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On the numerical schemes for Langevin-type equations
In this paper, a numerical approach is proposed based on the variation-of-constants formula for the
numerical discretization Langevin-type equations. Linear and non-linear cases are treated separately. The
proofs of convergence have been provided for the linear case, and the numerical implementation has been
executed for the non-linear case. The order one convergence for the numerical scheme has been shown
both theoretically and numerically. The stability of the numerical scheme has been shown numerically and
depicted graphically.
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Introduction

In the beginning of the 20th century Paul Langevin discovered a very successful representation of
the Brownian Motion [1]. This representation has been used as a fundamental building block, modified
and generalized to analyze a large class of important stochastic processes. In simple terms, he applied
the Newton’s second law to a Brownian particle and obtained the differential equation that is known
as the Langevin equation.

Due to its fundamental nature the generalized and modified versions of the Langevin equation
has been used for modeling particle movements in so many different fields. [2] shows how it could be
utilized in the statistical mechanics . Kubo introduces a generalized version of the equation for different
applications [3, 4]. [5] introduces a structure of energetics into the stochastic system described by the
Langevin equation and applies it in the thermodynamics context. [6] shows that how the Heisenberg-
Langevin equation can be used to derive a Schrödinger equation for a Brownian particle interacting
with a thermal environment. [7] used an approximate time-evolution equation of the Langevin type
in modeling chemically reacting systems. [8] applies the Langevin equation in a stochastic control
problem. [9] numerically investigates the Brownian motion of particles in a fluid with inhomogeneous
temperature field.

In this study, a modified version of the Langevin equation has been studied from a numerical
perspective. The convergence rate analysis of numerical schemes designed for these type of equations
have been examined thoroughly in the literature. For a general treatment of numerical solutions of
stochastic differential equations the reader is referred to [10].

[11] considers similar stochastic differential equations and analyzes the convergence rate of a
numerical method where the approximation of the drift coefficient is done by the local linearization
method and the diffusion coefficient by the Euler method. It is shown that order one convergence is
obtained which is in line with the results obtained in this paper. The order of convergence of the Euler
method for neutral stochastic functional differential equations has been studied in [12] where also similar
order of convergence has been achieved. Convergence performance of different numerical integrators
have been discussed in [13, 14] specifically for the Langevin-type equations, and weak convergence of
order one has been obtained.

[15] considered the same Langevin-type equation

Ẍt = Xt −X3
t − νẊt + σẆt (1)
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and approached to solve the equation by putting it into the form of

Ẍt + νẊt = Xt −X3
t + σẆt (2)

[15] obtained numerical schemes for the approximation of the solution (2). While discretizing the
integral he used the trapezoidal rule. The numerical schemes are obtained by the variation-of-constants
formula, however, no analysis of convergence of the numerical schemes has been given.

In this study, equation (1) has been considered under the form of

Ẍt + νẊt −Xt = −X3
t + σẆt (3)

Therefore, slightly different numerical schemes are obtained for the approximation of the solution
of the equation (1). In addition to this, while discretizing the integral the left hand rule has been used
as opposed to the trapezoidal rule. The results in the existing literature have been obtained but in
an easier and more straight forward way. Furthermore, higher order of convergence rates have been
established both for one step convergence and general n step convergence.

The organization of the paper is as follows. In section 2, an explicit numerical scheme has been
derived for equation (1). The convergence analysis has been worked out in detail and order h convergence
has been proved. In section 3, the theoretical results obtained in the previous section have been verified
and a further stability analysis has been carried out. Finally, in section 4, the results are summarized
and the paper is concluded.

Numerical schemes for Langevin-type equations

Now, let us consider the oscillator with cubic restoring force and additive noise from [15].

