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Abstract: The ongoing pandemic, namely COVID-19, has rendered widespread economic
disorder. The deficiencies have delayed production at manufacturers in several industries on
the supply side. The effects of disruption were more notable for industries with longer supply
chains, especially reaching East Asia. Regarding the demand, sectors can be divided into
three categories: i) the ones, like e-commerce companies, that experienced augmented demand;
ii) the ones with a plunged demand, like what hotels and restaurants experience; iii) the
companies experiencing a roller-coaster-ride business. After mitigation efforts, the economy
started recovering, resulting in increased demand. However, regardless of their struggles, the
companies have not fully returned to their pre-pandemic levels. One of the strategies to
gain resilience in its supply chain and manage the disruptions is to employ flexible/hybrid
manufacturing systems. This paper considers a flexible/hybrid manufacturing production setting
with typically dedicated machinery to satisfy regular demand and a flexible manufacturing
system (FMS) to handle surge demand. We model the uncertainty in demand using a scenario-
based approach and allow the business to make here-and-now and wait-and-see decisions
exploiting the cost-effectiveness of the standard production and responsiveness of the FMS.
We propose a column generation-based algorithm as the solution approach. Our computational
analysis shows that this hybrid production setting provides highly robust response to the
uncertainty in demand, even with high fluctuations.
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1. INTRODUCTION pandemic or had to be furloughed during lockdown phases

Fletcher et al. (2021).

On the supply chain side, the effects of disruption were
more notable for industries with longer supply chains,
especially reaching East Asia. The supply chain disrup-
tions almost immediately started as the outbreak took over
China in early 2020. The supply shock was then followed
by extreme demand fluctuations globally. Regarding the
demand, sectors can be divided into three categories: i)
the ones, like e-commerce companies, that experienced
augmented demand; ii) the ones with a plunged demand,
like what hotels and restaurants experience; iii) the com-
panies experiencing a roller-coaster-ride business. In any
category, however, the consumers demand low prices as
the pandemic took a toll on their household incomes,

The COVID-19 pandemic caused havoc in all sectors
worldwide. Healthcare, hospitality, and tourism were
among the most affected, though almost all businesses
faced inevitable disruptions. People’s behavior has dra-
matically changed due to concerns and restrictions taking
place, and this, in turn, caused several transformations
for the business, employees, and consumers. Some of these
transformations are relatively positive for certain busi-
nesses/people, such as e-commerce activities and customer
satisfaction have increased, opportunities for working re-
motely arises, universities and other institutions have be-
come more proficient in online education, less petroleum
usage reduced the oil prices and carbon emissions world-

wide, etc. Nevertheless, others were quite negative. Shut-
downs and travel restrictions caused many businesses to
struggle or even fail. Raw material deficiencies have de-
layed production at factories in several industries on the
supply side, and so this resulted in rising input prices in
subsequent industries. People lost their jobs due to the

whereas businesses cannot survive for long without hiking
the prices under such a disrupted supply environment.

Businesses have tried to adapt to the “new normal” since
the early stages of the pandemic and started employing
mitigation strategies to overcome these supply shocks.
Some firms switched to local suppliers in an attempt to
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shorten the supply lines as all key aspects of a supply
chain, such as transportation, storage, and currency ex-
change rates, are affected by the pandemic. Multisourcing
was another option to secure the supply by hedging the
potential risks among multiple suppliers. Demand plan-
ning/smoothing was employed to reduce the peak demand,
which gives the firm an edge to handle surge demand. Also,
to deal with uncertainties in supply/demand matching,
some firms built up extra inventories to sustain their
business through prolonged periods of disruption. Here,
the challenge for the firms was to make their supply chains
more resilient without a toll on their competitiveness.

One of the strategies to gain resilience in its supply chain
and manage the disruptions is to employ flexible/hybrid
manufacturing systems. To this end, compared to its alter-
natives, having flexibility in manufacturing might be more
cost-effective as the other options have certain downsides
such as increased labor costs in local production, increased
holding costs in keeping an extra inventory, and so on. As
customer expectations are ever-increasing, manufacturing
techniques are also evolving to keep up with those expecta-
tions. The concept of mass customization, manufacturing
a highly varied product portfolio in a mass production
scheme, forces the companies to seek manufacturing sys-
tems that are both flexible and can produce high-quality
items at a meager cost. This, in turn, highlights the
significance of designing flexible manufacturing systems
(FMSs) that are capable of producing a variety of goods
belonging to a specific class. However, the downside of the
FMSs is that their initial investment is expensive, and they
typically require high maintenance times.

