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Abstract—Our earlier Low-on-Latency (dubbed as LoL)
solution offered an accurate bandwidth prediction and rate
adaptation algorithm tailored for live streaming applications that
targeted an end-to-end latency of up to two seconds. While LoL
was a significant step forward in multi-bitrate low-latency live
streaming, further experimentation and testing showed that there
was room for improvement in three areas. First, LoL used hard-
coded parameters computed from an offline training process in
the rate adaptation algorithm and this was seen as a significant
barrier in LoL’s wide deployment. Second, LoL’s objective was to
maximize a collective QoE function. Yet, certain use cases have
specific objectives besides the singular QoE and this had to be
accommodated. Third, the adaptive playback speed control failed
to produce satisfying results in some scenarios. Our goal in this
paper is to address these areas and make LoL sufficiently robust
to deploy. We refer to the enhanced solution as LoL+, which has
been integrated to the official dash.js player in v3.2.0.

Index Terms—HAS, ABR, DASH, CMAF, low latency, chunked
transfer encoding, adaptive playback speed, SOM.

I. INTRODUCTION

W ITH the rise of low-latency live (LLL) streaming appli-
cations such as Twitter’s Periscope, Amazon’s Twitch

and Facebook’s Live, and users’ growing interest in eSports and
streaming of live sports, the demand for low-latency services
is higher than ever. As proprietary solutions such as Adobe’s
Real-time Messaging Protocol (RTMP) [3] fade away, HTTP
adaptive streaming (HAS), using primarily the open Dynamic
Adaptive Streaming over HTTP (DASH) standard and Apple’s
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HTTP Live Streaming (HLS) protocol, dominates the market
today. HAS has been doing a tremendously good job in deliv-
ering billions of live and on-demand streams every day in a
cost-effective manner. By using multiple switchable versions of
the same content, players trade off the video quality against the
likelihood of rebuffering events when the available bandwidth
drops. In live streaming, the latency (measured from the mo-
ment of capturing to the moment of rendering) also becomes
part of this trade-off. At lower values, the latency plays a more
critical role in rate adaptation as the player’s breathing room for
absorbing bandwidth drops narrows significantly. As opposed
to the accustomed 30–60 seconds of latency for the traditional
HAS, the target for LLL streaming applications is mostly five
seconds or less [33].

A. Motivation

End-to-end latency is impacted by several serialized processes
in the delivery workflow including capturing, encoding, pack-
aging, publishing to the origin, delivering through a content de-
livery network (CDN), buffering, decoding and rendering. One
way to reduce latency is to use short segment durations (1–2
seconds as opposed to 6–10 seconds), however, shorter seg-
ments naturally reduce encoding efficiency. Instead, the pro-
cesses should be streamlined. This can be achieved using an ap-
propriate packaging format such as the Common Media Appli-
cation Format (CMAF) standard [17] and an appropriate transfer
mechanism such as HTTP/1.1 chunked transfer encoding (CTE)
(RFC 7230).

In CMAF, the duration of the media segment is decoupled
from latency since a segment is generated and delivered in mul-
tiple small non-overlapping pieces, called chunks [6]. For exam-
ple, a six-second and 30-f/s segment can be chunked at frame
level (i.e., 180 chunks, one every 33.3 ms), which results in a
significant reduction in serial delays from capturing to render-
ing, and therefore, lowers latency. For media delivery, CTE is
a data streaming mechanism that was introduced in HTTP/1.1,
where the chunks of a segment are sent out and received by the
player independently of one another, enabling chunks to be de-
livered without waiting for the segment to be fully encoded and
packaged. For packaging, CMAF is a media container standard
enabling the use of the chunk concept with CTE, while also
unifying the media format for both DASH and HLS.

Despite the benefits of CMAF and CTE in satisfying
LLL streaming requirements, they create new challenges for
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the player and tasks like throughput measurements, bitrate
selection, buffer management and playback speed adaptation
become non-trivial [6], [7], [25]. For example, when the player
receives all the chunks of a segment, it would erroneously calcu-
late the throughput to be almost equal to the encoding bitrate of
that segment if it uses the basic formula of dividing the segment
size by the total download duration. Consequently, the player
would make less-than-ideal bitrate selections. On the other hand,
the player must fetch the chunks of the live-edge segment that
is still being encoded and packaged at the time of the request,
limiting the playback buffer to a few seconds or less. Under
such circumstances, a good buffer management mechanism is
essential to avoid rebufferings and this requires a good playback
speed control.

In this paper, we demonstrate player enhancements that are
effective for media delivery in LLL streaming. To this end, we
address the challenges mentioned above by proposing a bitrate
selection module and a playback speed control module that im-
proves viewer experience for LLL streaming as well as an accu-
rate throughput measurement module for CTE. These modules
are collectively called Low-on-Latency-plus (LoL+). Our solu-
tion is an extension and enhancement to our earlier LoL solu-
tion [25]. LoL+ addresses the following three shortcomings that
were left as future work for LoL:
� LoL implements a learning-based adaptive bitrate (ABR)

algorithm, which uses a self-organizing map (SOM) [23]
for bitrate selection. This algorithm shows good perfor-
mance under certain network conditions. However, it oc-
casionally suffers from low performance due to initially
tuned but then static weight values for the set of consid-
ered SOM features,1. In contrast, LoL+ employs a two-step
technique for weight selection. At the first stage (the begin-
ning of a live session), it implements the k-means++ [11]
approach to find suitable initial weights for every SOM fea-
ture. At the second stage (the steady state of a live session),
it employs a weight assignment algorithm that dynamically
adjusts the weights at every segment download boundary.

� LoL performance relies on a well-defined linear QoE func-
tion where the SOM model uses the QoE as one of the
features to make bitrate selections. However, realistically
the QoE function should differ depending on the streaming
scenario, and thus, employing a fixed function limits LoL’s
deployment where it fails to work well. Conversely, LoL+

uses each metric that influences the QoE individually as a
feature in the SOM model. Hence, it allows more flexibility
and deployability under different network conditions and
streaming scenarios.

� LoL uses a heuristic approach to control the playback
speed, which is largely based on the current latency. This
technique is not sensitive enough to buffer declines, which
results in frequent rebufferings. LoL+ adopts a better-
balanced hybrid approach to control the playback speed,
jointly considering both latency and buffer level. This ap-
proach is better able to reduce rebufferings and latency
deviations from its target.

1As shown in [11] the SOM model is sensitive to the initial weight values.