Ẍt = Xt −X3
t − νẊt + σẆt. (4)

Let us consider the Langevin-type Eq.(4) in the form

Ẍt + νẊt −Xt = −X3
t + σẆt. (5)

Let us write Eq.(5) as a system of first-order Ito stochastic differential equations(
dXt

dYt

)
=

(
0 1
1 −ν

)(
Xt

Yt

)
dt+

(
0

−X3
t + σdWt

)
(6)

Let us find the unique solution of Eq.(6) using the method of variation of constants formula. Namely,
first let us find the solution of homogeneous part. For this consider the matrix

A =

(
0 1
1 −ν

)
.

The eigenvalues of the matrix A are r = −ν+
√
ν2+4

2 and −r − ν, with the corresponding eigenvectors
(1 ,r)T and (1 ,−r−ν)T , respectively. Using these information, we can write the matrix A as a Jordan
canonic form to write the exponential matrix eAt as

eAt =

(
1 1
r −r − ν

)(
ert 0

0 e(−r−ν)t

)
1

−2r − ν

(
−r − ν −1
−r 1

)
.

From here the solution of homogeneous part is found as

Xt =
1

2r + ν
(α11(t)X0 + α12(t)Y0)
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Yt =
1

2r + ν
(α21(t)X0 + α22(t)Y0) ,

where
α11(t) = (r + ν)ert + re(−r−ν)t, α12(t) = ert − e(−r−ν)t,

α21(t) = r(r + ν)ert − r(r + ν)e(−r−ν)t and α22(t) = rert + (r + ν)e(−r−ν)t.

Therefore, by the variation of constants formula the solution of the non-homogeneous Eq.(6) is(
Xt

Yt

)
= eAt

(
X0

Y0

)
+

∫ t

0
eA(t−s)

(
0

−X3
s + σdWs

)
ds.

Hence,

Xt =
1

2r + ν
(α11(t)X0 + α12(t)Y0) +

1

2r + ν

∫ t

0
α12(t− s)(−X3

s + σẆs)ds,

Yt =
1

2r + ν
(α21(t)X0 + α22(t)Y0) +

1

2r + ν

∫ t

0
α22(t− s)(−X3

s + σẆs)ds.

Using the fact that eAteAs = eA(t+s), discretizing the integrals with the left hand rule gives the
following explicit numerical scheme

Xn+1 =
1

2r + ν
(α11(h)Xn + α12(h)Yn)− h

2r + ν
α12(h)X3

n +
σ

2r + ν
α12(h)∆Wn, (7)

Yn+1 =
1

2r + ν
(α21(h)Xn + α22(h)Yn)− h

2r + ν
α22(h)X3

n +
σ

2r + ν
α22(h)∆Wn. (8)

It is clearly seen that the solution of linear part of non-homogeneous equation is

Xt =
1

2r + ν
(α11(t)X0 + α12(t)Y0)−

σ

2r + ν

∫ t

0
α12(t− s)dWs, (9)

Yt =
1

2r + ν
(α21(t)X0 + α22(t)Y0)−

σ

2r + ν

∫ t

0
α22(t− s)dWs, (10)

and discretization of linear part is

Xn+1 =
1

2r + ν
(α11(h)Xn + α12(h)Yn) +

σ

2r + ν
α12(h)∆Wn, (11)

Yn+1 =
1

2r + ν
(α21(h)Xn + α22(h)Yn) +

σ

2r + ν
α22(h)∆Wn. (12)

Lemma 1. For the numerical solution of linear first order system of differential equation(
dXt

dYt

)
=

(
0 1
−1 ν

)(
Xt

Yt

)
dt+

(
0

σdWt

)
(13)

consider numerical scheme (11) and (12). Then, the mean square errors after one step of the numerical
schemes satisfy the following estimates:

(E[|X1 −Xh|2])1/2 ≤ C1(T )σh3/2, (14)

(E[|Y1 − Yh|2])1/2 ≤ C2(T )σh3/2, (15)

where the constants C1(T ) and C2(T ) are independent of σ and h, but depend on T . Here, Xh, Yh
denote the exact solution after a time h and X1, Y1 denote the numerical solution after one step. That
is the local errors are of order 3/2 uniformly.
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Proof. By definition,

E[|X1 −Xh|2] = (
σ

2r + ν
)2E(

∫ h

0
[(α12(h)− α12(h− s))dws])2,

but using Itô isometry, we get

= (
σ

2r + ν
)2
∫ h

0
[α12(h)− α12(h− s)]2ds.

