recall the constants

Υ = 8 e2 (VF + 1) (VFmin
+ 1)

(
64eQmLm(1 + β)

m(A)π0

)VF+VFmin

, V = VF + VFmin
, γ = 512C2.

Then, we can write (27) as follows

P0 := P
(
‖Ql+1 −HµQl‖2ν > E(F)2 + ε′

)
≤ Υ ε′−V e

−Nε′2
γ =:

δ′

L
. (28)

Hence, for each l = 0, . . . , L− 1, with probability at most δ′

L

‖Ql+1 −HµQl‖2ν > ε′ + E(F)2.
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This implies that with probability at most δ′

L

‖Ql+1 −HµQl‖ν >
√
ε′ + E(F).

Using this, we can conclude that with probability at least 1− δ′

‖QL −H1(µ)‖∞ ≤
L−1∑
l=0

βL−(l+1) ‖Ql+1 −HµQl‖∞ + ‖HL
µQ0 −H1(µ)‖∞

(II)

≤
L−1∑
l=0

βL−(l+1)

[
m(A)(dimA +1)!ζ0

α(2/QLip)dimA
‖Ql+1 −HµQl‖ν

] 1
dimA +1

+
βL

1− β
Qm

≤
L−1∑
l=0

βL−(l+1)

[
m(A)(dimA +1)!ζ0

α(2/QLip)dimA
(
√
ε′ + E(F))

] 1
dimA +1

+
βL

1− β
Qm

≤ 1

1− β

([
m(A)(dimA +1)!ζ0

α(2/QLip)dimA
E(F)

] 1
dimA +1

+

[
m(A)(dimA +1)!ζ0

α(2/QLip)dimA

] 1
dimA +1

ε
′ 1
2(dimA +1)

)

+
βL

1− β
Qm,

where (II) follows from Lemma 29. Then, with probability at least 1− δ′, we have

‖QL −H1(µ)‖∞ ≤ Λε
′ 1
2(dimA +1) + ∆ +

βL

1− β
Qm. (29)

The result follows by picking δ = δ′ := LΥ ε′−V e
−Nε′2
γ in (28), choosing Λε

′ 1
2(dimA +1) = ε/2,

and βL

1−β Qm = ε/2.

Remark 14 We use the ‖ · ‖ν-norm on Q-functions until a certain stage in the proof
of Theorem 13, and then we use Lemma 29 to go back to the ‖ · ‖∞-norm. Notice that
Assumption 1-(c) on A is needed to accomplish this because the operator H1 becomes a β-
contraction only in terms of the ‖ · ‖∞-norm. However, without switching from ‖ · ‖ν-norm
to ‖ · ‖∞-norm, a similar error analysis in terms of ‖ · ‖ν-norm can be formed by replacing
Assumption 1-(c) with a concentrability assumption (see Munos and Szepesvári (2008);
Agarwal et al. (2019)). To that end, let us define the state-action visitation probability of
any policy π as

dπ(x, da) := (1− β)

∞∑
t=0

Pπ(x(t) = x, a(t) ∈ da).

The concentrability assumption states that the state-action visitation probability dπ is ab-
solutely continuous with respect to ν(x) ⊗ mA(da) for any π ∈ Π, and the corresponding
densities are uniformly bounded, i.e.,

sup
π∈Π

∥∥∥∥ dπ

ν ⊗mA

∥∥∥∥
∞
≤ C,
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for some C. Under this assumption, the final part of Theorem 13 can be handled with the
‖ · ‖ν-norm instead of the ‖ · ‖∞-norm using performance difference lemma (Agarwal et al.,
2019, Theorem 15.4). However, it is not possible to establish the overall error analysis of the
learning algorithm using the ‖ · ‖ν-norm on Q-functions under the same set of assumptions
on the system components without strengthening Assumption 1-(d).

We now give the description of the random operator Ĥ2, and then, do the error analysis.
In this algorithm, the goal is to replace the operator H2, which gives the next state-measure,
with Ĥ2. We achieve this by simulating the transition probability p(·|x, a, µ) for certain
state-measure µ and policy π. This is possible since |X| is finite.

Algorithm 2 Algorithm Ĥ2

Inputs (µ,Q), Data size M , Number of iterations |X|
for x ∈ X do

generate i.i.d. samples {yxt }Mt=1 using

yxt ∼ p(·|x, fQ(x), µ)

and define

pM (·|x, fQ(x), µ) =
1

M

M∑
t=1

δyxt (·).

end for
return

∑
x∈X pM (·|x, fQ(x), µ)µ(x)

This is the error analysis of the random operator Ĥ2.

Theorem 15 For any (ε, δ) ∈ (0, 1)2, with probability at least 1− δ∥∥∥Ĥ2[M ](µ,Q)−H2(µ,Q)
∥∥∥

1
≤ ε

if M ≥ m2(ε, δ), where

m2(ε, δ) :=
|X|2

ε2
ln

(
2 |X|2

δ

)
.

Proof By Hoeffding Inequality (Hajek and Raginsky, 2019, Theorem 2.1), for any x, y ∈ X,
we have

P
(
|pM (y|x, fQ(x), µ)− p(y|x, fQ(x), µ)| > ε

|X|

)
≤ 2e

−Mε2

|X|2 .

Hence, we have

P
(∥∥∥Ĥ2[M ](µ,Q)−H2(µ,Q)

∥∥∥
1
≤ ε
)

≥ P

∑
x,y∈X

|pM (y|x, fQ(x), µ)− p(y|x, fQ(x), µ)| µ(x) ≤ ε


29



Anahtarci, Kariksiz, and Saldi

≥ 1− P
(
∃x, y ∈ X s.t. |pM (y|x, fQ(x), µ)− p(y|x, fQ(x), µ)| > ε

|X|
,

)
≥ 1− 2 |X|2 e

−Mε2

|X|2 .

The result follows by picking δ = 2 |X|2 e
−Mε2

|X|2 .

The overall description of the learning algorithm is given below. In this algorithm, to
achieve an approximate mean-field equilibrium policy, we successively apply the random
operator Ĥ which replaces the MFE operator H.

Algorithm 3 Learning Algorithm

Input µ0, Number of iterations K, Parameters of Ĥ1 and Ĥ2

(
{[Nk, Lk]}K−1

k=0 , {Mk}K−1
k=0

)
Start with µ0

for k = 0, . . . ,K − 1 do

µk+1 = Ĥ ([Nk, Lk],Mk) (µk) := Ĥ2[Mk]
(
µk, Ĥ1[Nk, Lk](µk)

)
end for
return µK

The current state-measure µk is the input for each iteration k = 0, . . . ,K − 1. In ad-
dition, for the random operator Ĥ1, we choose integers Nk and Lk as the data size and
the number of iterations, respectively, and for the random operator Ĥ2, we choose an
integer Mk as the data size. We first compute an approximate Q-function for µk by apply-
ing Ĥ1[Nk, Lk](µk), and then we compute an approximate next state-measure by applying
Ĥ2[Mk](µk, Ĥ1[Nk, Lk](µk)). Since an approximate Q-function is used instead of the exact
Q-function in the second stage of the iteration, there will be an error due to Ĥ1 in addition
to the error resulting from Ĥ2.

The error analyses of the algorithms Ĥ1 and Ĥ2 have been completed in Theorem 13
and Theorem 15, respectively. The error analysis for the learning algorithm for the random
operator Ĥ, which is a combination of Ĥ1 and Ĥ2, is given below. We state the key result
of this section as a corollary after the proof of the following theorem.

Theorem 16 Fix any (ε, δ) ∈ (0, 1)2. Define

ε1 :=
ρ (1−KH)2 ε2

64(K1)2
, ε2 :=

(1−KH) ε

4
.

Let K,L be such that

(KH)K

1−KH
≤ ε

2
,

βL

1− β
Qm ≤

ε1

2
.

Then, pick N,M such that

N ≥ m1

(
ε1,

δ

2K
,L

)
, M ≥ m2

(
ε2,

δ

2K

)
. (30)
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Let µK be the output of the learning algorithm with parameters(
µ0,K, {[N,L]}Kk=0, {M}K−1

k=0

)
.

Then, with probability at least 1− δ

‖µK − µ∗‖1 ≤
2K1

√
∆

√
ρ(1−KH)

+ ε,

where µ∗ is the state-measure in mean-field equilibrium given by the MFE operator H.