B. Key Contributions

Our contributions are four-fold:
� First, we propose a series of sophisticated and robust player

improvements for LLL streaming. LoL+ consists of five
essential modules: (i) The bitrate selection module imple-
ments a learning-based ABR algorithm to choose a suit-
able bitrate at each segment download boundary. The ABR
algorithm is based on a SOM model that considers mul-
tiple QoE metrics as well as variability in network con-
ditions in the ABR formulation. (ii) The playback speed
control module implements a hybrid playback speed algo-
rithm that combines the current latency and buffer level to
control the playback speed (i.e., speed up, slow down or
normal). (iii) The throughput measurement module accu-
rately calculates the throughput by removing the idle times
between the chunks of a segment through a three-step al-
gorithm (chunk boundary identification, chunk filtering,
and throughput calculation and smoothing). (iv) The QoE
evaluation module computes the QoE considering five key
metrics: selected bitrate, number of bitrate switches, re-
buffering duration, latency and playback speed. Lastly, (v)
the weight selection module implements a two-step dy-
namic weight assignment for the SOM model features.

� Second, we formulate the weight selection problem of the
SOM model as an assignment problem [9] with convex
optimization and linear inequality constraints. We use a
mixed integer linear programming (MILP) framework [8]
to model the optimization function and then solve it using
a heuristic-based dynamic weight adjustment algorithm.

� Third, we design a learning-based ABR algorithm that
adapts a SOM model. Our model considers the player con-
text (i.e., QoE metrics and network conditions such as the
available bandwidth) to make bitrate selections.

� Fourth, we provide an implementation of LoL+, which has
been integrated into the official dash.js (v3.2.0) player [1].
We validate our solution through trace-driven experiments.
The results show the superiority of LoL+ against four state-
of-the-art ABR algorithms for LLL streaming.

The rest of the paper continues with the related work specific
to LLL streaming in Section II. Section III provides a detailed
description of the LoL+ solution. Implementation and experi-
mental evaluation are presented in Section IV, followed by the
conclusions in Section V.

II. RELATED WORK

Over the past decade, many ABR algorithms have been devel-
oped, most of which have been designed for video-on-demand or
unconstrained-latency live scenarios. In this section, we present
the solutions for LLL streaming and start with the most recent
ones. For a general overview of ABR algorithms, refer to [5].

Bentaleb et al. [6], [7] proposed the first ABR for CTE and
CMAF, termed ACTE. ACTE comprises three entities: (i) a
per-chunk sliding window-based bandwidth measurement, (ii)
a recursive least squares algorithm for the bandwidth predic-
tion for the next few seconds, and (iii) an ABR algorithm
that takes into consideration both the predicted bandwidth and
playback buffer occupancy. Similarly, Gutterman et al. [15]
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designed STALLION, a sliding window-based algorithm to
measure the mean and standard deviation of the bandwidth and
latency for better bitrate selection. In [27], Peng et al. imple-
mented a hybrid-based control ABR algorithm for LLL stream-
ing. It consists of a heuristic for buffer-based playback rate con-
trol mechanism, a frame dropping technique for better QoE and
low latency, and an ABR rule that uses Kaufman’s moving av-
erage to select the bitrate. Swaminathan et al. [32] proposed a
low-latency CTE approach that decoupled the live latency from
the segment duration. The solution analytically evaluated the la-
tency in three LLL scenarios: (1) a segment-based method where
the player requests the segment only if it is fully available, (2) a
server-wait method where the player requests a segment before it
is ready at the server, and (3) a chunked encoding method where
the player receives the chunks before the full segment is avail-
able. However, this work did not include ABR and rate adap-
tation. Combining multi-path capabilities and CTE, Houze et
al. [16] designed a low-latency solution that splits and down-
loads multiple video frames from different paths while taking
the frame sizes into account. Shuai et al. [29] analyzed the im-
pact of the playback buffer occupancy on live streaming and
proposed an ABR rule based on buffer stabilization for LLL
streaming with two-second segments.

Leveraging HTTP/2 capabilities, van der Hooft et al. [35]
described an HTTP/2 push-based approach for LLL streaming
with very short segments. Similarly, Benyahia et al. [36] de-
signed a frame discarding technique at the segment level by
using the HTTP/2 stream resetting feature to meet a one-second
latency constraint. Regarding the implementation of CMAF low
latency, DASH-IF and Akamai provided a proof-of-concept in
the dash.js player [1]. Essaili et al. [13] developed an HTML5
player with CMAF low-latency support.

Rather than relying on fixed heuristics, learning-based ABR
algorithms learn from the environment and create suitable poli-
cies based on past data, and thus, they adapt to system dy-
namics. Several learning-based attempts have been proposed
to efficiently tackle problems in video delivery. In [25], the
LoL (Low-on-Latency) solution was designed for LLL stream-
ing. It includes three modules: bitrate adaptation (both heuristic
and learning-based), heuristic-based playback speed control and
throughput measurement. With the same goal, the authors of [21]
developed the L2A (Learn2Adapt) solution for LLL streaming
and formulated the bitrate selection problem under a latency
constraint as online convex optimization. Using a data-driven
approach, Sun et al. [31] proposed CS2P, a bandwidth estimator
that runs over two stages. It first learns the sessions with sim-
ilar vital features (e.g., ISP, geographical region, IP) and then
groups similar sessions into clusters. Thereafter, for each clus-
ter, it trains a hidden Markov model (HMM) to estimate the
corresponding bandwidth. A number of other data-driven ma-
chine learning solutions have also emerged: AMP [4], CFA [18],
PREM [39], LiveNAS [22], Pytheas [20] and DDS [12].

III. THE LOL+ SOLUTION

We first present an overview of the dash.js player with the
newly added LoL+ modules, and then discuss each module in
detail. A list of notations is presented in Table I.

TABLE I
LIST OF THE KEY SYMBOLS AND NOTATIONS

A. LoL+ Overview

LoL+ is a set of player enhancement modules for LLL stream-
ing. The ultimate goal of LoL+ is to keep the latency low while
maintaining high QoE, and also to work well in most common
network conditions. It attempts to find the best bitrate at any
given time by using a modern unsupervised learning mecha-
nism [23], particularly a self-organizing map (SOM), to make
bitrate selection. It also uses a weight assignment algorithm that
combines a k-means++ [11] method and greedy search opti-
mization rule to select the best weights for the SOM features.
For accurate throughput measurements, LoL+ develops a robust
measurement algorithm with high accuracy, and adjusts the play-
back speed via a hybrid mechanism that relies on both latency
and buffer occupancy. Fig. 1 describes LoL+ integration within
the dash.js player [1], and Fig. 2 shows the LoL+ modules. As
shown in Fig. 1, there are four essential components in total.
One of these components was modified to integrate the LoL+

and one was added to log information regarding player’s status.
1) Logger: It records the player status at each segment down-

load and keeps track of various QoE metrics.
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Fig. 1. The LoL+ solution within the dash.js player [1]. The newly added
components are highlighted in gray.

Fig. 2. The LoL+ modules.

2) Buffer Controller: It monitors the level of the playback
buffer occupancy to alleviate rebuffering. This is achieved by
periodically calling the validate function, which checks
whether the selected bitrate level may introduce a buffer un-
derflow or overflow. If the buffer occupancy reaches the low or
high threshold, this component triggers an event to the ABR
controller asking it to select a new bitrate level to maintain the
buffer occupancy within a safe region.