Then by the mean value theorem, we have

= (
σ

2r + ν
)2
∫ h

0
[α′12(ξ(s))(h− (h− s))]2ds

for some h− s < ξ(s) < h.
Since we have |α′12(ξ(s))| = |rerξ + (r + ν)e(−r−ν)ξ| ≤ |rerξ + (r + ν)erξ| ≤ |(2r + ν)erh| then we get

(E[|X1 −Xh|2]) ≤ σ2e2rhh3/3 ≤ σ2e2rTh3/3.

Hence, we have
(E[|X1 −Xh|2])1/2 ≤ σC1(T )h3/2

for some positive constant C1(T ) does not depend on h and σ, but depends on T .
The mean square error after one step for numerical scheme for velocity is

E[|Y1 − Yh|2] = (
σ

2r + ν
)2E(

∫ h

0
[(α22(h)− α22(h− s))dws])2.

But using Itô isometry, we get

= (
σ

2r + ν
)2
∫ h

0
[α22(h)− α22(h− s)]2ds.

Then by the mean value theorem, we have

= (
σ

2r + ν
)2
∫ h

0
[α′22(ξ(s))(h− (h− s))]2ds

for some h− s < ξ < h.
Since |α′22(ξ(s))| = |r2erξ(s) − (r + ν)2e(−r−ν)ξ(s)| ≤ |r2erh − (r + ν)2e(−r−ν)h| ≤ r2erh ≤ (2r + ν)erh

and since α′22(ξ(s)) is an increasing function, then we have

(E[|Y1 − Yh|2])1/2 ≤ σerhh3/2/
√

3 ≤ σC2(T )h3/2,

for some positive constant C2(T ) does not depend on h and σ, but depends on T .
Corollary 1. Let cp be a solution of the equation exxp = 1, 0 < p < 1.5. If we take in Lemma 1 the

step size h with h < (cp)
1/p/2r then we have the mean square errors after one step of the numerical

schemes satisfy the following estimates

(E[|X1 −Xh|2])1/2 ≤ C1σh
(3−p)/2, (16)

(E[|Y1 − Yh|2])1/2 ≤ C2σh
(3−p)/2 (17)
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where the constants C1 and C2 are independent of σ, h and T . If we take for example p = 1.2, then
we get the case c1.2 = 0.6043. Hence, for any h < 0.6572/2r, the mean square errors after one step of
the numerical schemes satisfy

(E[|X1 −Xh|2])1/2 ≤ C1σh
0.9,

(E[|Y1 − Yh|2])1/2 ≤ C2σh
0.9.

To show general mean square errors at time T, we need to obtain the following estimates.
Lemma 2. a) We have E|dXn | = E|dYn | = 0.

b) We have E[(dXn )2] = O(h3), E[(dYn )2] = O(h3) and E[|dXn dYn |] = O(h3),
where

dXn =
σ

2r + ν

(∫ tn+1

tn

α12(tn+1 − s)dws − α12(h)∆Wn

)
and

dYn =
σ

2r + ν

(∫ tn+1

tn

α22(tn+1 − s)dws − α22(h)∆Wn

)
.

Proof.
a) Since the Itô stochastic integral has expectation zero, the estimates E|dXn | = E|dYn | = 0 follow.
b) By definition

E(dXn )2 = (
σ

2r + ν
)2E

(∫ tn+1

tn

(α12(tn+1 − s)− α12(h))dWs

)2

.