Proof Note that for any µ ∈ P(X), Q ∈ F , Q̂ ∈ C, we have

‖H2(µ,Q)−H2(µ, Q̂)‖1 =
∑
y∈X

∣∣∣∣∣∑
x∈X

p(y|x, fQ(x), µ)µ(x)−
∑
x∈X

p(y|x, fQ̂(x), µ)µ(x)

∣∣∣∣∣
≤
∑
x∈X
‖p(·|x, fQ(x), µ)− p(·|x, fQ̂(x), µ)‖1 µ(x)

≤
∑
x∈X

K1 ‖fQ(x)− fQ̂(x)‖µ(x). (31)

For all x ∈ X, note that the mapping fQ(x) is the minimizer of Q(x, · ) and the mapping

fQ̂(x) is the unique minimizer of Q̂(x, · ) by strong convexity. Let us set a = fQ̂(x) and

r = fQ(x)− fQ̂(x). As a is the unique minimizer of a strongly convex function Q̂(x, · ), by
first-order optimality condition, we have

∇ Q̂ (x, a) · r ≥ 0.

Hence, by strong convexity

Q̂(x, a+ r)− Q̂(x, a) ≥ ∇Q̂(x, a) · r +
ρ

2
‖r‖2

≥ ρ

2
‖r‖2 (32)

For all x ∈ X, this leads to

‖fQ(x)− fQ̂(x)‖2 ≤ 2

ρ

(
Q̂(x, fQ(x))− Q̂(x, fQ̂(x))

)
=

2

ρ

(
Q̂(x, fQ(x))−Q(x, fQ(x)) +Q(x, fQ(x))− Q̂(x, fQ̂(x))

)
=

2

ρ

(
Q̂(x, fQ(x))−Q(x, fQ(x)) + min

a∈A
Q(x, a)−min

a∈A
Q̂(x, a)

)
≤ 4

ρ
‖Q− Q̂‖∞. (33)

Hence, combining (31) and (33) yields

‖H2(µ,Q)−H2(µ, Q̂)‖1 ≤
2K1√
ρ

√
‖Q− Q̂‖∞. (34)
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Using (34) and the fact that H1(µk) ∈ C and Ĥ1[N,L](µk) ∈ F , for any k = 0, . . . ,K − 1,
we have

‖H(µk)− Ĥ([N,L],M)(µk)‖1 ≤ ‖H2(µk, H1(µk))−H2(µk, Ĥ1[N,L](µk))‖1
+ ‖H2(µk, Ĥ1[N,L](µk))− Ĥ2[M ](µk, Ĥ1[N,L](µk))‖1

≤ 2K1√
ρ

√
‖H1(µk)− Ĥ1[N,L](µk)‖∞

+ ‖H2(µk, Ĥ1[N,L](µk))− Ĥ2[M ](µk, Ĥ1[N,L](µk))‖1.

The last term is upper bounded by

2K1

√
ε1 + ∆
√
ρ

+ ε2

with probability at least 1− δ
K by Theorem 13 and Theorem 15. Therefore, with probability

at least 1− δ

‖µK − µ∗‖1 ≤
K−1∑
k=0

K
K−(k+1)
H ‖Ĥ([N,L],M)(µk)−H(µk)‖1 + ‖HK(µ0)− µ∗‖1

≤
K−1∑
k=0

K
K−(k+1)
H

(
2K1

√
ε1 + ∆
√
ρ

+ ε2

)
+

(KH)K

1−KH

≤ 2K1

√
∆

√
ρ(1−KH)

+ ε.

This completes the proof.

Now, we state the main result of this section. It basically states that, by using the learn-
ing algorithm, one can learn an approximate mean-field equilibrium policy. By Theorem 11,
this gives an approximate Nash-equilibrium for the finite-agent game.

Corollary 17 Fix any (ε, δ) ∈ (0, 1)2. Suppose that K,L,N,M satisfy the conditions in
Theorem 16. Let µK be the output of the learning algorithm with parameters(

µ0,K, {[N,L]}Kk=0, {M}K−1
k=0

)
.

Define πK(x) := arg mina∈AQK(x, a), where QK := Ĥ1([N,L])(µK). Then, with probability
at least 1− δ(1 + 1

2K ), the policy πK is a κ(ε,∆)-mean-field equilibrium policy, where

κ(ε,∆) =

√√√√4

ρ

(
ρ2 (1−KH)2 ε2

64(K1)2
+ ∆ +KH1

(
2K1

√
∆

√
ρ(1−KH)

+ ε

))
.

Therefore, by Theorem 11, an N -tuple of policies π(N) = {πK , πK , . . . , πK} is an τκ(ε,∆)+
σ-Nash equilibrium for the game with N ≥ N(σ) agents.
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Proof By Theorem 13 and Theorem 16, with probability at least 1− δ(1 + 1
2K ), we have

‖QK −H1(µ∗)‖∞ ≤ ‖QK −H1(µK)‖∞ + ‖H1(µK)−H1(µ∗)‖∞
≤ ε1 + ∆ +KH1‖µK − µ∗‖1

≤ ε1 + ∆ +KH1

(
2K1

√
∆

√
ρ(1−KH)

+ ε

)

=
ρ (1−KH)2 ε2

64(K1)2
+ ∆ +KH1

(
2K1

√
∆

√
ρ(1−KH)

+ ε

)
.

Let πK(x) := arg mina∈AQK(x, a). Using the same analysis that leads to (33), we can
obtain the following bound since QK ∈ F and H1(µ∗) ∈ C:

sup
x∈X
‖πK(x)− π∗(x)‖2 ≤ 4

ρ
‖QK −H1(µ∗)‖∞.

Hence, with probability at least 1− δ(1 + 1
2K ), the policy πK is a κ(ε,∆)-mean-field equi-

librium, where

κ(ε,∆) =

√√√√4

ρ

(
ρ (1−KH)2 ε2

64(K1)2
+ ∆ +KH1

(
2K1

√
∆

√
ρ(1−KH)

+ ε

))
.

This completes the proof.

Remark 18 Note that, in Corollary 17, there is a constant ∆, which depends on the rep-
resentation error E(F). In general, E(F) is very small since any Q function in C can be
approximated quite well by functions in F . Therefore, ∆ is negligible. In this case, we have
the following error bound:

κ(ε, 0) =

√
4

ρ

(
ρ (1−KH)2 ε2

64(K1)2
+KH1ε

)
.

which goes to zero as ε→ 0.

6. Mean-field Equilibrium Operator for Average-cost

In this section, we introduce the corresponding MFE operator for average-cost mean-field
games. For the purpose of keeping the notation similar to the discounted-cost case while
making the distinctions more apparent, we use the ‘av’ superscript to denote the related
quantities in the average-cost setting. For instance, to denote the average-cost of any policy
π with initial state x under state-measure µ, we use Jav

µ (π, x) instead of Jµ(π, x). Now, let
us state the extra conditions imposed for the average-cost in addition to Assumption 1.

Assumption 3
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(a) There exists a sub-probability measure λ on X such that

p( · |x, a, µ) ≥ λ( · )

for all x, a, µ.

(b) Let βav := 1− λ(X) and Qav
Lip :=

L1

1−K1/2
> 0. We assume that

3K1

2

(
1 +

KF

ρ

)
+
K1KFQ

av
Lip

ρ(1− βav)
< 1.

Note that Assumption 3-(a) is the so-called ‘minorization’ condition. Minorization con-
dition was used in the literature for studying the geometric ergodicity of Markov chains
(see (Hernández-Lerma, 1989, Section 3.3)). The minorization condition is true when the
transition probability satisfies conditions R0, R1(a) and R1(b) in Hernández-Lerma et al.
(1991) (see also (Hernández-Lerma et al., 1991, Remark 3.3) and references therein for fur-
ther conditions). In general, this condition is restrictive for unbounded state spaces, but
it is quite general for compact or finite state spaces. Indeed, the minorization condition
was used to study average-cost mean-field games with a compact state space in (Wiecek,
2019, Assumption A.3). Note that Assumption 3-(b) is used to ensure that MFE operator
is contraction, which is crucial to establish the error analysis of the learning algorithm, and
so, cannot be relaxed.

Recall that for the average-cost, given any state-measure µ, the value function Jav
µ of

policy π with initial state x is given by

Jav
µ (π, x) := lim sup

T→∞

1

T
Eπ
[T−1∑
t=0

c(x(t), a(t), µ)

∣∣∣∣x(0) = x

]
.

Then, the optimal value function is defined as

Jav,∗
µ (x) := inf

π∈Π
Jav
µ (π, x).