3) ABR Controller: It uses getPlaybackQuality func-
tion to obtain the bitrate selected by the ABR algorithm. It for-
wards the selected bitrate to the scheduler, which is responsible
to issue an HTTP GET request to download the requested seg-
ment. It also manages the ABR rules derived from the imple-
mented ABR algorithms.

4) ABR Rules: It implements various ABR algorithms:
throughput-based, buffer-based (BOLA [30]) and dynamic. To
compare with LoL+, we integrated three additional ABR algo-
rithms: LoL [25], L2A [21] and STALLION [15]. As depicted
in Fig. 2, LoL+ implements five modules:

a) Throughput Measurement: It accurately measures the per-
chunk throughput (Section III-B).

b) QoE Evaluation: It collects five key metrics (selected
bitrate, rebuffering duration, latency, number of bitrate
switches and playback speed) and implements a flexible

Fig. 3. Throughput measurement in CTE.

linear-based QoE model (4) that combines these metrics
into one QoE score (Section III-B).

c) Weight Selection: It implements the dynamic weight as-
signment algorithm (Section III-B).

d) Playback Speed Control: It enables the adjustment of the
playback speed to avoid rebuffering or deviation from the
target latency (Section III-B).

e) Bitrate Selection: It implements the SOM-based ABR al-
gorithm. It takes different inputs from various modules,
such as the weight vector of the SOM model, QoE met-
rics, playback speed as well as throughput measurements
and outputs the selected bitrate for the next segment to be
requested (Section III-B).

B. LoL+ Design

We present the core functional design and implementation
details for the LoL+ solution below.

a) Throughput Measurement Module: In LLL streaming
with CTE, the available chunks of a segment are sent by the
origin server in a burst at full network speed (transmission is
network-limited), whereas the chunks that are yet to be pre-
pared will be sent as they become available (transmission will
be source-limited), leaving idle times between the chunks of
a particular segment [6], [7]. Therefore, the basic equation of
throughput calculation (1) will produce a throughput value that
is close to the encoding bitrate, which is incorrect and prevents
the ABR algorithm from switching to a higher bitrate level. Af-
ter the segment si is fully downloaded, the following formula is
used to calculate the throughput (denoted by Xsi ):

Xsi =
Qsi

Tsi

, where Qsi =

zsi∑
c=1

qsci and Tsi = eszi − bs1i , (1)

where Qsi is the segment size, Tsi is the segment download
time (i.e., the difference between receiving the first byte of the
first chunk until the last byte of the last chunk), qsci is the chunk
size, zsi is the last chunk, |zsi | total number of chunks of si, b
and e are the beginning and end times of the chunk download,
respectively (see Fig. 3). When calculatingTsi , the idle times are
inadvertently included, which results in inaccurate throughput
measurements. ACTE [6] was the first attempt to address this
issue. Although ACTE generally achieved a good performance,
it occasionally introduced overestimations in case of increased
inter-chunk idle times.

Learning from the shortcomings of ACTE, we design a new
throughput measurement method (Algorithm 1) that can work
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efficiently under different transmission scenarios (network-
limited or source-limited) and deal with different inter-chunk
idle times (short or long). At each segment download, the algo-
rithm sequentially runs the following three steps:

1) Chunk Boundary Identification (lines 4–22): The algo-
rithm considers only the chunks where a ‘moof’ box is
presented in a chunk (Flag1 == 1). It identifies the ex-
act timing for the beginning bsci and end esci times of
chunk c of segment si by capturing the ‘moof’ box in the
fragmented MP4 data, ∀c ∈ si where c = {1, . . . , zsi}.
A CMAF chunk may be transmitted in multiple HTTP
chunks, but this is hidden from the JavaScript APIs used
for downloading. An HTTP chunk may also carry multiple
CMAF chunks. In either case, as chunks conform to the
CMAF restrictions, our algorithm leverages the Stream
Response Body of the Fetch API2, which allows track-
ing the progress of the chunk downloads and parsing them
in real time. When a ‘moof’ box of a chunk is captured,
the algorithm stores the time as the beginning time of the
chunk download using performance.now(). Then,
it stores the end time using performance.now() of
the chunk and its size (in bytes) when the chunk is fully
downloaded (Flag2 == 1). With accurate beginning and
end times for each chunk downloaded, our algorithm is
able to successfully remove the idle periods from the seg-
ment download time.

2) Chunk Filtering (lines 13–16): The algorithm removes the
first and the last chunk of a segment to avoid transient
outliers.

3) Segment Throughput Calculation and Smoothing (line
23): After downloading all the chunks of a segment, the
algorithm computes the segment throughput based on the
chunks that passed the filtering process and uses a de-
fault Sliding Window Moving Average (SWMA)-based
smoothing function as follows:

Xsi =
1

|z̃si |
z̃si∑
c=1

xsci
, where xsci

=
qsci

esci − bsci
, (2)

and Xsi is the segment throughput, z̃si is the last chunk in
segment si, |z̃si | is the total number of chunks of segment
si after the filtering process, and xsci

is the chunk through-
put. This module also implements two more smooth-
ing functions: Exponentially Weighted Moving Average
(EWMA) and Harmonic [19].

b) Weight Selection Module: As shown in previous stud-
ies [11], [26], the SOM model used in bitrate selection is sensi-
tive to the initial weight values assigned to various SOM features.
Assigning these weights randomly or tuning them manually may
reduce the bitrate selection performance. We solve this problem
by proposing a two-stage technique.

We formulate the weight selection problem as an assignment
problem [9] using a convex optimization [8] with linear inequal-
ity constraints where the objective function (3) is strictly con-
cave with non-negativity constraints. Specifically, we use the

2https://developer.mozilla.org/en-US/docs/Web/API/Fetch_API

Algorithm 1: Throughput Measurement.
function CalculateThroughputsi
|z̃si | ← 0, Sum← 0, Xsi ← 0
for Each segment downloading step si ∈ S, i > 0 do

for Each chunk downloading step c > 0, ∀c ∈ si do
Flag1 ← ParsePayload(‘moof’, c)
if (Flag1 == 1) then �‘moof’ is present in

chunk c
bsci ← performance.now()
Flag2 ← ParsePayloadCompleted(‘mdat’,

c, end)
if (Flag2 == 1) then �‘mdat’ end of chunk c

esci ← performance.now()
qsci ← ChunkSize(c)

end if
if (c = 1 || c = zsi ) then

ChunkFilter(‘noise’)
xsci
← 0

else
xsci
← ChunkThroughput(qsci , esci , bsci ) �(2)

end if
Sum← Sum + xc

si|z̃si | ← |z̃si |+ 1
end if

end for
Xsi ← SegThroughput(|z̃si |, Sum, SWMA)

�(2)
Return(Xsi)

end for
end Function

MILP [8] framework to model the objective function. Our for-
mulation is explained as follows.