Then, by the Itô’s isometry we have

= (
σ

2r + ν
)2
∫ tn+1

tn

(α12(tn+1 − s)− α12(h))2ds.

But by the mean value theorem

= (
σ

2r + ν
)2
∫ tn+1

tn

((n+ 1)h− s− h)2(α′12(ξ(s)))
2ds,

for some tn+1 − s < ξ(s) < h, for the differentiable function α12(x) = erx − e(−r−ν)x) we have
|α′12(ξ(s))| ≤ ≤ (2r + ν)erh. Then

≤ (
σ

2r + ν
)2
∫ tn+1

tn

(nh− s)2((2r + ν)erh)2ds

= σ2e2rh
∫ tn+1

tn

(n2h2 − 2nhs+ s2)ds = σ2e2rTh3/3,

for any h < c0/2r since
∫ tn+1

tn
(n2h2 − 2nhs+ s2)ds = h3/3.

In the same manner, by definition

E(dYn )2 = (
σ

2r + ν
)2E

(∫ tn+1

tn

(α22(tn+1 − s)− α22(h))dWs

)2

.

then, by the Itô’s isometry we have

= (
σ

2r + ν
)2
∫ tn+1

tn

(α22(tn+1 − s)− α22(h))2ds
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But by the mean value theorem

= (
σ

2r + ν
)2
∫ tn+1

tn

((n+ 1)h− s− h)2(α′22(ξ(s)))
2ds,

for some tn+1−s < ξ < h and for the differentiable function α22(x) = rerx+(r+ν)e(−r−ν)x). Since the
function |α′22(x)| is an increasing function, α′22(ξ(s)) ≤ r2erh− (r+ν)2e(−r−ν)h ≤ r2erh ≤ (2r+ν)erh).
Then

≤ (
σ

2r + ν
)2
∫ tn+1

tn

(nh− s)2((2r + ν)erh)2ds

= σ2e2rh
∫ tn+1

tn

(n2h2 − 2nhs+ s2)ds = σ2e2rTh3/3.

Now, let us find an estimate for |dXn dYn |. But by the fact that expectation of product of independent
increments is zero, we have

|dXn dYn | ≤ (
σ

2r + ν
)2
∫ tn+1

tn

(α12(tn+1 − s)− α12(h))(α22(tn+1 − s)− α22(h))ds.

But by the mean value theorem, we obtain

|dXn dYn | ≤ (
σ

2r + ν
)2
∫ tn+1

tn

((n+ 1)h− s− h)2|α′12(ψ(s))||α′22(ξ(s))|ds

for some tn+1 − s < ψ(s) < h and tn+1 − s < ξ(s) < h. Hence,

≤ (
σ

2r + ν
)2
∫ tn+1

tn

(nh− s)2((2r + ν)erh)(2r + ν)erhds

= rσ2e2rh
∫ tn+1

tn

(n2h2 − 2nhs+ s2)ds = σ2e2rTh3/3.

Corollary 2. Let the positive real numbers p and cp be as in Corollary 1. If we take in Lemma 2
the step size h with h < (cp)

1/p/2r, then
a) E[(dXn )2] = O(h3−p), E[(dYn )2] = O(h3−p) and E[|dXn dYn |] = O(h3−p), where the upper bounds for
the estimates do not depend on σ, h, and T . If we take, for example p = 1.2, then we get the case
c1.2 = 0.6043. Hence, for any h < 0.6572/2r
b) E[(dXn )2] = O(h1.8), E[(dYn )2] = O(h1.8) and E[|dXn dYn |] = O(h1.8).
We now indicate the global mean-square error of the stochastic exponential integrators (11) and (12).

Theorem 1. Consider the numerical solution of (13), the method (11) and (12). Then, the mean-
square errors of the numerical scheme satisfy
a) (E|Xn −Xtn |2)1/2 ≤ C3(T )h,
b) (E|Yn − Ytn |2)1/2 ≤ C4(T )h,
for some constants C3(T ) and C4(T ).