Under Assumption 1 and Assumption 3, it can be proved that

Jav,∗
µ (x) = Jav,∗

µ (y) =: Jav,∗
µ

for all x, y ∈ X, for some constant Jav,∗
µ ; that is, the optimal value function does not depend

on the initial state. Furthermore, let h∗µ(x) be the unique fixed point of the β-contraction
operator T av

µ with respect to ‖ · ‖∞-norm:

h∗µ(x) = min
a∈A

[
c(x, a, µ) +

∑
y∈X

h∗µ(y)q(y|x, a, µ)

]
=: T av

µ h∗µ(x),

where

q( · |x, a, µ) := p( · |x, a, µ)− λ( · ).
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Then, the pair
(
h∗µ,
∑

y∈X h
∗
µ(y)λ(y)

)
satisfies the average-cost optimality equation (ACOE):

h∗µ(x) +
∑
y∈X

h∗µ(y)λ(y) = min
a∈A

[
c(x, a, µ) +

∑
y∈X

h∗µ(y) p(y|x, a, µ)

]
.

Therefore, Jav,∗
µ =

∑
y∈X h

∗
µ(y)λ(y). Additionally, if f∗ : X → A attains the minimum in

the ACOE, that is,

min
a∈A

[
c(x, a, µ) +

∑
y∈X

h∗µ(y) p(y|x, a, µ)

]
= c(x, f∗(x), µ) +

∑
y∈X

h∗µ(y) p(y|x, f∗(x), µ) (35)

for all x ∈ X, then the policy π∗(a|x) = δf∗(x)(a) ∈ Πd is optimal for any initial distribu-
tion. We refer the reader to (Hernández-Lerma, 1989, Chapter 3) for basics of average-cost
Markov decision processes, where these classical results can be found.

We can also obtain a similar characterization by using a Q-function instead of h∗µ.
Indeed, we define the Q-function as

Qav,∗
µ (x, a) = c(x, a, µ) +

∑
y∈X

h∗µ(y) q(y|x, a, µ).

Note that Qav,∗
µ,min(x) := mina∈AQ

av,∗
µ (x, a) = h∗µ(x) for all x ∈ X, and so, we have

Qav,∗
µ (x, a) = c(x, a, µ) +

∑
y∈X

Qav,∗
µ,min(y) q(y|x, a, µ) =: Hav

µ Q
av,∗
µ (x, a),

where Hav
µ is the corresponding operator on Q-functions. Hence, the policy π∗(a|x) =

δf∗(x)(a) ∈ Πd is optimal for µ and for any initial distribution, if Qav,∗
µ (x, f∗(x)) = Qav,∗

µ,min(x)
for all x ∈ X. One can prove that Hav

µ is a ‖ · ‖∞-contraction with modulus βav, and so,

the unique fixed point of Hav
µ is Qav,∗

µ . Indeed, let Q and Q̂ be two different Q-functions.
Then, we have

‖Hav
µ Q−Hav

µ Q̂‖∞ ≤ sup
(x,a)∈X×A

∑
y∈X
|Qmin(y)− Q̂min(y)| q(y|x, a, µ)

≤ ‖Qmin − Q̂min‖∞ sup
(x,a)∈X×A

q(X|x, a, µ)

= βav ‖Qmin − Q̂min‖∞.

Hence, using the Banach fixed point theorem, we can develop a Q-iteration algorithm
to compute Qav,∗

µ , the minimum of which gives the optimal policy. The benefit of this
algorithm, as in the discounted case, is that it can be adapted to a model-free setting via
Q-learning.

Using (11), we now prove the following result.

Lemma 19 For any µ, Qav,∗
µ,min is Qav

Lip-Lipschitz continuous; that is,

|Qav,∗
µ,min(x)−Qav,∗

µ,min(y)| ≤ Qav
Lip dX(x, y).
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Proof The proof is exactly the same with the proof of Lemma 4. The only difference is
the absence of the discount factor β.

Before we define MFE operator, let us describe the set of possible Q-functions. This set
Cav is the set of all Q-functions Q : X × A → R such that ‖Q‖∞ ≤ Qav

m := cm/(1 − βav),
Q(x, ·) is Qav

Lip-Lipschitz and ρ-strongly convex for all x, and the gradient ∇Q(x, a) of Q
with respect to a satisfies the bound

sup
a∈A
‖∇Q(x, a)−∇Q(x̂, a)‖ ≤ KF , ∀x, x̂.

Now, we can define the MFE operator Hav. The operator Hav is very similar to H; that is,
it is a composition of two operators, where the first operator Hav

1 : P(X) → Cav is defined
as Hav

1 (µ) = Qav,∗
µ (the unique fixed point of the operator Hav

µ ). The second operator
Hav

2 : P(X)× Cav → P(X) is defined as

Hav
2 (µ,Q)(·) :=

∑
x∈X

p(·|x, fQ(x), µ)µ(x),

where fQ(x) := arg mina∈AQ(x, a) is the unique minimizer by ρ-strong convexity of Q, for
any Q ∈ Cav. Note that we indeed have Hav

2 = H2, where H2 is the operator that computes
the new state-measure in discounted-cost. However, to be consistent with the notation used
in this section, we keep Hav

2 as it is. Using these operators, let us define the MFE operator
as a composition:

Hav : P(X) 3 µ 7→ Hav
2 (µ,Hav

1 (µ)) ∈ P(X).

Our goal is to establish that Hav is contraction. Using (11) and Lemma 19, we can first
prove that H1 is Lipschitz continuous.

Lemma 20 The mapping Hav
1 is KHav

1
-Lipschitz, where KHav

1
:=

Qav
Lip

1− βav
.

Proof The proof can be done as in the proof of Lemma 6 by making appropriate modifi-
cations. Note that since Hav

1 (µ) := Qav,∗
µ is the fixed point of the contraction operator Hav

µ ,
where Hav

µ is given by

Hav
µ Q(x, a) = c(x, a, µ) +

∑
y∈X

Qmin(y) q(y|x, a, µ),

by Assumption 1-(a),(b),(d), Hav
µ maps any continuous Q : X × A → R into Cav. Hence,

the fixed point Qav,∗
µ of Hav

µ must be in Cav (see the proof of Lemma 6). Therefore, Hav
µ is

well-defined.
Let us now prove that Hav

1 is KHav
1

-Lipschitz. For any µ, µ̂ ∈ P(X), we have

‖Hav
1 (µ)−Hav

1 (µ̂)‖∞

= sup
x,a

∣∣∣∣c(x, a, µ) +
∑
y

Qav,∗
µ,min(y)q(y|x, a, µ)− c(x, a, µ̂)−

∑
y

Qav,∗
µ̂,min(y)q(y|x, a, µ̂)

∣∣∣∣
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≤ L1 ‖µ− µ̂‖1

+

∣∣∣∣∣∑
y

Qav,∗
µ,min(y)q(y|x, a, µ)−

∑
y

Qav,∗
µ,min(y)q(y|x, a, µ̂)

∣∣∣∣∣
+

∣∣∣∣∣∑
y

Qav,∗
µ,min(y)q(y|x, a, µ̂)−

∑
y

Qav,∗
µ̂,min(y)q(y|x, a, µ̂)

∣∣∣∣∣
≤ L1 ‖µ− µ̂‖1 +Qav

LipK1/2 ‖µ− µ̂‖1 + βav ‖Qav,∗
µ −Qav,∗

µ̂ ‖∞,

where the last inequality follows from (11), Lemma 19, and the fact q(X|x, a, µ) = βav for
all x, a, µ.

Now, using Lemma 20, we can prove that Hav is contraction.

Proposition 21 The mapping Hav is a contraction with contraction modulus KHav , where

KHav :=
3K1

2

(
1 +

KF

ρ

)
+
K1KFKHav

1

ρ
.

Proof The proof is exactly the same with the proof of Proposition 7. The only difference
is the following: we should replace KH1 in (16) with KHav

1
.

Now, we know thatHav is a contraction mapping under Assumption 1 and Assumption 3.
Therefore, by Banach fixed point theorem, Hav has a unique fixed point µav

∗ . Let

Qav,∗
µav∗

= Hav
1 (µav

∗ ) and πav
∗ ( · |x) = δf

Q
av,∗
µav∗

(x)( · ).