According to Groover (2007) the idea of FMS was first
proposed by David Williamson in 1960s under the name
"System 24,” which stands for a machine that operate for
24 hours a day without any need for a human operator.
However, the definition of FMS, which is widely accepted
nowadays, is proposed by Browne et al. (1984). KUSTAK
(1985) present the structure of FMS, its process, and
problem views. By defining the design and operational
problems different aspects of flexibility is presented in this
study. Several survey papers there are about FMS. We
refer the readers to Yadav and Jayswal (2018), Yelles-
Chaouche et al. (2021), and Yadav and Jayswal (2018)
for the most recent and fundamental reviews of the papers
about FMS.

The most significant advantage of FMSs is to provide ver-
satility to the manufacturing environment in case of rapid
changes. It mainly offers two types of flexibility: (i) ma-
chine flexibility which refers to the flexibility of machines
to perform different operations, and (ii) routing flexibility
which refers to the ability to change the order of operations
on a part. Even though FMS’s adaptability favors them in
efforts to reduce response times, reduce delays, increase
machine/labor productivity, and hence increase customer
satisfaction, they require skilled/flexible labor, extensive
initial planning, and possibly higher maintenance costs.
Therefore, in most cases, it is necessary to exploit its
potential benefits to the full extent; otherwise, the firms
might face unnecessary inefliciencies/costs while trying to
increase productivity.
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Tang (2006) discuss robust supply chain strategies in the
face of disruption and suggest that companies that de-
ploy contingency plans would be less vulnerable in case
of disruption. Tomlin (2006) consider single product pro-
curement with two non-identical suppliers and compare
different mitigation strategies such as inventory building,
sourcing from the reliable high-cost supplier, and passive
acceptance and discuss the optimality of these strategies
under different conditions. Wu et al. (2007) suggest a
network-based modeling methodology to understand how
disruptions affect the supply chains, which will lead to
developing better mitigation strategies. Tang et al. (2014)
propose a series of models to study supply disruptions
under different scenarios with deterministic and stochastic
demand settings. Fahimnia et al. (2015) provide a thor-
ough review of the models to deal with potential supply
chain risks. Mejia and Lefebvre (2020) consider FMS with
operation interruptions and unreliable resources and pro-
pose an anytime graph search algorithm with an objective
function that encompasses performance and risk.

Studying the literature carefully, in turn, highlights the
significance of designing FMSs that are capable of produc-
ing a variety of goods belonging to a specific class. In this
study, we consider multiple companies trying to satisfy the
demand for multiple products using a common production
environment. This common production floor consists of
two different machines; (i) typical manufacturing machines
(TMM) and (ii) a limited number of FMS. A product
can be produced on a TMM or an FMS. The production
cost and the amount of the product that can be pro-
duced on each of them are different. This two-mode setup
provides the efficiency of traditional mass manufacturing
under stationary demand patterns with a potentially lower
cost of production per unit and flexibility under highly
volatile demand patterns with a potentially higher cost of
production per unit but highly adjustable output.

Contributions of this study can be summarized in three-
fold. Firstly, to the authors’ best knowledge, this is the first
study that proposes an optimization-under-uncertainty
framework in flexible manufacturing systems literature;
stochastic production planning (SPP) is the first problem
that considers FMSs and TMMs in a manufacturing com-
pany and provides resilient solutions against the demand
uncertainty. Secondly, we propose a column generation
(CG) based heuristic approach that solves the problem
for realistically sized instances for twenty different cases,
while a commercial solver cannot even create an instance
of the standard model. To evaluate the performance of the
proposed algorithm, we provide an efficient lower bound
mechanism for the problem that is obtained by solving the
linear programming (LP) relaxation of proposed mixed-
integer programming models with one FMS and one TMM.
The numerical results show that the proposed CG ap-
proach provides (on average) less than a 3% optimality
gap for the setting that adopts both FMS and TMM
for realistically sized instances. Lastly, regardless of the
difficulties due to uncertain demand, we develop effective
schedules that improve the operational cost of standard
production schemes that do not use FMS by (on average)
14%.

The remainder of the paper is organized as follows. Section
2 defines the problem by proposing the mathematical
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model of the proposed problem. Section 3 provides the
solution approaches. The numerical experiments are given
in Section 4. In Section 5, we provide the conclusion of the
study.