Proof. The recursive relation for the solution of linear part is(
Xtn+1

Ytn+1

)
= eAh

(
Xtn

Ytn

)
+

∫ tn+1

tn

eA(tn+1−s)
(

0

σẆs

)
ds.

Using equations (11) and (12), we have

En+1 = eAhEn + dn,
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where En =

(
eXn
eYn

)
=

(
Xtn −Xn

Ytn − Yn

)
and dn =

(
dXn
dYn

)
. Using the mathematical induction, we

obtain the formula

En+1 = eA(n+1)hE0 +
n∑
j=0

eA(n−j)hdn =
n∑
j=0

eA(n−j)hdj ,

since E0 = ~0. Hence,

E[(eXn+1)
2] = (

1

2r + ν
)2E

 n∑
j=0

(
α11((n− j)h)dXj + α12((n− j)h)dYj

)2

= (
1

2r + ν
)2E

n∑
j=0

n∑
i=0

(
α11((n− j)h)dXj + α12((n− j)h)dYj

) (
α11((n− i)h)dXi + α12((n− i)h)dYi

)
since expectation of product of independent increments is zero, we have

= (
1

2r + ν
)2

n∑
j=0

(
(α11((n− j)h))2E((dXj )2) + (α12((n− j)h))2E((dYj )2)

)

+2(
1

2r + ν
)2

n∑
j=0

(
α11((n− j)h)α12((n− j)h)E(dXj d

Y
j )
)

= (
1

2r + ν
)2

n∑
j=0

(α11((n− j)h) + α12((n− j)h))2O(h3)

= (
1

2r + ν
)2

n∑
j=0

(
(r + ν)erjh + re(−r−ν)jh + erjh − e(−r−ν)jh

)2
O(h3)

≤ (
1

2r + ν
)2

n∑
j=0

(
(2r + ν + 1)erjh

)2
O(h3)

≤ (
2r + ν + 1

2r + ν
)2Te2rTO(h2).

Similarly, we get

E[(eYn+1)
2] = (

1

2r + ν
)2E

 n∑
j=0

(
α21((n− j)h)dXj + α22((n− j)h)dYj

)2

= (
1

2r + ν
)2

n∑
j=0

(α21((n− j)h) + α22((n− j)h))2O(h3)

= (
1

2r + ν
)2

n∑
j=0

(
r(r + ν)erjh − r(r + ν)e(−r−ν)jh + rerjh + (r + ν)e(−r−ν)jh

)2
O(h3)

= (
1

2r + ν
)2

n∑
j=0

(
r(r + ν + 1)erjh + (1− r)(r + ν)e(−r−ν)jh

)2
O(h3)
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since 0 < r < 1, we have

≤ (
1

2r + ν
)2

n∑
j=0

(
(r(r + ν + 1) + (1− r)(r + ν))erjh

)2
O(h3) ≤ Te2rTO(h2).

This completes the proof of the theorem.
Corollary 3. Consider the numerical solution of (13), the method (11) and (12). Let 1 < p < 1.5

and let the positive real number cp be as in Corollary 1. In Theorem 1 if we take the step size h with
h < (cp)

1/p/(2rj) for any j = 1, 2, 3, ..., n and using Corollary 2, therefore the mean-square errors of
the numerical scheme satisfy the convergence estimates
a) (E|Xn −Xtn |2)1/2 ≤ C3h

(3−2p)/2

b) (E|Yn − Ytn |2)1/2 ≤ C4h
(3−2p)/2

for some constants C3 and C4 independent of T .
Proof. By following the proof of Theorem 1, we have

E[(eXn+1)
2]

≤ (
1

2r + ν
)2

n∑
j=0

(2r + ν + 1)2e2rjhO(h3−p) ≤ (
2r + ν + 1

2r + ν
)2

1

(2r)p
O(h3−2p)(1 +

n∑
j=1

1

jp
).