Then, the pair (πav
∗ , µ

av
∗ ) is a mean-field equilibrium since (µav

∗ , Q
av,∗
µav∗

) satisfy the following
equations

µav
∗ (·) =

∑
x∈X

p(·|x, a, µav
∗ )πav

∗ (a|x)µav
∗ (x), (36)

Q∗µav∗ (x, a) = c(x, a, µav
∗ ) +

∑
y∈X

Qav,∗
µav∗ ,min(y) q(y|x, a, µav

∗ ). (37)

Here, (37) implies that πav
∗ ∈ Ψ(µav

∗ ) since

fQav,∗
µav∗

(x) := arg minQav,∗
µav∗

(x, a)

for every x ∈ X, and (36) implies µav
∗ ∈ Λ(πav

∗ ). Hence, (πav
∗ , µ

av
∗ ) is a mean-field equilib-

rium. Therefore, since Hav is a contraction, we can compute this mean-field equilibrium by
applying Hav recursively starting from arbitrary state-measure.

Note that if the transition probability p, the one-stage cost function c, and the minorizing
sub-probability measure λ are not available to the decision maker, we need to replace Hav

with a random operator and establish a learning algorithm via this random operator. To
prove the convergence of this learning algorithm, the contraction property of Hav is crucial,
similar to the discounted-case.
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7. Finite-Agent Game for Average-cost

The finite-agent game model for average-cost is exactly the same with the model introduced
in Section 4 for the discounted-cost case. The only difference is the cost function. Here,
under an N -tuple of policies π(N) := (π1, . . . , πN ), for Agent i, the average-cost is given by

J
av,(N)
i (π(N)) = lim sup

T→∞

1

T
Eπ(N)

[T−1∑
t=0

c(xNi (t), aNi (t), e
(N)
t )

]
.

Using this, we define Nash equilibrium and δ-Nash equilibrium similarly.

Definition 22 An N -tuple of policies π(N∗) = (π1∗, . . . , πN∗) constitutes a Nash equilib-
rium if

J
av,(N)
i (π(N∗)) = inf

πi∈Πi
J

av,(N)
i (π

(N∗)
−i , πi)

for each i = 1, . . . , N . An N -tuple of policies π(N∗) = (π1∗, . . . , πN∗) constitutes an δ-Nash
equilibrium if

J
av,(N)
i (π(N∗)) ≤ inf

πi∈Πi
J

av,(N)
i (π

(N∗)
−i , πi) + δ

for each i = 1, . . . , N .

As in the discounted-cost case, if the number of agents is large enough in the finite-
agent setting, one can obtain δ-Nash equilibrium by considering the infinite-population
limit N →∞ of the game (i.e., mean-field game). Then, it is possible to prove that if each
agent in the finite-agent N game problem adopts the policy in mean-field equilibrium, the
resulting N -tuple of policies will be an approximate Nash equilibrium for all sufficiently
large N . This was indeed proved in Wiecek (2019); Saldi (2020). In the below theorem, we
prove that if each agent in the finite-agent game model adopts the ε-mean-field equilibrium
policy (instead of exact mean-field equilibrium policy), the resulting policy will still be an
approximate Nash equilibrium for all sufficiently large N -agent game models.

Before we state the theorem, let us define the following constants:

Cav
1 :=

(
3K1

2
+
K1KF

2ρ

)
, Cav

2 :=
2cm(K1)2

(1− Cav
1 )λ(X)

, Cav
3 :=

2cm
λ(X)

.

Note that by Assumption 3, the constant Cav
1 is strictly less than 1.

Theorem 23 Let πε be an ε-mean-field equilibrium policy for the mean-field equilibrium
(π∗, µ∗) ∈ Πd × P(X) given by the unique fixed point of the MFE operator Hav. Let η0 ∈
Λ(πε). Then, for any δ > 0, there exists a positive integer N(δ) such that, for each N ≥
N(δ), the N -tuple of policies π(N) = {πε, πε, . . . , πε} is a (δ + τavε)-Nash equilibrium for
the game with N agents, where τav := 2Cav

2 + Cav
3 .
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Proof By an abuse of notation, we denote the deterministic mappings from X to A that
induce policies π∗ and πε as π∗ and πε as well, respectively. As in the proof of Theorem 11,
one can prove that

‖π∗(x)− π∗(y)‖ ≤ KF

ρ
dX(x, y) and ‖µε − µ∗‖1 ≤

K1 ε

1− Cav
1

,

where µε ∈ Λ(πε) and Cav
1 :=

(
3K1

2 + K1KF
2ρ

)
. Note that by Assumption 3, Cav

1 < 1.

For any policy π ∈ Πd and state measure µ, Assumption 3-(a) (i.e., minorization con-
dition) implies that there exists a unique invariant measure νπ,µ ∈ P(X) of the transition
probability Pπ,µ( · |x) :=

∑
x p( · |x, π(x), µ) such that for any initial state x ∈ X, we have

Jav
µ (π, x) =

∑
x

c(x, π(x), µ) νπ,µ(x),

where the last identity follows from ergodic theorem (Hernández-Lerma, 1989, Lemma 3.3).
Therefore, the value of any policy π under µ does not depend on the initial state. Let us
define

Jav
µ (π, x) = Jav

µ (π, y) =: Jav
µ (π), for all x, y ∈ X.

Now, fix any policy π ∈ Πd. Then, we have

|Jav
µ∗(π)− Jav

µε (π)| =

∣∣∣∣∣∑
x

c(x, π(x), µ∗) νπ,µ∗(x)−
∑
x

c(x, π(x), µε) νπ,µε(x)

∣∣∣∣∣
≤ cm ‖νπ,µ∗ − νπ,µε‖1.

Hence, to bound |Jav
µ∗(π) − Jav

µε (π)|, it is sufficient to bound ‖νπ,µ∗ − νπ,µε‖1. Note that
invariant measures νπ,µ∗ and νπ,µε satisfy the following fixed point equations

νπ,µ∗( · ) =
∑
x

p( · |x, π(x), µ∗) νπ,µ∗(x)

νπ,µε( · ) =
∑
x

p( · |x, π(x), µε) νπ,µε(x).

Hence, we have

‖νπ,µ∗ − νπ,µε‖1 =
∑
y

∣∣∣∣∣∑
x

p(y|x, π(x), µ∗) νπ,µ∗(x)−
∑
x

p(y|x, π(x), µε) νπ,µε(x)

∣∣∣∣∣
≤
∑
y

∣∣∣∣∣∑
x

p(y|x, π(x), µ∗) νπ,µ∗(x)−
∑
x

p(y|x, π(x), µ∗) νπ,µε(x)

∣∣∣∣∣
+
∑
y

∣∣∣∣∣∑
x

p(y|x, π(x), µ∗) νπ,µε(x)−
∑
x

p(y|x, π(x), µε) νπ,µε(x)

∣∣∣∣∣
≤
∑
y

∣∣∣∣∣∑
x

p(y|x, π(x), µ∗) νπ,µ∗(x)−
∑
x

p(y|x, π(x), µ∗) νπ,µε(x)

∣∣∣∣∣
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+
∑
x

‖p( · |x, π(x), µ∗)− p( · |x, π(x), µε)‖1 νπ,µε(x)

≤
∑
y

∣∣∣∣∣∑
x

p(y|x, π(x), µ∗) νπ,µ∗(x)−
∑
x

p(y|x, π(x), µ∗) νπ,µε(x)

∣∣∣∣∣+K1 ‖µε − µ∗‖1.

Note that (Hernández-Lerma, 1989, Lemma 3.3) implies that for all x, z ∈ X, we have

‖p( · |x, π(x), µ∗)− p( · |z, π(z), µ∗‖1 ≤ (2− λ(X)) dX(x, z).

Then, by Lemma 32, we have

∑
y

∣∣∣∣∣∑
x

p(y|x, π(x), µ∗) νπ,µ∗(x)−
∑
x

p(y|x, π(x), µ∗) νπ,µε(x)

∣∣∣∣∣ ≤ 2− λ(X)

2
‖νπ,µ∗ − νπ,µε‖1.

Since 1− λ(X)/2 < 1, the last inequality gives the following

‖νπ,µ∗ − νπ,µε‖1 ≤
2K1

λ(X)
‖µε − µ∗‖1

Therefore, we obtain

|Jav
µ∗(π)− Jav

µε (π)| ≤ 2cm(K1)2

(1− Cav
1 )λ(X)

ε =: Cav
2 ε. (38)

By using a similar analysis as above, we can also obtain the following

‖νπ∗,µ∗ − νπε,µ∗‖1 ≤
2

λ(X)

∑
x

‖π∗(x)− πε(x)‖ νπε,µ∗(x).