First, the SOM model consists of a set of neurons (denoted
by M ) with a fixed total number j, where each neuron (denoted
by mĵ

si
∈Msi ) takes the SOM features as an input. At each si,

we define the set M as follows:

Msi =
{
m1

si
, . . . ,mĵ

si
, . . . ,mj

si

}
, ∀ĵ ∈ [1, . . . , j], ∀si ∈ S

For each neuron mĵ
si
∈Msi , the objective is to determine the

best weight vector (denoted by w�
si
∈Wsi ) for the set of SOM

features, namely, throughput (X), latency (L), rebuffering (E)
and number of bitrate switches (H) that maximize the player
step utility (denoted by usi), and thus, the player total utility
(denoted by UK

S =
∑K

i=0 usi ). We define the utility function as
the QoE function (4) and assume that our utility function is a
strictly increasing concave function following a network utility
maximization framework [10]. The utility value is computed
using the QoE evaluation module shown in Fig. 2. Then, each
possible weight vector (denoted wv̂

si
) at si is defined as:

wv̂
si

=
{
wXv̂

si
, wLv̂

si
, wEv̂

si
, wHv̂

si

}
, ∀si ∈ S, ∀wv̂

si
∈Wsi ,

where i ∈ [1, . . . ,K] is the number of a segment s, S =
{s1, . . . , si, . . . , sK} is the list of the downloaded segments, K
(= |S|) is the cumulative number of segments, wn

si
is the weight

https://developer.mozilla.org/en-US/docs/Web/API/Fetch_API
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Algorithm 2: Heuristic-based Dynamic Weight Assign-
ment.

1: function WeightVectorSelectionsi
2: w�

si+1
← {}, Wsi ← {}, u�

si
← 0, V ← {0, 0.2, 0.4,

0.6, 0.8, 1}
3: Wsi ← WeightVectorGenerator(V )
4: for Each segment downloading step si ∈ S, i > 0 do
5: Msi ← GetNeurons(SOM)
6: if Initial Stage (s1) then
7: w�

s1
←

k-means++({wX
s1
, wL

s1
, wE

s1
, wP

s1
, wH

s1
})

8: else
9: for Each SOM Neuron mĵ

si
∈Msi , 1 ≤ ĵ ≤ j

do
10: for Each weight vector wv̂

si
∈Wsi , 1 ≤ v̂ ≤ v

do

11: u
(mĵ

si
,wv̂

si
)

si ← ComputeQoE(Rsi , Esi , Lsi , Psi )

12: M(M,W )
si = Push(u

(mĵ
si

,wv̂
si

)
si )

13: if A1, A2, A3 in (3) are satisfied then

14: if u
(mĵ

si
,zv̂

si
)

si > u�
si

then

15: u�
si
← u

(mĵ
si

,wv̂
si

)
si

16: w�
si+1
← wv̂

si
17: else
18: GoTo(10)
19: end if
20: else
21: if v̂ = v then
22: w�

si+1
← w�

si
23: end if
24: end if
25: end for
26: end for
27: end if
28: Return(w�

si+1
)

29: end for
30: end Function

of a feature n, Wsi = {w1
si
, . . . , wv̂

si
, . . . , wv

si
} and v are the

set and total number of possible weight vectors at si, respec-
tively. Further, each segment si has a fixed duration (denoted by
τ ) and comprises a set of zsi chunks such that ∀c ∈ si, and c =
{c1, . . . , cz}. To simplify the problem formulation and represent
the SOM features in the same space, we use normalized features
in the range between 0 and 1. Therefore, the weight of each
feature should be also in the same range, i.e., each weight takes
one value from the set V = {0.2, 0.4, 0.6, 0.8, 1}. For exam-
ple, w1

si
= {0.2, 0.2, 0.2, 0.2} represents the first weight vector

in Wsi . To reduce the complexity in solving the optimization
problem, we consider these possible values in V .

Second, the level of satisfaction for a given neuron depends
on the weight vectors that are able to maximize the utility in the

next segment to be downloaded (si+1). Letu
(mĵ

si
,wv̂

si
)

si denote the
achieved utility of assigning a weight vector wv̂

si
(1 ≤ v̂ ≤ v) to

Algorithm 3: Generate Possible Weight Vectors.
1: function WeightVectorGeneratorV
2: Wsi ← {}, wsi ← {}, wv̂

si
← {}

3: for Each possible weight vector wv̂
si

permutation
from V do

4: wv̂
si
← Generate({wXv̂

si
, wLv̂

si
, wEv̂

si
, wPv̂

si
, wHv̂

si
},

V )
5: if wv̂

si
�= wsi then

6: Wsi = Push(wv̂
si

)
7: wsi ← wv̂

si
8: end if
9: end for

10: Return(Wsi )
11: end Function

a neuron mĵ
si

(1 ≤ ĵ ≤ j) of the SOM model. Hence, we define

the possible achieved utility matrix (denoted byM(M,W )
si ) for

assigning the set of possible weight vectors to the set of existing
neurons as follows:

M(M,W )
si

=

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩
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)
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u
(m2

si
,w1

si
)

si u
(m2

si
,w2

si
)

si · · · u(m2
si

,wv
si

)
si

...
...

. . .
...

u
(mj

si
,w1

si
)

si u
(mj

si
,w2

si
)

si · · · u(mj
si

,wv
si

)
si

⎫⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎭

Third, we express the objective (F) as an MILP framework:

Find(w�
si+1

) such that U(w�
si+1

) = argmax

K∑
i=0

usi(w
�
si+1

)

s.t.

⎧⎪⎨
⎪⎩

A1 : Lsi+1
≤ Ltarget+|Lsi − Lsi−1 |

A2 : Bsi+1
≥ Blow

A3 : V min ≤ wv̂
si+1

(.) ≤ V max, ∀wv̂
si+1
∈Wsi+1

(3)

where w�
si+1

is the best weight vector that should be selected
and assigned for a neuron for the next segment to be downloaded
(si+1). The aims are defined as follows: A1 ensures that the
latency is under control (i.e., close to the target latency). A2
ensures that the playback buffer occupancy stays above the safe
threshold. A3 ensures that values of the weights assigned for
features in each weight vector are between the minimum and
maximum bounds.