Since the infinite series
∑

j
1
jp converges for p > 1, we have

(E|Xn −Xtn |2)1/2 ≤ C3h
(3−2p)/2.

But this estimate is independent of T .
Estimate b) for the velocity component is obtained in a similar way.

Numerical Results

For the comparison of the numeric solution of the difference equation and the analytical solution
of the differential equation, the error terms are computed by the following formulation:

Eh =
1

Nsim

(
Nsim∑
j=1

(Xn −Xtn)2

)1/2

. (18)

Maintaining the same notation that has been used in the second section, we represent the analytical
solution of system of equations (6) by Xtn , and numerical solutions of the problem based on the
equations (11)-(12) by Xn. The error terms are recorded for various values of h, i.e. size of the step
in time. The results are shown in the Table 1 for h = 0.1, h = 0.01, h = 0.001 and h = 0.0001,
respectively. In all of these numerical experiments, the number of simulations Nsim is kept constant
at 10, 000. Hence, each numerical problem has been solved based on 10, 000 different sample paths
for the process of Standard Brownian motion, Wt. As one could easily see from Table 1 and the way
that the error is computed in equation (18) the convergence between the numerical and the analytical
solutions is measured in the sense of pointwise convergence with respect to the time variable. Each row
in the table measures the difference between the numerical and the analytical solution for a specific
time point between t = 0 and t = 1. Finally, for each sample path this difference is computed, squared,
summed, square rooted and averaged based on the number of simulations used, which is 10, 000, to
arrive at the final value of the error term. This final step is the typical way of computing the error for
Monte Carlo Simulation applications which is often called in the literature as the root mean square
error.
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Tab l e 1
Comparison of the errors for the approximate solution of problem

Point in Time/Step Size h = 0.1 h = 0.01 h = 0.001 h = 0.0001

t = 0.1 6.3198e-04 7.4114e-05 1.0097e-06 2.9488e-07
t = 0.2 0.0022 6.8840e-04 1.1159e-04 5.0846e-05
t = 0.3 0.0038 4.7510e-04 5.1366e-04 6.6956e-05
t = 0.4 0.0123 0.0025 1.9910e-04 2.8405e-05
t = 0.5 0.0120 0.0013 2.7540e-04 2.2375e-05
t = 0.6 0.0161 0.0064 0.0017 8.1783e-04
t = 0.7 0.0244 0.0061 6.4270e-04 9.8445e-05
t = 0.8 0.0511 0.0093 0.0019 9.1302e-04
t = 0.9 0.0616 0.0157 0.0077 0.0031
t = 1.0 0.0829 0.0033 0.0012 5.4713e-04

Some of the rows in Table 1 are highlighted in order to emphasize the order one convergence which
is theoretically proved in Theorem 1. It is clear that for each cell in the Table the number of steps
is multiplied by 10, hence the size of the step is divided by 10. It is expected that the error term
goes down by a factor of 10 as one goes from left to right on each row. If the first row is considered,
highlighted light blue, roughly the error terms are divided by 10 at every step going from left to right.
If one carefully looks that that first highlighted row, he would see that every step there is one more
digit that is 0. First row corresponds to the error term at t = 0.1. Similar observations can also be
made about the other rows, especially on the pink highlighted row that corresponds to t = 0.6 and the
yellow highlighted row which corresponds to t = 1. Figure 1 shows the behaviour of E[X2

t ] computed
along 10, 000 sample paths for a step size h = 0.001 on the time interval [0, 100] along the numerical
solution given by the previous section.

Figure 1. The convergence of expected value of the squared position and velocity functions

As T → ∞, the numerical solution converges to the limit value 2.44, and the velocity converges
to the value 9.92. [15] does the same numerical exercise with the same model parameters and initial
conditions. [15] obtains a very similar result for the solution. Here, the numerical experiment has been
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extended to the velocity also. For further details on the physical interpretation of this result, the reader
is referred to look at [16].