Note that supx ‖π∗(x)− πε(x)‖ ≤ ε as πε is ε-mean-field equilibrium policy. Therefore, we
obtain

|Jav
µ∗(π∗)− J

av
µ∗(πε)|∞ ≤

2cm
λ(X)

ε =: Cav
3 ε. (39)

Note that we must prove that

J
av,(N)
i (π(N)) ≤ inf

πi∈Πi
J

av,(N)
i (π

(N)
−i , π

i) + τav ε+ δ (40)

for each i = 1, . . . , N , when N is sufficiently large. As the transition probabilities and the
one-stage cost functions are the same for all agents, it is sufficient to prove (40) for Agent 1
only. Given δ > 0, for each N ≥ 1, let π̃(N) ∈ Π1 be a deterministic policy such that

J
av,(N)
1 (π̃(N), πε, . . . , πε) < inf

π′∈Π1

J
av,(N)
1 (π′, πε, . . . , πε) +

δ

3
.

On the other hand, by (Wiecek, 2019, Lemma 8) and (Saldi et al., 2018, Theorem 4.10) we
get

lim
N→∞

J
av,(N)
1 (π̃(N), πε, . . . , πε) = lim

N→∞
Jav
µε (π̃(N))
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≥ lim
N→∞

Jav
µ∗(π̃

(N))− Cav
2 ε (by (38))

≥ inf
π′∈Πd

Jav
µ∗(π

′)− Cav
2 ε

= Jav
µ∗(π∗)− C

av
2 ε

≥ Jav
µ∗(πε)− C

av
2 ε− Cav

3 ε (by (39))

≥ Jav
µε (πε)− 2Cav

2 ε− Cav
3 ε (by (38))

=: Jav
µε (πε)− τav ε.

Note that by (Saldi et al., 2018, Theorem 4.10), we also have

lim
N→∞

J
av,(N)
1 (πε, πε, . . . , πε) = Jav

µε (πε).

Hence, there exists N(δ) such that for all N ≥ N(δ), we have

J
av,(N)
1 (π̃(N), πε, . . . , πε) +

δ

3
≥ Jav

µε (πε)− τav ε

Jav
µε (πε) +

δ

3
≥ Jav,(N)

1 (πε, πε, . . . , πε).

Therefore, for all N ≥ N(δ), we obtain

inf
π′∈Π1

J
av,(N)
1 (π′, πε, . . . , πε) + δ + τav ε ≥ Jav,(N)

1 (π̃(N), πε, . . . , πε) +
2δ

3
+ τav ε

≥ Jav
µε (πε) +

δ

3

≥ Jav,(N)
1 (πε, πε, . . . , πε).

Theorem 23 implies that, by learning ε-mean-field equilibrium policy in the infinite-
population limit, one can obtain an approximate Nash equilibrium for the finite-agent
game problem for which computing or learning the exact Nash equilibrium is in general
prohibitive. In the next section, we approximate the MFE operator Hav introduced in
Section 6 via random operator Ĥav to develop an algorithm for learning ε-mean-field equi-
librium policy in the model-free setting.

8. Learning Algorithm for Average-cost

In this section, we develop an offline learning algorithm to learn approximate mean-field
equilibrium policy. Similar to the discounted-cost case, we assume that a generic agent has
access to a simulator, which generates a new state y ∼ p( · |x, a, µ) and gives a cost c(x, a, µ)
for any given state x, action a, and state-measure µ.

In this learning algorithm, there are two stages in each iteration. In the first stage,
we learn the Q-function Qav,∗

µ upto a constant additive factor for a given µ using fitted
Q-iteration algorithm. This stage replaces the operator Hav

1 with a random operator Ĥav
1
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that will be described below. Note that as opposed to the discounted-cost case, here, to
construct the random operator Ĥav

1 that replaces the operator Hav
1 , we normally need an

additional simulator that generates realizations of the minorizing sub-probability measure
λ in addition to the simulator for the transition probability p( · |x, a, µ). However, this
simulator is in general not available to the decision maker, since a generic agent does not
know this minorizing sub-probability measure in the absence of the transition probability.
Therefore, we need to modify the approach used in the discounted-cost case appropriately
for the average-cost setup. Indeed, this is achieved by performing convergence analysis of the
random operator Ĥav

1 using span-seminorm instead of sup-norm on Q-functions. Luckily,
convergence analysis of the learning algorithm established using sup-norm in discounted-cost
case can easily be adapted to the span-seminorm.

We select Q-functions from a fixed function class Fav such as the set of neural net-
works with some fixed architecture or linear span of some finite number of basis functions.
Depending on this choice, there will be an additional representation error in the learning
algorithm, which is in general negligible. Let Fav

min := {Qmin : Q ∈ Fav}.
In the second stage, we update the state-measure by approximating the transition prob-

ability via its empirical estimate. This stage replaces the operator Hav
2 in the model-based

algorithm with a random operator Ĥav
2 . Indeed, since Hav

2 = H2, we also have Ĥav
2 = Ĥ2,

and so, the error analysis of Ĥav
2 is exactly the same with the error analysis of Ĥ2.

We proceed with the definition of the random operator Ĥav
1 . To describe Ĥav

1 , we
need to pick a probability measure ν on X and a policy πb ∈ Π. Indeed, we can choose
ν and πb as in discounted-cost case. Recall the constants ζ0 := 1/

√
minx ν(x) and π0 :=

inf(x,a)∈X×A πb(a|x) > 0. Now, we can give the definition of the random operator Ĥav
1 .

Algorithm 4 Algorithm Ĥav
1

Input µ, Data size N , Number of iterations L
Generate i.i.d. samples {(xt, at, ct, yt+1)Nt=1} using

xt ∼ ν, at ∼ πb(·|xt), ct = c(xt, at, µ), yt+1 ∼ p(·|xt, at, µ)

Start with Q0 = 0
for l = 0, . . . , L− 1 do

Ql+1 = arg min
f∈F

1

N

N∑
t=1

1

m(A)πb(at|xt)

∣∣∣∣f(xt, at)−
[
ct + min

a′∈A
Ql(yt+1, a

′)

]∣∣∣∣2
end for
return QL

Note that if we used the same method as in the discounted-cost case, we should have
generated yt+1 using q( · |x, a, µ) := p( · |x, a, µ) − λ( · ) instead of p( · |x, a, µ) since Hav

1 (µ)
gives the unique fixed point of the contraction operator Hav

µ on Q-functions given by

Hav
µ Q(x, a) = c(x, a, µ) +

∑
y

Qmin(y) q(y|x, a, µ).
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However, in general, a generic agent does not have access to a simulator for λ, and so, we
must construct the algorithm as above using the simulator for p( · |x, a, µ). As a consequence
of this, we perform the error analysis of the above learning algorithm in terms of span-
seminorm instead of sup-norm. To this end, for any µ, define the following operator on
Q-functions:

Rav
µ Q(x, a) := c(x, a, µ) +

∑
y∈X

Qmin(y) p(dy|x, a, µ).

The operator Rav
µ is different from Hav

µ in this case, and it is used in the proof of the error

analysis of Ĥav
1 in place of Hav

µ .

To do error analysis of Ĥav
1 , we need to define the following constants:

E(F)av := sup
µ∈P(X)

sup
Q∈Fav

inf
Q′∈Fav

‖Q′ −Rav
µ Q‖ν , Lav

m := 2Qav
m + cm, C

av :=
(Lav

m)2

m(A)π0

Υav = 8 e2 (VFav + 1) (VFav
min

+ 1)

(
128eQav

mL
av
m

m(A)π0

)VFav+VFav
min

, V av = VFav + VFav
min
, γav = 512(Cav)2

∆av :=
2

1− β̃

[
m(A)(dimA +1)!ζ0
α(2/Qav

Lip)dimA
E(F)av

] 1
dimA +1

, Λav :=
2

1− β̃

[
m(A)(dimA +1)!ζ0
α(2/Qav

Lip)dimA

] 1
dimA +1

,

where
(0, 1) 3 β̃ := 1− λ(X)/2 ≥ βav := 1− λ(X).

The below theorem gives the error analysis of the algorithm Ĥ1. Before stating it, let
us recall the definition of span-seminorm of any function g : E→ R defined on some set E:

span(g) := sup
e∈E

g(e)− inf
e∈E

g(e).

It is a seminorm because span(g) = 0 if and only if g is a constant function. Moreover,

span(g) := sup
e∈E

g(e)− inf
e∈E

g(e)

= sup
e∈E

g(e) + sup
e∈E
−g(e)

≤ 2 ‖g‖∞.

Hence, we can upper bound span-seminorm via sup-norm.