Fourth, we propose a two-stage heuristic-based technique
that is based on a k-means++ approach in the first stage and
a greedy-search approach in the second stage to solve the MILP
optimization problem (3). Our dynamic weight assignment (Al-
gorithm 2) achieves a good performance in polynomial time
under real conditions as empirically shown in Section IV-C1.
Its complexity depends on the number of neurons j and possi-
ble weight vectors v for every segment downloading step. Al-
though an exhaustive approach like brute-force search finds the
optimal solution, its complexity grows dramatically with the
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increase in the numbers of j and v. In our heuristic-based tech-
nique, most of the computation happens a total of K times dur-
ing the entire live session. According to the objective function,
the weight vector assignment for each neuron has the time com-
plexityO(max(j + v, j.v + j)) = O(j.v + j) in the worst case.
Therefore, the overall worst case complexity for the live stream-
ing session is O(k.(j.v + j)), which is significantly less than
the upper bound of the exhaustive brute-force search (O(k.jv)).
It is worth mentioning that the weight selection module depends
on the adopted QoE function, which might impact the selection
process if it is not appropriately picked.

c) QoE Evaluation Module: In recent years, there have been
many proposed QoE models in the literature [28]. However, most
of the existing models do not capture the latency and playback
speed’s impact on the QoE, limiting their effectiveness in LLL
scenarios. To that effect, we need a flexible QoE model that con-
siders the most important metrics for LLL streaming. Hence, we
used our prior QoE model [25] that conforms with requirements
of LLL streaming. At each segment si download step, the QoE
model considers five essential metrics: bitrate selected reward
(Rsi), bitrate switches penalty (Hsi = |Rsi+1

−Rsi |), rebuffer-
ing time penalty (Esi ), latency penalty (Lsi ) and playback speed
penalty (Psi). The QoE model is given as:

QoEK
S =

K∑
i=1

(αRsi−βEsi − γLsi−σ|1− Psi |)−
K−1∑
i=1

μHsi ,

(4)
where the notations are given in Table I. Based on the subjective
tests in [37], [38] and our measurements, we fixed the weights
of each metric in (4) as follows: α = segment duration; β =
maximum encoding bitrate [in Kbps]; γ = {if L ≤ 1.6 seconds,
then = 0.05 × minimum encoding bitrate, otherwise = 0.1 ×
maximum encoding bitrate}; σ = minimum encoding bitrate;
and μ = 1. The playback speed is typically [1]: normal: 1×,
faster: e.g., 1.3× or slower: e.g., 0.7×. Thus, if the playback
speed is normal, there is no playback speed penalty.

d) Playback Speed Control Module: The main goal of this
module is to determine a playback rendering speed that ensures
low latency while taking a calculated risk of rebuffering. It is
an event-based module that is triggered as per the cases defined
in Algorithm 4 and operates independently from the bitrate se-
lection module. Algorithm 4 is a hybrid playback speed con-
trol technique that considers two variables: (i) the difference
between the current and target latency, and (ii) the difference
between the current playback buffer level and the safe threshold
(Blow). Algorithm 4 reacts quickly to changes in these variables
making the playback more robust. Note that all the media is still
played out (no skips) despite the playback rate changes.

Case 1: The current buffer level is below the safe threshold.
In this case, LoL+ selects a slower playback speed.

Case 2: The current buffer level is equal to or above the safe
threshold and further:

2a: The current latency is close enough to the target
latency (ε = ±2%), then LoL+ selects the normal
playback speed.

Algorithm 4: Playback Speed Control (Pseudocode).
1: function

PlaybackSpeedSelectionLsi , Ltarget, Bsi , B
low

2: if (Bsi < Blow) then
3: Bdelta ← |Blow −Bsi |
4: Psi ← CalculateSpeed(Bdelta, Slower,

Limit=0.7)
5: end if
6: if (Bsi ≥ Blow) then
7: if (Lsi≈Ltarget) then
8: Psi ← CalculateSpeed(Normal, Speed=1)
9: end if

10: if (Lsi < Ltarget) then
11: Ldelta ← |Ltarget − Lsi |
12: Psi ← CalculateSpeed(Ldelta, Slower,

Limit=0.7)
13: end if
14: if (Lsi > Ltarget) then
15: Ldelta ← |Ltarget − Lsi |
16: Psi ← CalculateSpeed(Ldelta, Faster,

Limit=1.3)
17: end if
18: end if
19: Return(Psi )
20: end Function

2b: The current latency is lower than the target la-
tency, then LoL+ selects a slower playback speed.

2c: The current latency is higher than the target la-
tency, then LoL+ selects a faster playback speed.

LoL+ can be configured for the range of the playback speed
(e.g., 0.7− 1.3×) [1], [27], buffer level safe threshold and target
latency. Note that the playback speed is calculated based on how
large the deviation is between the current and target latency,
and the current buffer level and safe threshold. The larger the
deviation, the faster/slower the playback speed.

e) Bitrate Selection Module: This module is invoked at the
end of each segment download and its goal is to select the
best bitrate level for the next segment that maximizes the QoE
while maintaining the latency close to the target. This module
employs a learning-based rule (Algorithm 5) that is based on
SOM [24], which was first proposed by Kohonen [24] and is
now one of the widely used techniques for unsupervised classi-
fication problems. A SOM is a type of artificial neural network
(ANN) that is trained using unsupervised learning and consists
of a single-layer linear 2D grid of neurons. All the neurons in the
grid are connected directly to the input vector, but not to one an-
other. Thus, a neuron does not know the values of its neighbours,
and only updates the weight of its connections as a function of
the given inputs. The grid is referred to as a map that organizes
itself at each iteration as a function of the input data with the ap-
plication of competitive learning as opposed to error-correction
learning in other ANNs. There are two main reasons for using
a SOM for bitrate selection in LLL streaming: (i) a SOM uses
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online learning without requiring supervised model training, al-
lows bitrate decision making in real time and evolves its model
quickly over time, and (ii) the data points (variability in the
network conditions) are unknown a priori.

For each representation in the manifest, a corresponding SOM
neuron is created and initialized with the value of the bitrate
level. The algorithm evaluates the current state and considers the
set of data points to be classified. At each segment download, it
gathers the current state and classifies it to one of the neurons to
find the best matching unit (BMU) in the SOM model.

Our SOM model considers a quadruplet of features for the
data points that combines player context (i.e., multiple individ-
ual QoE metrics) and network context (i.e., measured through-
put). At the beginning of a live streaming session, the value of
the throughput feature is initialized with the minimum encoding
bitrate level. For more accurate bitrate selection and model sim-
plification, we normalize all the data points to between zero and
one. Every state (white circles in Fig. 2) comprises a quadruplet
set of features that are calculated after each segment download.
To enhance the SOM model further, we also include the latency
(set to the target value), rebuffering duration (set to zero) and
number of bitrate switches (set to zero) as a target. Then, we use
a distance function D() to find the best matching (5) that rep-
resents the euclidean distance of the four features used in each
neuron. The distance function D() at si is defined as follows:

Dsi(a, b) =

√√√√ 4∑
n=1

wn
si
× (a[n]− b[n])2, (5)

where n is a specific feature (X , L, E, or H) that is associated
with a weight value (wn

si
) selected by Algorithm 2.