At least, this numerical experiment can be thought as a test of stability. In Table 1 error terms
beyond t = 1 is not reported. One could be interested in the question that what happens to the
numerical solution as the time grows. This is a partial answer to that question that the proposed
numerical scheme is stable.

Figure 2. Error measured as the difference between the exact solution and the numerical solution

at particular points in time between 0 and 1. Step sizes used vary from h = 0.1 down to h = 0.0001

Finally, let us have a look at the mean-square errors of the numerical scheme offered in the previous
section. Fig. 2 illustrates the point wise mean-square errors at various times between t = 0 and t = 1
of the numerical scheme for the initial values x0 = 0, y0 = 0, and the parameters ν = 0.05, σ = 1 and
M = 10, 000. The step size h ranges from 0.1 down to 0.0001. We observe a first order of convergence
both in the position and in the velocity. This is the same mean-square order of convergence as the one
offered in [15]. For the plots the log scale has been avoided intentionally. To emphasize the order |h|
convergence the original cale has been kept and the almost straight lines are observed as a result. Of
course, these error terms are only for some specific values of t, for more detailed values for the error
terms please also see Table 1.

Conclusion

In this study, a new explicit numerical scheme has been constructed for a specific Langevin-
type equation. The main mathematical tool behind this construction is the variation-of-constants
formulation. The convergence rate for one step has been established to be 3/2 for the linear Langevin-
type equation. As a result of this, the convergence rate at any step has established to be of order 1. In
the main theorem of the paper, Theorem 1, the upper bounds for the convergence analysis depend on
the upper limit of the time interval, T . In a later corollary, these upper bounds have been updated to
versions that are also independent of the the upper limit of the time interval, T .
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The proposed numerical scheme have been applied to the non-linear version of the Langevin-type
equation. The theoretical results that have been proven for the linear case have been verified also by
the non-linear case numerically. The stability of the numerical scheme has been shown numerically
and graphically. Similar results have been obtained in the literature, but with semi-implicit numerical
schemes. Just as strong results have been provided with explicit and easy to implement numerical
difference equations. All of the numerical experiments have been in line with the existing literature,
and occasional extensions, such as the stability of the velocity term, have been provided.
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М. Акат, Р. Кошкер, А. Сирма

Ланжевен типтi теңдеуiнiң сандық схемасы туралы
Мақалада Ланжевен типтi сандық теңдеулерi үшiн тұрақтыны варияциялау формуласына негiзделген
сандық тәсiлi ұсынылған. Сызықты және сызықты емес жағдайлары жеке қарастырылған. Жинақты
болуының дәлелдеуi сызықты жағдай үшiн көрсетiлген, ал сандық есептеуi сызықты емес жағдай
үшiн орындалған. Сандық схема үшiн, бiрiншi реттi жинақтылығы теориялық және сандық түр-
де көрсетiлген. Сандық схеманың орнықтылығы сандық түрде көрсетiлген және графикалық түрде
бейнеленген.

Кiлт сөздер: айырымдық схемасы, стохастикалық осцилляторлары, Ланжевен теңдеуi, тұрақты ва-
риациясы.

М. Акат, Р. Кошкер, А. Сирма

О численных схемах для уравнений типа Ланжевена
В статье предложен численный подход, основанный на формуле вариации констант для численных
уравнений дискретизации типа Ланжевена. Линейные и нелинейные случаи рассмотрены отдель-
но. Доказательства сходимости были предоставлены для линейного случая, а численная реализация
выполнена для нелинейного случая. Сходимость первого порядка для численной схемы показана тео-
ретически и численно. Устойчивость численной схемы показана численно и изображена графически.

Ключевые слова: разностные схемы, стохастические осцилляторы, уравнение Ланжевена, вариация
постоянных.
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