2. PROBLEM DEFINITION

In this section, we define the problem formally, list our
assumptions, and present the mathematical formulation
of SPP. In SPP, we consider a set of companies N =
{1,...,n} that would like to cooperate in order to reduce
their procurement costs. Each company is trying to fulfill
the demand of multiple products (J = {1,...,R}) over
a finite planning horizon, T'. Moreover, uncertainty in de-
mand is modeled via a scenario tree approach. We consider
two types of decision variables: here-and-now and wait-
and-see decision variables. Here-and-now decision vari-
ables are decided at the beginning of the planning hori-
zon using the typical machines, and wait-and-see decision
variables are more situational /flexible and are satisfied uti-
lizing FMSs, and their production is determined/adjusted
according to the realizations of the demand in the planning
horizon. It is assumed that both TMMs and FMSs are
capable of producing all products, and there is a sequence-
based setup time between each production. Units of prod-
uct j that a TMM and an FMS can produce are denoted
by a; and a;-, respectively. Demand of company n for
product j in node e is denoted by d,.;. Each company
meets the demand by ordering the product from a common
supplier. The supplier may either manufacture or order
from a third party to meet the demand of the companies.
A fixed cost is incurred with each production/order, and
a variable cost is incurred depending on the amount of
production/order. The fixed production cost of producing
product j for TMMs for period ¢ is denoted by A;;, while
the unit variable cost for TMMs is denoted by v;;. The
fixed and variable costs for FMSs are denoted by A’ and
vt , respectively. When the product is ordered before the
reahzatlon of the demand, the cost of keeping inventory
is incurred up until the actual time of the demand, and
the cost of keeping a unit product in inventory in each
period for product j is denoted by h;. The supplier has
a certain production capacity for each period, and this
production capacity is indicated by C;. The supplier also
has a certain inventory capacity for storing items after each
period, and this inventory capacity is indicated by S. The
demand of the grand coalition, where all the companies
come together, in period ¢ is indicated by d,,.;. Finally, we
assume that the unit outsourcing cost of product j in each
period is denoted by 3;. The nomenclature for the SPP is
presented in Table 1.

In Figure 1, we represent a general scenario tree with the
notations used in SPP. This figure provides a tangible
representation of the demand tree structure. For example,
the immediate predecessor of node eg is node ey =
pd(eg, 1). Also, set of children of node e; in the next period
is presented by N(e;,1) and for the next two periods is
presented by N(eq,2). Each node e € N in the scenario
tree denotes a demand realization at period t(e) with its
associated probability pr(e), and each path from the root
node (0) to a leaf node e € N is referred to as a scenario of
the tree, i.e., denoted by pd(e14) = {0, €2, €6, €14}, where
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Fig. 1. Problem structure of SPP

Nr denotes the set of nodes in the last period of the
planning horizon.

SPP can be formulated considering both TMM and FMS
(MIP). It should be noted that in MIP, production de-
cisions are divided into two groups, namely, here-and-
now (y) that is done by TMMs and are scheduled at the
beginning of the planning horizon and are independent of
the scenario realizations, and scenario-specific wait-and-
see (x) decisions that are done by FMSs.

MIP:
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Table 1. Nomenclature for SPP

Sets

N set of companies ({1,2,...,W}) — indexed by n

J set of products ({1,2,..., R}) — indexed by j

K set of TMMs ({1,2,...,M}) — indexed by k

K’ set of FMSs ({1,2,...,M'}) — indexed by &k’

K set of machines (K = K U K’) — indexed by k

T set of time periods in the planning horizon ({1,2,...,L}) — indexed by ¢
E set of demand scenario or node indexes ({1,2,...,S}) — indexed by e
Nt set of nodes in period t € T

Ne,l) set of children nodes of e in the next ! periods U {e}
Parameters

aj units of product j that each TMM produces

a;. units of product j that each FMS produces

S setup time between product j and j/ on TMM

s;.j, setup time between product j and j/ on FMS

dnej demand of company n for product j in node e

Vtj variable cost of production of product j in period ¢ by a TMM
véj variable cost of production of product j in period t by an FMS
Agj fixed cost of production of product j in period ¢t by a TMM
A;j fixed cost of production of product j in period ¢t by an FMS

hj unit holding cost of product j

B; unit outsourcing cost of product j

C production capacity of TMM during the planning horizon

c’ production capacity of FMS during the planning horizon

S inventory capacity per period

R a very large number

pd(e, 1) immediate predecessor of node e

pd(e) nodes in the path from the source node to e

pr(e) probability of scenarios in path pd(e) being realized

t(e)

period of node e
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Decision variables

Yktj 1 if there is a production of TMM for product j on machine k in period ¢ & 0 otherwise
Tpsej 1 if there is a production of FMS for product j on machine k' in node e & 0 otherwise
I inventory of product j at the end of node e