Usually, after finding the best BMU, the corresponding neuron
and its neighbours should be updated. In our context, the update
function is slightly different since we only have two known SOM
neurons. The first one is the current neuron (that represents the
current selected bitrate level) and the second neuron is the next
best one to transit to. That is, we update the current SOM neuron
with the newly reported values of the features (i.e., the player
reports its status at every segment download) and then we update
its neighbours as well using the same values. Next, the best BMU
neuron is calculated using (5) with latency, rebuffering duration
and number of bitrate switches all equal to their target values.
The best neuron that achieves the target values (the closest one
to the BMU neuron) wins. After finding the winning neuron, it
becomes the current one and will be updated with the reported
values of the features, and so on. The process is repeated for
each segment download until the streaming session ends.

Algorithm 5 shows the pseudocode of the bitrate selection,
which performs two main updates. The first update moves the
current active neuron towards the freshly measured features.
Later, the BMU is calculated as defined in the algorithm. Then,
the second update moves the BMU towards an ideal (but in
practice unreachable) point that is predefined. For our runs, we
used ideal latencyLideal (zero seconds), ideal rebufferingEideal

(zero seconds) and ideal number of bitrate switchesHideal (zero
switches). So, there is a balance between those two updates
where one of them moves away from the ideal point and the

Algorithm 5: SOM Bitrate Selection (Pseudocode).

1: function NextMaxRate()
2: D�

si
← 0, BMU← ∅, R�

si+1
← 0, λ← 0.01

3: for Each segment downloading step si ∈ S, i > 0 do
4: Xsi ← CalculateThroughput(si)
5: Bsi ← GetBufferLevel(si)
6: Lsi ← GetLatency(si)
7: Esi ← GetRebuffering(si)
8: Hsi ← GetSwitches(si)
9: wsi ← WeightVectorSelection(si)

10: Normalize({Xsi , Lsi , Esi , Hsi}, [0,1])
11: Update(mĵ

si
, {Xsi , Lsi , Esi , Hsi})

12: for all neurons ∀mĵ
si
∈Msi , 1 ≤ ĵ ≤ j do

13: Rsi ← R�
si

14: Dsi ← GetDistance(wsi× {Xsi , Lsi , Esi ,
Hideal})

15: if (Dsi < D�
si

) then
16: if (Lsi ≤ Ltarget) && (Bsi ≥ Blow) then
17: D�

si
← Dsi

18: BMU← mĵ
si

19: R�
si+1
← BMU.bitrate

20: Rsi+1
← R�

si+1

21: else
22: BMU← SelectNeuron(Xsi )
23: R�

si+1
← BMU.bitrate

24: Rsi+1
← R�

si+1

25: end if
26: end if
27: end for
28: Update(mĵ

si
, {Xsi , Lideal, Eideal, Hsi})

29: Return(Rsi+1
)

30: NextMaxRate()
31: end for
32: end Function

other is trying to move back to the ideal point. At each iteration,
the algorithm selects the one closer to the ideal point and updates
all neighbours accordingly. The neighbourhood function used in
the algorithm is a Gaussian distribution function. The learning
rate (denoted by λ) is fixed to 0.01 as in the original paper [24].

IV. EXPERIMENTAL EVALUATION

In this section, we present the results from the trace-driven
experimental evaluation of LoL+. We first describe the imple-
mentation of LoL+ in dash.js (v3.0.1) [1]. We then present the
methodology, results and detailed analysis. Our goal is to answer
the following questions:
� Can LoL+ deliver high quality video with no rebuffering

at a low latency? How does it compare against the other
ABR algorithms (LoL [25], L2A [21], STALLION [15]
and Dynamic [1])?

� How effective are the LoL+ modules in different scenarios?
� How sensitive is LoL+ to the QoE model and player pa-

rameters (e.g., target latency)?



2308 IEEE TRANSACTIONS ON MULTIMEDIA, VOL. 24, 2022

TABLE II
LOL+ IMPLEMENTATION IN THE DASH.JS PLAYER

� What is the impact of the weight selection of the learning
model on the selected bitrates, latency and rebuffering?

A. Implementation

LoL+ has been implemented on top of the JavaScript-based
dash.js player (v3.0.1) [1] and our source code is available on-
line [2]. LoL+ consists of ∼1500 lines of new or modified
code and the implementation details for each module are high-
lighted in Table II. Our throughput measurement module is in-
cluded in FetchLoader.js and BoxParser.js. Further,
our playback speed control module is included in Playback-
Controller.js. At the server side, we used FFmpeg for
encoding and packaging, and a Python-based framework (347
lines of code) for the chunk ingest and origin. We note that LoL+

has been added as one of the ABR rules for LLL streaming in
the official dash.js (v3.2.0) player.

B. Methodology and Evaluation Setup

1) Video and Encoding Parameters: Consistent with the re-
quirements of the Twitch grand challenge [33], we used the an-
imation video Big Buck Bunny3 with a segment duration (τ )
of 500 and a chunk duration of 33 milliseconds (equal to one
frame duration at 30 f/s). We encoded the video using the H.264
codec of FFmpeg into three representations {360p@200 Kbps,
480p@600 Kbps, 720p@1000 Kbps}. The live session duration
and number of segments (K) were set according to the duration
of the bandwidth profile.

2) Bandwidth Profiles: To emulate different real-world net-
work conditions, we used a set of 11 bandwidth profiles to throt-
tle the bandwidth between the server and player. These profiles
were extracted from datasets and can be found in [2].
� We used five bandwidth profiles that were provided by

Twitch [33], namely: CASCADE, INTRA-CASCADE,
SPIKE, SLOW-JITTERS and FAST-JITTERS. The aver-
age bitrate (Mbps) and duration (seconds) of each profile
is {(0.8150), (0.66 135), (0.77,30), (0.85,30), (1.16,11.6)},
respectively.

� We randomly selected two types of live channels from
Twitch based on popularity: {low and medium}. Then,
we measured the bandwidth between the Twitch player
and server every five seconds. We collected two bandwidth
profiles, namely: TW-LOW and TW-MED. The duration
of these profiles is 360 and 190 seconds with an average
bitrate of 0.67 Mbps and 1.31 Mbps, respectively.

3https://peach.blender.org/download/

� We extracted four bandwidth profiles with different mobil-
ity types from the Belgium LTE dataset [34]. Each band-
width value in the profile was logged every second and
the profiles captured were: BICYCLE, TRAIN, TRAIN-
MODIFIED and TRAM. The duration of each profile is
600 seconds and the average bitrates are 3.9, 2.96, 2.97
and 2.72 Mbps, respectively. We note that the TRAIN pro-
file has many values lower than the lowest encoding bitrate
(< 200 Kbps) and in the modified profile these values were
set to the lowest encoding bitrate.