Theorem 24 For any (ε, δ) ∈ (0, 1)2, with probability at least 1− δ, we have

span
(
Ĥav

1 [N,L](µ)−Hav
1 (µ)

)
≤ ε+ ∆av

if 4β̃L

1−β̃ Q
av
m < ε

2 and N ≥ mav
1 (ε, δ, L), where

mav
1 (ε, δ, L) :=

γav(2Λav)4(dimA +1)

ε4(dimA +1)
ln

(
Υav(2Λav)2V av(dimA +1)L

δε2V av(dimA +1)

)
.

Here, the constant error ∆av is as a result of the representation error E(F)av in the algo-
rithm, which is in general negligible.
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Proof Recall the definition of ‖ · ‖ν-norm on Q-functions:

‖Q‖2ν :=
∑
x∈X

∫
A
Q(x, a)2mA(da) ν(x).

For any µ, recall also the definition of the operator on Q-functions:

Rav
µ Q(x, a) := c(x, a, µ) +

∑
y∈X

Qmin(y) p(dy|x, a, µ).

This is very similar to the operator Hav
µ , but it is not βav-contraction with respect to

sup-norm. Indeed, the operator Rav
µ is β̃-contraction with respect to span-seminorm:

span(Rav
µ Q1 −Rav

µ Q2) ≤ β̃ span(Q1 −Q2),

where
β̃ := 1− λ(X)/2 ≥ βav := 1− λ(X).

Indeed, for any function v : X→ R, one can prove that (see (Hernández-Lerma, 1989, proof
of Lemma 3.3 and proof of Lemma 3.5))∑

y

v(y) p(y|x, a, µ)−
∑
y

v(y) p(y|x′, a′, µ) ≤ β̃ span(v). (41)

Now let Q1 and Q2 be two Q-functions. Then, for any (x, a) and (x′, a′), we have

(Rav
µ Q1 −Rav

µ Q2)(x, a)− (Rav
µ Q1 −Rav

µ Q2)(x′, a′)

=
∑
y

{Q1,min(y)−Q2,min(y)} p(y|x, a, µ)−
∑
y

{Q1,min(y)−Q2,min(y)} p(y|x′, a′, µ)

≤ β̃ span(Q1,min −Q2,min) (by (41))

≤ β̃ span(Q1 −Q2).

This implies that
span(Rav

µ Q1 −Rav
µ Q2) ≤ β̃ span(Q1 −Q2),

which means that Rav
µ is span-seminorm β̃-contraction. Moreover, Hav

1 (µ) := Qav,∗
µ is a

fixed point of Rav
µ with respect to span-seminorm; that is,

span(Rav
µ H

av
1 (µ)−Hav

1 (µ)) = 0.

Indeed, for all x, a, we have

Rav
µ H

av
1 (µ)(x, a)−Hav

1 (µ)(x, a)

= c(x, a, µ) +
∑
y

Qav,∗
µ,min p(y|x, a, µ)− c(x, a, µ)−

∑
y

Qav,∗
µ,min q(y|x, a, µ)

=
∑
y

Qav,∗
µ,min λ(y) (i.e., constant)
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and so, span(Rav
µ H

av
1 (µ)−Hav

1 (µ)) = 0. Hence, Hav
1 (µ) is a fixed point of Rav

µ with respect

to span-seminorm. Since Rav
µ is also β̃-contraction with respect to span-seminorm, one can

also prove that for all L > 1, we have

span((Rav
µ )LQ−Hav

1 (µ)) ≤ β̃L

1− β̃
span(Q−Rav

µ Q)

≤ 2β̃L

1− β̃
‖Q−Rav

µ Q‖∞

≤ 4β̃L

1− β̃
Qav

m

for any Q ∈ Cav as ‖Q‖∞ ≤ Qav
m .

Now, using above results, we easily complete the proof by using the same techniques
as in the proof of Theorem 13. Let Ql be the random Q-function at the lth-step of the
algorithm. First, we find an upper bound to the following probability

P0 := P
(
‖Ql+1 −Rav

µ Ql‖2ν > (E(F)av)2 + ε′
)
,

for a given ε′ > 0. To that end, we define

L̂N (f ;Q) :=
1

N

N∑
t=1

1

m(A)πb(at|xt)

∣∣∣∣f(xt, at)−
[
ct + min

a′∈A
Q(yt+1, a

′)

]∣∣∣∣2 .
As in the proof of Theorem 13, one can show that

E
[
L̂N (f ;Q)

]
= ‖f −Rav

µ Q‖2ν + Lav,∗(Q) =: Lav(f ;Q),

where Lav,∗(Q) is some quantity independent of f .
Now, using exactly the same steps as in the proof of Theorem 13, we can obtain the

following bound on the probability P0:

P0 ≤ Υav ε′−V
av
e
−Nε′2
γav =:

δ′

L
. (42)

The only difference is that in this case, we take β = 1. Hence, for each l = 0, . . . , L − 1,
with probability at most δ′

L

‖Ql+1 −Rav
µ Ql‖2ν > ε′ + (E(F)av)2.

This implies that with probability at most δ′

L

‖Ql+1 −Rav
µ Ql‖ν >

√
ε′ + E(F)av.

Using this and the fact that Rav
µ is β̃-contraction with respect to span-seminorm, we can

conclude that with probability at least 1− δ′, we have

span(QL −Hav
1 (µ)) ≤

L−1∑
l=0

β̃L−(l+1) span(Ql+1 −Rav
µ Ql) + span((Rav

µ )LQ0 −Hav
1 (µ))
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≤ 2

(
L−1∑
l=0

β̃L−(l+1) ‖Ql+1 −Rav
µ Ql‖∞ +

2β̃L

1− β̃
Qav

m

)
(I)

≤ 2
L−1∑
l=0

β̃L−(l+1)

[
m(A)(dimA +1)!ζ0

α(2/Qav
Lip)dimA

‖Ql+1 −Rav
µ Ql‖ν

] 1
dimA +1

+
4β̃L

1− β̃
Qav

m

≤ 2
L−1∑
l=0

β̃L−(l+1)

[
m(A)(dimA +1)!ζ0

α(2/Qav
Lip)dimA

(
√
ε′ + E(F)av)

] 1
dimA +1

+
4β̃L

1− β̃
Qav

m

≤ 2

1− β̃

([
m(A)(dimA +1)!ζ0

α(2/Qav
Lip)dimA

E(F)av

] 1
dimA +1

+

[
m(A)(dimA +1)!ζ0

α(2/Qav
Lip)dimA

] 1
dimA +1

ε
′ 1
2(dimA +1)

)
+

4β̃L

1− β̃
Qav

m ,

where (I) follows from Lemma 29. Therefore, with probability at least 1− δ′, we have

span(QL −Hav
1 (µ)) ≤ Λavε

′ 1
2(dimA +1) + ∆av +

4β̃L

1− β̃
Qav

m . (43)

Now, the result follows by picking δ = δ′ := LΥav ε′−V
av
e
−Nε′2
γav , Λavε

′ 1
2(dimA +1) = ε/2, and

4β̃L

1−β̃ Q
av
m = ε/2.

We now give the description of the random operator Ĥav
2 . In this algorithm, the goal is to

replace the operator Hav
2 , which gives the next state-measure, with Ĥav

2 . Since Hav
2 = H2,

we also have Ĥav
2 = Ĥ2. Therefore, the error analysis of Ĥav

2 is exactly the same with
Theorem 15.

Algorithm 5 Algorithm Ĥav
2

Inputs (µ,Q), Data size M , Number of iterations |X|
for x ∈ X do

generate i.i.d. samples {yxt }Mt=1 using

yxt ∼ p(·|x, fQ(x), µ)

and define

pM (·|x, fQ(x), µ) =
1

M

M∑
t=1

δyxt (·).

end for
return

∑
x∈X pM (·|x, fQ(x), µ)µ(x)

This is the error analysis of the random operator Ĥav
2 .

Theorem 25 For any (ε, δ) ∈ (0, 1)2, with probability at least 1− δ∥∥∥Ĥav
2 [M ](µ,Q)−Hav

2 (µ,Q)
∥∥∥

1
≤ ε
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if M ≥ mav
2 (ε, δ), where

mav
2 (ε, δ) :=

|X|2

ε2
ln

(
2 |X|2

δ

)
.

Proof See the proof of Theorem 15.

Below, we give the overall description of the learning algorithm for the average-cost.
In this algorithm, we successively apply the random operator Ĥav, which replaces MFE
operator Hav, to obtain approximate mean-field equilibrium policy.