P.; amount of product j outsourced at the end of node e

In this model, the objective (1) is to minimize the sum
of the expected production that is done by TMM and
FMS, inventory, and outsourcing costs. Constraints (2)
enforce the setup times of FMSs, and constraints (3)
enforce the setup times of TMMSs. The total production
capacity of TMMs and FMSs are enforced by constraints
(4) and (5), respectively. While constraints (6) ensure the
total inventory capacity for each period, the total amount
that can be outsourced for each product in each period
is ensured by constraints (7). Constraints (8) ensure the
inventory balance for each product and the time period
overall scenarios. Constraints (9) and (10) are binary and
non-negativity constraints, respectively.

3. SOLUTION APPROACH

Solving MIP is not an easy task for large instances due
to the size of the problem and long planning horizons.
In this section, we propose a column generation-based
heuristic algorithm. In order to do so, we decompose the
mathematical model using the Dantzig Wolfe decomposi-
tion. This algorithm starts with solving the LP-relaxation
of restricted master problem (RMP), in which there are
two types of columns, each representing the production
schedule of TMMs and FMSs. Following that, after ob-
taining the dual variables from the RMP, corresponding
subproblems (PP-y and PP-x) are solved, and profitable
columns are added to the RMP. These steps are continued
until all profitable columns are added to RMP or the time
limit has been reached. In the final step of the algorithm,
by considering all the generated columns, we solve RMP

with integer decision variables with TMMs and FMSs
decision variables. It must be noted that since in the final
step of the algorithms, we solve RMP with integer decision
variables instead of branching on those decision variables,
which would take a great amount of time, these algorithms
are different from orthodox branch-and-price algorithms,
and that is why we call them heuristics. For detailed
explanation of column generation algorithm, we refer the
readers to Liibbecke and Desrosiers (2005), Desaulniers
et al. (2005) and Liibbecke (2010).

The column generation-based algorithm we propose here
follows a sequential order. Notice that in RMP, this
sequential column generation approach shall continue until
the objective function values of the subproblems PP-x
and PP-y are non-negative, i.e., there does not exist any
profitable column that may improve the current solution of
RMP. Finally, RMP is solved as an integer programming
problem whose solution becomes the final solution of SPP.

The reduced master problem RMP is given as follows
where decision variable y; represents the TMM produc-
tions which follow here-and-now schedule I, and x,, repre-
sents the FMS productions that follow wait-and-see sched-
ule m, ¢; is the total donation cost of TMM schedule [
while ¢, is the total donation cost of FMS schedule m.
Moreover, G;t(e) is the total number of product j that is
produced in time period t(e) by production schedule [ of
a TMM, and /\Z;- is the total number product j that is
produced in node e if an FMS follows schedule m.
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RMP:
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In RMP, the objective (11) is to minimize the total (ex-
pected) cost of the columns, including the sum of pro-
ductions by TMM and FMS, inventory holding, and out-
sourcing. Constraints (12) and (13) ensure the inventory
and outsourcing capacities, respectively. Constraints (14)
ensure the inventory balance. Production capacities of
FMSs and TMMs are enforced by constraints (15) and
(16), respectively. While constraints (17) enforce that the
total TMM columns must be less than or equal to the
number of TMMs, constraints (18) ensure that the total
FMS columns must be less than or equal to the number of
FMSs. It should be noted that the dual variables obtained
from (10) - (16) are denoted by d;, V¢, 7e;, ¢, and ¢, respec-
tively. The sub-problems that must be solved for TMMs
and FMSs are denoted by PP-y and PP-x, respectively.
Subproblem PP-y is provided below:

PP-y:
min Z Z‘Ht(ajvtj + Avj — Z ajmej) — Z5t —v (2D
! t J e€ENy t
t+sii/7l
st (M= 1)gze + > gy <MV (22)
3’ t'=t
gt € {0,1},VY5,¢ (23)

In PP-y, the objective function (21) is minimizing the total
production cost of a TMM, and constraints (22) enforce
the setup times between two consecutive productions of a
TMM. After solving PP-y, the following calculations must
be done: Hij = ajqy; and ¢ = Zj Yo ari(ajoy + Ap).
Subproblem PP-x is given as follows:
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PP-x

min E pr(e) E (zej (a;v;(e)j + A;(e)j)) (24)
z
e J
— ( E E a/jzejnej) — E S — ¢
J e t
s.t. (M —1)ze; + E

j’ 'eN(e,s . —1
i eleN (e 1)

zej € {0,1}, Ve, j (26)

zoy < M, Ve, j (25)