3) ABR Algorithms and Metrics: We compared LoL+

against four LLL ABR algorithms, including LoL [25],
L2A [21], STALLION (STA) [15] and Dynamic (DYN) of
dash.js [1] (with low-latency mode enabled). To evaluate the per-
formance of LoL+, we used the following metrics: (i) latency,
(ii) QoE and its metrics, and (iii) mean absolute error (MAE),
which measures the absolute difference between the actual and
measured throughput values.

4) Setup: To build an end-to-end live streaming system, we
used a MacBook Pro (macOS Catalina, 6-Core Intel Core i7
processor, 16 GB memory and Intel UHD Graphics 630) with
two virtual machines (VMs). The first VM executed the dash.js
player in the Google Chrome browser (v86). The second VM
was used to run the FFmpeg encoder with CMAF packaging
enabled to feed into the origin server. To emulate the network,
we used Chrome-devtools at the player to throttle the bandwidth
between the origin server and player according to the described
bandwidth profiles. We set the minimum IDR-frame interval to
15 frames at the encoder (i.e., an I-frame at the beginning of
each segment) and Blow to 0.5 seconds.

C. Results and Analysis

We executed five runs for each bandwidth profile and took the
averages in each of the following experiments:

1) Impact of the Weight Selection: To investigate the impact
of the weight selection on the bitrate selection module, we im-
plemented two more techniques (MAN: manual selection, RAN:
random selection) to compare with the dynamic weight assign-
ment (DWA).
� MAN: We manually tune the weights for the SOM features

by experimenting with different possibilities and selecting
the best performing set.

� RAN: The well-known Xavier activation function [14]
is used to set the weights to the values chosen from
a random uniform distribution that is bounded between
±√6/√nj + nj+1, where nj is the number of incoming
network connections to the layer and nj+1 is the number
of outgoing network connections from that layer.

� DWA: This uses Algorithm 2.
The results of this experiment for different bandwidth pro-

files are given in Table III. In contrast to MAN, which selects
the weights only once at the session initialization, DWA enables
LoL+ to perform better in most profiles. However, in a few cases,
LoL+ performs similar to MAN and RAN. This outcome is
achieved because of Algorithm 2, which strives to select the best
performing weights set at each segment download. DWA aims to

https://peach.blender.org/download/
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TABLE III
IMPACT OF THE WEIGHT SELECTION ON THE LEARNING MODEL (MAN:

MANUAL, RAN: RANDOM XAVIER [14], DWA: DYNAMIC WEIGHT

ASSIGNMENT (ALGORITHM 2))

TABLE IV
IMPACT OF THE QOE FUNCTION ON THE LEARNING-BASED SOM MODEL. A:

SOM USES INDIVIDUAL QOE METRICS, B: SOM USES QOE (4) AS A

FEATURE. DWA IS USED FOR WEIGHT SELECTION

balance different QoE metrics and its performance will converge
to near-optimal, especially, in long sessions (>200 seconds). For
instance, LoL+ with DWA in the BICYCLE profile (duration of
600 seconds) performs a suitable bitrate selection with small
rebuffering duration and low number of bitrate switches. Con-
versely, MAN and RAN suffer from instability with frequent
bitrate switches.

2) Impact of the QoE Function on the Learning Model: To
investigate the sensitivity of LoL+ regarding the QoE function
(4), we implemented two learning-based SOM models to make
bitrate selections. The first model (denoted by A) is decoupled
from the QoE function and uses the individual QoE metrics
separately as features, whereas the second model (denoted by
B) largely depends on the aggregate QoE function in (4) and uses
its value as a feature in addition to the throughput. As shown in
Table IV, LoL+ using A achieves comparable results with a
slightly higher average bitrate and fewer switches than B. With
B, the bitrate selection module may pick a miscalculated bitrate
when the QoE model (4) is replaced with another function that
leads to a low QoE. This problem is exacerbated considering
the diversity of real-world network environments, where it is
not possible to have a QoE function that can perfectly fit all

TABLE V
IMPACT OF THE TARGET LATENCY

kinds of network conditions. However, A optimizes each QoE
metric individually and this allows LoL+ to work efficiently.

3) Impact of the Target Latency: To investigate the impact of
setting the target latency on LoL+, we tested different values of
Ltarget = {1.5, 2.0, 3.0} seconds as highlighted in Table V. We
observe that LoL+ performs adequately when the target latency
is 1.5 seconds. As the target latency is further relaxed, LoL+

experiences shorter rebuffering and fewer bitrate switches, and
achieves higher bitrate as it is given more space in the playback
buffer to absorb bandwidth drops.

4) Impact of the Playback Control Module: We compared
our hybrid playback control module against the solely latency-
based and buffer-based counterparts:
� LAT: Given a user-specified playback speed range (e.g.,

0.7× to 1.3× in our case), user-specified target latency
(e.g.,Ltarget=1.5 seconds in our case) and current latency,
this approach calculates a playback speed proportionate to
the difference between the current and target latency. If
the current latency is much higher (lower) than the target
latency, the playback speed would be set closer to the upper
(lower) bound specified. Note that this implementation is
the default playback speed control mechanism in dash.js.

� BUF: The buffer-based approach works equivalent to the
latency-based one above, except we replace the target and
current latency with the target and current buffer level, re-
spectively.

� HYB: The LoL+ hybrid playback speed control imple-
mentation is given in Algorithm 4, which combines both
the latency and buffer-based approaches. HYB first checks
if the buffer level is critically low and if so, it adopts the
buffer-based approach. Otherwise, it uses the latency-based
approach. This is to ensure that the buffer is healthy before
the playback speed is adjusted based on latency as the con-
verse may cause more rebufferings, which would increase
the latency further.

Note that playback speed here is defined and
recorded as per the value provided by dash.js (using
player.getPlaybackRate()). It is a configuration
value provided to the player and does not consider the case of
rebuffering. For example, if the playback speed is currently
configured at 1.1× (usingplayer.setPlaybackRate()),
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Fig. 4. Sample runs for latency-based, buffer-based and hybrid playback speed control (SLOW-JITTERS).

TABLE VI
IMPACT OF THE PLAYBACK SPEED CONTROL MODULE

then the player would attempt to play the video at 1.1× and even
if the buffer is depleted and rebuffering occurs, this playback
speed value would not change.

The results with these different playback controls for differ-
ent bandwidth profiles are given in Table VI. In contrast to BUF
(average playback speed of 0.94×), LAT and HYB generally
achieve an average playback speed that is close to 1× (0.98×
to 1.04×), which is a good sign that they do not adapt the play-
back speed too aggressively, and hence, the speed changes are
likely imperceptible to viewers. Also, HYB generally achieves
the lowest average rebuffering and an average latency similar to
LAT. The reason for this is that HYB considers the current buffer
level and latency, allowing it to react quickly and in anticipation
of any change in player status and network conditions. Because
of the low average bitrate, BUF suffers from low video quality.