Algorithm 6 Learning Algorithm

Input µ0, Number of iterations K, Parameters of Ĥav
1 and Ĥav

2

(
{[Nk, Lk]}K−1k=0 , {Mk}K−1k=0

)
Start with µ0

for k = 0, . . . ,K − 1 do

µk+1 = Ĥav ([Nk, Lk],Mk) (µk) := Ĥav
2 [Mk]

(
µk, Ĥ

av
1 [Nk, Lk](µk)

)
end for
return µK

Above, we have completed the error analyses of the operators Ĥav
1 and Ĥav

2 in Theo-
rem 24 and Theorem 25, respectively. Since the random operator Ĥav is a composition of
Ĥav

1 with Ĥav
2 , we can obtain the following error analysis for the operator Ĥav.

Theorem 26 Fix any (ε, δ) ∈ (0, 1)2. Define

ε1 :=
ρ (1−KHav)2 ε2

32(K1)2
, ε2 :=

(1−KHav) ε

4
.

Let K,L be such that

(KHav)K

1−KHav
≤ ε

2
,

4β̃L

1− β̃
Qav

m ≤
ε1

2
.

Then, pick N,M such that

N ≥ mav
1

(
ε1,

δ

2K
,L

)
, M ≥ mav

2

(
ε2,

δ

2K

)
. (44)

Let µK be the output of the learning algorithm Ĥav with inputs(
K, {[N,L]}Kk=0, {M}K−1

k=0 , µ0

)
.

Then, with probability at least 1− δ

‖µK − µav
∗ ‖1 ≤

K1

√
2∆av

√
ρ(1−KHav)

+ ε,

where µav
∗ is the state-measure in mean-field equilibrium given by the MFE operator Hav.
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Proof The proof is similar to the proof of Theorem 16. The key difference is that we
perform the analysis in terms of span-seminorm in place of sup-norm.

For any µ ∈ P(X), Q ∈ Fav, Q̂ ∈ Cav, we have

‖Hav
2 (µ,Q)−Hav

2 (µ, Q̂)‖1 =
∑
y∈X

∣∣∣∣∣∑
x∈X

p(y|x, fQ(x), µ)µ(x)−
∑
x∈X

p(y|x, fQ̂(x), µ)µ(x)

∣∣∣∣∣
≤
∑
x∈X

K1 ‖fQ(x)− fQ̂(x)‖µ(x). (45)

Now, using exactly the same steps as in the proof of Theorem 16, for any x ∈ X, we have

‖fQ(x)− fQ̂(x)‖2 ≤ 2

ρ

(
Q̂(x, fQ(x))− Q̂(x, fQ̂(x))

)
For any x ∈ X, this leads to

‖fQ̂(x)− fQ(x)‖2 ≤ 2

ρ

(
Q̂(x, fQ(x))−Q(x, fQ(x)) +Q(x, fQ(x))− Q̂(x, fQ̂(x))

)
=

2

ρ

(
Q̂(x, fQ(x))−Q(x, fQ(x)) + min

a∈A
Q(x, a)−min

a∈A
Q̂(x, a)

)
≤ 2

ρ

(
sup

(z,a)∈X×A
(Q̂(z, a)−Q(z, a)) + sup

(z,a)∈X×A
(Q(z, a)− Q̂(z, a))

)
=

2

ρ
span(Q− Q̂). (46)

Therefore, here, we can also perform a similar analysis as in the proof of Theorem 16 using
span-seminorm in place of sup-norm.

Now, combining (45) and (46) yields

‖Hav
2 (µ,Q)−Hav

2 (µ, Q̂)‖1 ≤
√

2K1√
ρ

√
span(Q− Q̂). (47)

Using (47) and the fact that Hav
1 (µk) ∈ Cav and Ĥav

1 [N,L](µk)) ∈ Fav, for any k =
0, . . . ,K − 1, we have

‖Hav(µk)− Ĥav([N,L],M)(µk)‖1 ≤ ‖Hav
2 (µk, H

av
1 (µk))−Hav

2 (µk, Ĥ
av
1 [N,L](µk))‖1

+ ‖Hav
2 (µk, Ĥ

av
1 [N,L](µk))− Ĥav

2 [M ](µk, Ĥ
av
1 [N,L](µk))‖1

≤
√

2K1√
ρ

√
span(Hav

1 (µk)− Ĥav
1 [N,L](µk))

+ ‖Hav
2 (µk, Ĥ

av
1 [N,L](µk))− Ĥav

2 [M ](µk, Ĥ
av
1 [N,L](µk))‖1.

The last term is upper bounded by

K1

√
2(ε1 + ∆av)
√
ρ

+ ε2
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with probability at least 1− δ
K by Theorem 24 and Theorem 25. Therefore, with probability

at least 1− δ

‖µK − µav
∗ ‖1 ≤

K−1∑
k=0

K
K−(k+1)
Hav ‖Ĥav([N,L],M)(µk)−Hav(µk)‖1 + ‖(Hav)K(µ0)− µav

∗ ‖1

≤
K−1∑
k=0

K
K−(k+1)
Hav

(
K1

√
2(ε1 + ∆av)
√
ρ

+ ε2

)
+

(KHav)K

1−KHav

≤ K1

√
2 ∆av

√
ρ(1−KHav)

+ ε.

This completes the proof.

Now, we state the main result of this section. It states that, by using a learning algo-
rithm, one can learn approximate mean-field equilibrium policy. By Theorem 23, this gives
an approximate Nash-equilibrium for the finite-agent game.

Corollary 27 Fix any (ε, δ) ∈ (0, 1)2. Suppose that K,L,N,M satisfy the conditions in
Theorem 26. Let µK be the output of the earning algorithm with inputs(

K, {[N,L]}Kk=0, {M}K−1
k=0 , µ0

)
.

Define πK(x) := arg mina∈AQK(x, a), where QK := Ĥav
1 ([N,L])(µK). Then, with prob-

ability at least 1 − δ(1 + 1
2K ), the policy πK is a κav(ε,∆)-mean-field equilibrium policy,

where

κav(ε,∆) =

√√√√2

ρ

(
ρ (1−KHav)2 ε2

32(K1)2
+ ∆ + 2KHav

1

(
K1

√
2 ∆

√
ρ(1−KHav)

+ ε

))
.

Therefore, by Theorem 23, an N -tuple of policies π(N) = {πK , πK , . . . , πK} is a τavκav(ε,∆)+
σ-Nash equilibrium for the game with N ≥ N(σ) agents.

Proof By Theorem 26, with probability at least 1− δ(1 + 1
2K ), we have

span(QK −Hav
1 (µav

∗ )) ≤ span(QK −Hav
1 (µK)) + 2‖Hav

1 (µK)−Hav
1 (µav

∗ )‖∞
≤ ε1 + ∆av + 2KHav

1
‖µK − µav

∗ ‖1

≤ ε1 + ∆av + 2KHav
1

(
K1

√
2 ∆av

√
ρ(1−KHav)

+ ε

)

=
ρ (1−KHav)2 ε2

32(K1)2
+ ∆av + 2KHav

1

(
K1
√

2,∆av

√
ρ(1−KHav)

+ ε

)
.

Let πK(x) := arg mina∈AQK(x, a). Using the same analysis that leads to (46), we can
obtain the following bound:

sup
x∈X
‖πK(x)− π∗(x)‖2 ≤ 2

ρ
span(QK −Hav

1 (µav
∗ )).
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Hence, with probability at least 1− δ(1 + 1
2K ), the policy πK is a κ(ε,∆)-mean-field equi-

librium policy.

Remark 28 Note that, in Corollary 27, there is a constant ∆av, which depends on the
representation error E(F)av. In general, E(F)av is negligible. Hence, in this case, we have
the following error bound:

κav(ε, 0) =

√
2

ρ

(
ρ (1−KHav)2 ε2

32(K1)2
+ 2KHav

1
ε

)
.

which goes to zero as ε→ 0.

9. Numerical Examples

In this section, we present two numerical examples in the case of discounted cost and average
cost, respectively, to demonstrate the applicability of our learning algorithm.