In PP-X, the objective function (24) is minizimg the total
production cost of an FMS, and constraints (25) enforce
the setup times between two consequtive production of
an FMS. After solving PP-x, we have the following cal-

culations: A7t = azje and ¢ = ZPT(G)ZZ@(“}”;(C)]' +
e j

4. COMPUTATIONAL EXPERIMENTS

In this section, we present the results of a numerical study
conducted based on random instances motivated by real-
life data. Our numerical study aims to evaluate the perfor-
mance of the proposed method in terms of solution quality.
The computational experiments are carried out on a 64-
bit Windows Server with two 2.4 GHz Intel Xeon CPUs
and 24 GB RAM. The algorithms are implemented using
Python Programming Language and GUROBI Solver ver-
sion 9.1.1. Throughout this section, a period corresponds
to a month, and we solve the problem for a 12-month
planning horizon, which is the largest dimension that can
be solved in possible CPU times. The proposed mathe-
matical model, namely, MIP, cannot be solved because of
memory problems. Even for the column generation-based
algorithm, there are many decision variables; therefore, we
limit the CPU time of the proposed algorithm to 24 hours.
In order to investigate the performance of the solutions
of the column generation-based heuristics, we report the
optimality gaps with respect to lower bounds. The lower
bounds in this study are obtained by solving the linear
programming (LP) relaxation of MIP. The optimality gap
of wait-and-see decision making (using FMS) and the
improvement of having wait-and-see production schedules
over only here-and-now (TMMs) are presented in Table
2. In Table 2, the first column represents the instance
number, the second column represents the optimality gap
of the proposed algorithm w.r.t. LP-relaxation of MIP,
and the last column represents the improvement in the
objective function value of MIP when the wait-and-see
schedules are included over utilizing only TMMs. Notice
that the system benefits from the wait-and-see produc-
tion plans because they yield scenario-based inventory
management flexibility to the problem. On average, the
proposed column generation-based heuristic provides only
2.68% gap w.r.t. the lower bound while providing 0.72%
and 4.19% gaps for the best- and the worst-case instances,
respectively. Moreover, including wait-and-see schedules
decreases the total cost over here-and-now only schedules
case by 13.41% on average, while the lowest and the great-
est improvements are 6.00% and 21.03%, respectively, for
the reported instances.
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Table 2. Optimality gaps and improvements
for here-and-now and wait-and-see production

schedules
Instance  Gap  Improvement

1 3.31% 13.65%

2 3.03% 15.76%

3 3.19% 17.48%

4 2.96% 14.50%

5 3.32% 15.80%

6 3.97% 19.24%

7 0.73% 21.03%

8 2.90% 14.78%

9 4.13% 18.98%
10 3.81% 15.72%
11 3.07% 13.57%
12 1.93% 8.39%
13 1.57% 8.69%
14 0.72% 8.90%
15 4.19% 6.00%
16 2.10% 11.78%
17 1.78% 10.87%
18 2.32% 10.76%
19 2.17% 10.35%
20 2.37% 11.99%
Average 2.68% 13.41%
Best 0.72% 21.03%
Worst  4.19% 6.00%

5. CONCLUSION

After the COVID-19 outbreak, many companies have been
forced to deal with demand disruptions. Some companies
built up extra inventories to gain resilience against pro-
longed periods of disruption. One of the strategies to gain
resilience in its supply chain and manage the disruptions is
to employ flexible/hybrid manufacturing systems. To this
end, in this study, we propose stochastic production plan-
ning (SPP) problem that takes into account the uncertain
demand of products in hybrid manufacturing systems that
takes advantage of a flexible manufacturing system (FMS)
and aims to minimize the total (expected) production,
holding, and outsourcing costs. We model the uncertainty
in demand using a scenario tree approach. SPP is the
first optimization model that yields a hybrid scheme for
producing by providing resilient solutions against demand
uncertainty. Utilizing FMS and typical manufacturing ma-
chines (TMM) provides more flexible production sched-
ules since, based on the realized values of demand over
time, FMS adjust their production schedules. Moreover,
we propose a column generation (CG) based heuristic that
solves the problem in less than 24 hours for realistically
sized instances while a commercial solver cannot even
create an instance of the standard model. The numerical
results show that the proposed CG approach yields less
than 3% (average) optimality gap for realistically sized
instances. Last but not least, we develop effective hybrid
production schedules that improve the operational cost of
a standard production scheme that uses only TMM by
14% on average.
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