To better observe these behavioral differences, Fig. 4 provides
three graphs that portray three sample runs, with each using a dif-
ferent playback control module (LAT, BUF and HYB) on profile
SLOW-JITTERS. In the first graph (LAT), the playback speed
closely follows the current latency. For example, as the through-
put drops and latency increases sharply at segment 62, the play-
back speed also increases quickly to the maximum bound of
1.3×. However, this depletes the buffer and causes a sharp in-
crease in rebuffering duration from zero to about 4.5 seconds.
In the second graph (BUF), the playback speed closely follows
the current buffer level instead. This maintains the buffer at a
healthier level, which allows the rebuffering duration to plateau
at an improved 2.9 seconds (compared to 4.5 seconds in LAT).
Consequently, the latency also peaks at an improved 3 seconds
(instead of 4.6 seconds in LAT), even though BUF does not
consider the latency. This is because, in LAT, the high playback
speed and the consequent buffer starvation at segment 62 further

causes latency to increase, which is undesirable and fortunately
avoided in BUF. Finally, in the third graph (HYB), the play-
back speed generally follows the current buffer level to ensure
the buffer is kept healthy (similar to BUF). On top of that, due
to the additional latency considerations, HYB is able to bring
the latency down faster when the buffer is healthy. This can be
seen in both graphs between segments 65 and 90, where BUF
reduces the latency from about 3 seconds to 2.1 seconds, while
HYB reduces the latency from about 3 seconds to 1.6 seconds
within the same period.

5) Impact of the Throughput Measurement Module: We con-
ducted a set of experiments to evaluate the effectiveness of Algo-
rithm 1 by calculating the mean absolute error (MAE) for each
of the bandwidth profiles and then averaging them to obtain an
overall measurement error. We compare this accuracy against the
default throughput measurement provided by dash.js. Results
show that our module is able to reduce the overall measurement
error from 0.67 to 0.30, compared to the algorithm in dash.js,
across all bandwidth profiles. Fig. 5 shows how the true and mea-
sured values vary over time using one sample run for three band-
width profiles. We observe that our throughput measurement can
accurately track the actual available bandwidth while the dash.js
throughput measurement algorithm suffers especially when the
transmission is source-limited and the inter-chunk idle periods
become more significant. As noted earlier, when these periods
are not excluded in the calculation of segment download time,
throughput measurement errors are inevitable. While the earlier
versions of dash.js (i.e., v2.9.x) did not perform any chunk filter-
ing and consequently often underestimated the throughput, the
more recent versions (i.e., v3.x) include chunk filtering, which
addresses the underestimation problem. However, the bandwidth
measurements now seem to err in the opposite direction and
overestimate the measured throughput.

6) Impact of the ABR Algorithm: The main aim of these ex-
periments is to show how responsive LoL+ is to the QoE met-
rics considered in (4). We compare the performance of LoL+

against the other submissions in the Twitch grand challenge,
L2A and STALLION, as well as against the Dynamic algorithm
provided by dash.js. These ABR algorithms are specifically de-
signed for near-second latency [33] and would provide us with
a good benchmark of how LoL+ performs.

The results of these experiments are shown in Table VII and
Fig. 6. One key finding is that LoL+ reduces the rebuffering
duration for all profiles compared to LoL, with an average re-
duction of 62.6%. In particular, significant improvements are
achieved in profile TW-LOW (rebuffering reduced by 98.4%),
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Fig. 5. Throughput measurements made by dash.js (dotted green line) and our implementation (dashed red line) compared to the true values (solid blue line) for
three bandwidth profiles.

Fig. 6. Average results of the ABR algorithms across different bandwidth profiles. (a) Average bitrate (Mbps). (b) Average rebuffering duration (s). (c) Average
latency (s).

INTRA-CASCADE (rebuffering reduced by 97.3%) and CAS-
CADE (rebuffering reduced by 95.2%). Latency has also im-
proved with an average reduction of 8.5% across all profiles.
Although the improvements in rebuffering are accompanied by
some reduction in the average bitrate across all profiles, this
trade-off seems reasonable based on the guidance from the in-
dustry [33].

Similarly, LoL+ achieves significant improvements in re-
buffering over L2A, with an average reduction of 61.9% in re-
buffering duration across all profiles. Latency is also improved
with an average reduction of 8.1% across all profiles. The im-
pact on the average bitrate is far less significant with an average
reduction of 6.6% across all profiles.

When comparing LoL+ and STALLION, the improvements
are consistent across all three key metrics. LoL+ achieves an
average reduction of 42.7% and 5.2% in rebuffering and latency,

respectively. The average bitrate also improves by an average
increase of 12.5% across all profiles.

The results of Dynamic are most similar to those of LoL+.
Nonetheless, LoL+ still improves on rebuffering with an av-
erage reduction of 12.3% across all profiles. The difference is
insignificant for their bitrate and latency performances (0.9%
and 1.6%, respectively). That is, both have a similar bitrate and
latency performance.

D. Summary of the Results

As seen in the earlier experiments, different ABR algorithms
may perform differently based on which metrics they tend to
prioritize or sacrifice, which makes comparisons between the
algorithms tricky. One way to compare them is to identify the
worst and best performing algorithm in each metric and quantify
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TABLE VII
IMPACT OF THE ABR ALGORITHM

the relative performance of the other algorithms against these
boundaries so that users may choose an algorithm based on their
own priorities and preferences. Hence, we normalize the QoE
metrics into performance scores between 1 (worst) and 5 (best).
The normalized scores are shown in Table VIII. For each metric,
an ABR algorithm’s performance score is calculated based on
its achieved result in proportion to the worst and best performing
results across all algorithms in that profile. We then calculate the

TABLE VIII
AVERAGE SCORES ACHIEVED BY EACH ALGORITHM ACROSS ALL BANDWIDTH

PROFILES. THE BLUE/RED SCORES REPRESENT THE BEST/WORST SCORES FOR

EACH QOE METRIC. HIGHER IS BETTER

average performance scores across all profiles to observe their
overall performance.

We see that LoL achieves the best score in the average bitrate
and lowest score in rebuffering and latency. STALLION achieves
the best score in the average number of bitrate switches and the
lowest score in the average bitrate. Dynamic has the best latency
score while L2A has no best or worst score in any of the met-
rics. LoL+ has the best score in rebuffering but this comes at
the expense of the worst score in the average number of bitrate
switches. We observe that LoL+ outperforms LoL in rebuffer-
ing and latency but not in number of bitrate switches. This is
because LoL+ is more responsive to the varying conditions in
the network.

V. CONCLUSION

Existing player implementations struggle when operating
with a tiny amount of buffered media. Thus, we designed LoL+–
a player specifically designed for LLL streaming. LoL+ deliv-
ers good QoE for any given target latency. Its source code is
available online [2] and has already been merged into the main
dash.js branch. In the future, we plan on contributing LoL+ to
other open-source player implementations including Google’s
Shaka player and hls.js.
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