9.1 Discounted Cost

We consider the mean-field game that was introduced in Example 1, where we take X =
[0, 0.1, 0., 2, . . . , 1], A = [0, 1], c2(a) = ρ a2, and c1(x, µ) = η x (1 − ξ 〈µ〉) with 〈µ〉 denoting
the mean of µ. We also take P[h(a, µ, w) = 0.1] = κ a (1 − γ 〈µ〉), P[h(a, µ, w) = 0] =
κ a γ 〈µ〉, and P[h(a, µ, w) = −0.1] = κ a; that is, the state can only go one unit up, go
one unit down, or remain the same. Here, the constants ρ, η, ξ, κ, γ are all non-negative.
As the conditions (i) and (ii) are clearly satisfied in Example 1 for these particular choices
of system components, Assumption 1 holds true in this case. In the numerical experi-
ments, we use the following values for the parameters: η = 2, ξ = 0.4, ρ = 1 κ =
1, γ = 0.4, β = 0.9. We run the learning algorithm using the following parameters:
N = 10000, L = 50,M = 1000,K = 50. The output of the learning algorithm contains the
average of the state-measure (i.e., mean-field distribution) and mean-field equilibrium poli-
cies for states x = 0.1 and x = 0.6. In the fitted Q-iteration algorithm, we pick the function
class F as two-layer neural networks with 10 hidden units. We use neural network fitting
tool of MATLAB. In particular, we use ‘fittnet’, ‘train’, and ‘net’ functions of MATLAB,
where ‘Levenberg-Marquardt’ is picked as the training algorithm and the transfer function
is chosen as ‘hyperbolic tangent sigmoid transfer function’. The parameters of the neural
network fitting tool of MATLAB are set to default values. We also run the value iteration
algorithm using MFE operator H to find the true average of state-measure and mean-field
equilibrium policies for states x = 0.1 and x = 0.6. Then, we compare the learned outputs
with outputs of the value iteration algorithm. Figures 1, 2, and 3 show this comparison. It
can be seen that learned outputs converge to the outputs of the value iteration algorithm.

9.2 Average Cost

We consider a mean-field game with state space X = {0, 1} and action space A = [0, 1]. The
transition probability p : X× A→ P(X) is independent of the mean-field term and is given
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Figure 1: Comparison of state-measures: discounted-cost
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Figure 2: Comparison of policies: discounted-cost

by

p( · |x, a) = l0( · |x, ) · a+ l1( · |x) · (1− a),
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Figure 3: Comparison of costs: discounted-cost

where

l0(1|0) = η, l0(1|1) = 1− α,
l1(1|0) = κ, l1(1|1) = 1− ξ.

The one-stage cost function c : X×A×P(X)→ [0,∞) depends on the mean-field term and
is defined to be

c(x, a, µ) = τ 〈µ〉x+ λ (1− 〈µ〉) (1− a) + γ a2,

where 〈µ〉 is the mean of the distribution µ on X. It can be verified that Assumption 1
holds in this example. We use the following values of the parameters:

η = 0.7, α = 0.1, κ = 0.1, ξ = 0.8

τ = 0.1, λ = 0.4, γ = 0.2.

With these parameters, it is also straightforward to check that Assumption 3-(a) holds. We
run the learning algorithm using the following parameters: N = 1000, L = 50, M = 1000,
K = 50. Output of the learning algorithms contain the average of the state-measure (i.e.,
mean-field distribution) and mean-field equilibrium policies. In the fitted Q-iteration algo-
rithm, we pick the function class F as two-layer neural networks with 20 hidden units. We
use the neural network fitting tool of MATLAB. In particular, we use ‘fittnet’, ‘train’, and
‘net’ functions of MATLAB, where ‘Levenberg-Marquardt’ is picked as the training algo-
rithm and the transfer function is chosen as ‘hyperbolic tangent sigmoid transfer function’.
The parameters of the neural network fitting tool of MATLAB are set to default values. We
also run the value iteration algorithm using MFE operator Hav to find the correct average of
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state-measure and mean-field equilibrium policies. Then, we compare the learned outputs
with the outputs of the value iteration algorithm. Figures 4 and 5 show this comparison for
the average-cost. It can be seen that learned outputs converge to the outputs of the value
iteration algorithm.
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Figure 4: Comparison of state-measures: average-cost

10. Conclusion

This paper has established a learning algorithm for discrete-time mean-field games subject
to discounted-cost and average-cost criteria. Under certain regularity conditions on system
components, we have proved that the policy obtained from the learning algorithm converges
to the policy in mean-field equilibrium with some probabilistic convergence rate. We have
then used the learned policy to construct an approximate Nash equilibrium for the finite-
agent game problem.

Appendix

In this appendix, we state some auxiliary results that will be frequently used in the paper.
The first result gives a bound on l∞-norm of uniformly Lipschitz continuous function g(x, a)
with respect to the action a in terms of its l2-norm.

Lemma 29 Let g : X× A → R be a uniformly Lipschitz continuous function of the action
a with Lipschitz constant L. Then, under Assumption 1-(c), we have

‖g‖∞ ≤ max

([
m(A) (dimA +1)! ζ0

α (2/L)dimA
‖g‖ν

]1/(dimA +1)

, (dimA +1) ζ0 ‖g‖ν

)
,
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Figure 5: Comparison of policies: average-cost

where α > 0 is the constant in Assumption 1-(c) and ζ0 :=
1√

minx ν(x)
.

Proof Under Assumption 1-(c), by following the same steps as in the proof of (Antos et al.,
2007b, Lemma D.2), for all (x, a) ∈ X× A, we obtain the following(∫

A
|g(x, â)|2mA(dâ)

)1/2

≥ min

([
α (2/L)dimA

m(A) (dimA +1)!
|g(x, a)|

](dimA +1)

,
|g(x, a)|

(dimA +1)

)
Note that we also have(∑

x

∫
A
|g(x, a)|2mA(da) ν(x)

)1/2

≥
√

min
x
ν(x) sup

x

(∫
A
|g(x, a)|2mA(da)

)1/2

.

Therefore, above inequalities lead to

‖g‖∞ ≤ max

([
m(A) (dimA +1)! ζ0

α (2/L)dimA
‖g‖ν

]1/(dimA +1)

, (dimA +1) ζ0 ‖g‖ν

)
.

Remark 30 In the paper, to simplify the notation, we will always assume that[
m(A) (dimA +1)! ζ0

α (2/L)dimA
‖g‖ν

]1/(dimA +1)

≥ (dimA +1) ζ0 ‖g‖ν .
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Therefore, the bound in Lemma 29 will always be in the following form:

‖g‖∞ ≤
[
m(A) (dimA +1)! ζ0

α (2/L)dimA
‖g‖ν

]1/(dimA +1)

.

Before we state the next result, we need to give some definitions. Let E be some set. Let
G be a set of real-valued functions on E taking values in [0,K]. For any e1:N := {ei}Ni=1 ∈ EN ,
define the following semi-metric on G:

de1:N (g, h) :=
1

N

N∑
i=1

|g(ei)− h(ei)|.

Then, for any ε > 0, let N1

(
ε, {ei}Ni=1,G

)
denote the ε-covering number of G in terms of

semi-metric de1:N (Vidyasagar, 2010, pp. 14). Moreover, let VG denote the pseudo-dimension
of the function class G (Vidyasagar, 2010, Definition 4.2, pp. 120).

Lemma 31 (Antos et al., 2007b, Proposition E.3) For any e1:N , we have

N1

(
ε, {ei}Ni=1,G

)
≤ e (VG + 1)

(
2eK

ε

)VG
.

Let P ( · |x) be a transition probability on X with the following contraction coefficient

θP :=
1

2
sup
x,z
‖P ( · |x)− P ( · |z)‖1.

Then, the following result holds.

Lemma 32 (Kontorovich and Ramanan, 2008, Lemma A.2) Let µ, ν ∈ P(X). Then,

∑
y

∣∣∣∣∣∑
x

P (y|x)µ(x)−
∑
x

P (y|x) ν(x)

∣∣∣∣∣ ≤ θP ‖µ− ν‖1.
In other words, if we define µP ( · ) :=

∑
x P ( · |x)µ(x) ∈ P(X) and νP ( · ) :=

∑
x P ( · |x) ν(x) ∈

P(X), then we have ‖µP − νP‖1 ≤ θP ‖µ − ν‖1. Indeed, the last inequality explains why
θP is called contraction coefficient.
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Turkey (TÜBİTAK) BİDEB 2232 Research Grant.

55



Anahtarci, Kariksiz, and Saldi

References

S. Adlakha, R. Johari, and G.Y. Weintraub. Equilibria of dynamic games with many
players: Existence, approximation, and market structure. Journal of Economic Theory,
156:269–316, 2015.

A. Agarwal, N. Jiang, and S. Kakade. Reinforcement learning: Theory and algorithms.
2019.

C.D. Aliprantis and K.C. Border. Infinite Dimensional Analysis. Berlin, Springer, 3rd ed.,
2006.

B. Anahtarci, C.D. Kariksiz, and N. Saldi. Value iteration algorithm for mean-field games.
Systems & Control Letters, 143:104744, 2020a.

B. Anahtarci, C.D. Kariksiz, and N. Saldi. Q-learning in regularized mean-field games.
arXiv:2003.12151, 2020b.
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