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Abstract: In game-theoretic settings the key notion of analysis is an equilibrium, which is a profile of agent strategies
such that no viable coalition of agents can improve upon their coalitional welfare by jointly changing their strategies. A
Nash equilibrium, where viable coalitions are only singletons, and a super strong equilibrium, where every coalition is
deemed viable, are two extreme scenarios in regard to coalition formation. A recent trend in the literature is to consider
equilibrium notions that allow for coalition formation in between these two extremes and which are suitable to model
social coalition structures that arise in various real-life settings. The recent literature considered the question on the
existence of equilibria under social coalition structures mainly in Resource Selection Games (RSGs), due to the simplicity
of this game form and its wide range of application domains. We take the question on the existence of equilibria under
social coalition structures from the perspective of computational complexity theory. We study the problem of deciding
the existence of an equilibrium in RSGs with respect to a given social coalition structure. For an arbitrary coalition
structure, we show that it is computationally intractable to decide whether an equilibrium exists even in very restricted
settings of RSGs. In certain settings where an equilibrium is guaranteed to exist we give polynomial-time algorithms to
find an equilibrium.
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1. Introduction
The research studies in game theory focus on how self-interested agents may coordinate their strategies so as
to maximize their welfare. At the heart of these studies is the notion of an ‘equilibrium’, which is a profile
of agent strategies such that no viable coalition of agents can improve upon their (coalitional) welfare (in the
Pareto sense) by jointly changing their strategies. One may define various notions of equilibrium depending on
what types of coalition formation are deemed viable. At one extreme is the notion of a super strong equilibrium
(see [3]), in which any coalition is deemed viable: no coalition of agents can improve upon their welfare by
jointly changing their strategies. Obviously, the notion of a super strong equilibrium is very appealing, but it is
a very stringent one and hence a super strong equilibrium rarely exists in game-theoretic settings. At the other
extreme is the notion of a Nash equilibrium (see [15]), in which viable coalitions are only singletons: no agent
can improve its welfare by changing its strategy. Nash [15] showed that if mixed strategies are allowed every
finite game admits a Nash equilibrium. There are also game forms in which a pure-strategy Nash equilibrium
always exists (for instance, see [4, 17, 18]).
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In the recent literature, there is a growing tendency to consider equilibrium notions under which coalition
formation opportunities are restricted to ‘social coalition structures’. Arguably, coalition structures with a social
context naturally arise in certain real-life settings, and therefore, it is natural to consider equilibrium notions
defined on the basis of such coalition structures. We mention below briefly the notions of equilibrium in the
recent literature that are defined on the basis of social coalition structures and which are most relevant to our
analysis.

Under the notion of a laminar equilibrium (see [5]), the coalition structure is assumed to be laminar: i.e.,
for any pair of viable coalitions, either they are disjoint, or one of them is a subset of the other. The laminar
equilibrium notion is motivated by real-life hierarchical communities. In hierarchical communities, one may
consider institutional constraints that restrict coalition formation possibilities to the units of the hierarchy, such
as a corps, a legion or a brigade in the military; or a faculty or a department at some university. (It is worth
mentioning that in a related study and with similar motivation, Kamihigashi et al. [13] introduced the notion
of an organizational Nash equilibrium, under which the coalition structure is assumed to be laminar and every
singleton is assumed to be a viable coalition. Notice that the family of coalition structures considered under
their equilibrium notion is a strict subset of the larger family of laminar coalition structures.)

Under the notion of a contiguous equilibrium (see [5]), it is assumed that there exists a permutation of
agents such that each viable coalition consists of a number of agents that are subsequently ordered under this
permutation. For instance, imagine the residents of a street or some people in a queue. In such ‘contiguous
communities’, constraints on communication or familiarship may restrict coalition formation possibilities to
neighbors on the street or people that are subsequently ordered in the queue. This equilibrium notion turns out
to be a generalization of the laminar equilibrium notion (see [5]). Below, Figure 1 illustrates a coalition structure
that is laminar, and hence also contiguous; and Figure 1 illustrates a coalition structure that is contiguous but
not laminar.

1 2 3 4 5 6 7 8 9

(a) An example of a laminar coalition structure.

1 2 3 4 5 6

(b) An example of a contiguous coalition structure.

Figure 1. Examples of laminar & contiguous coalition structures.

Several papers in the literature studied the existence of equilibria under the above-mentioned social
coalition structures. In all of these papers the game form considered was resource selection games (RSGs):
In an RSG, there is a number of agents which are to utilize from a set of resources, and agents try to avoid
‘congested resources’ since an agent using some resource incurs a ‘congestion cost’ which is strictly increasing in
the number of agents which use the same resource. There are two reasons as to why earlier studies considered
the above-mentioned equilibrium notions in the context of RSGs. First, this class of games is useful in modeling
a wide range of real-life problems such as in computer networking, task allocation, server farms, scheduling,
transportation, and evolutionary and ecological biology (see, for instance, [6, 8, 9, 14, 16]). Second, in RSGs a
super strong equilibrium does not always exist (see [10]) yet a (pure strategy) Nash equilibrium always does,
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which renders this class of games a perfect setting to study the existence of equilibrium under social coalition
structures.1

In our paper, we take the question on the existence of equilibria under social coalition structures from
the perspective of computational complexity theory. Before proceeding to our results we briefly mention below
the results in the literature that are most relevant to our findings.

Feldman & Tennenholtz [10] introduced the notion of a partition equilibrium where the coalition structure
is assumed to be a partition of the set of agents, and they proved that in an RSG a partition equilibrium is
guaranteed to exist under the following restrictions: (i) if the size of each viable coalition is at most two; or (ii)
if there are only two resources; or (iii) if the resources are identical. Anshelevich et al. [1] generalized this result
by proving that in an RSG a partition equilibrium always exists (i.e., without any stipulations). Caskurlu et
al. [5] showed via an intricate counterexample that in an RSG a laminar equilibrium (and hence, a contiguous
equilibrium) may not exist in general. Nonetheless, they proved that in an RSG a laminar equilibrium always
exists under the following restrictions: (i) if the resources are identical, or (ii) if there are only two resources.2

Caskurlu et al. [5] also showed that a contiguous equilibrium is guaranteed to exist in an RSG if the resources
are identical; however, they also showed that unlike a laminar equilibrium, a contiguous equilibrium is not
guaranteed to exist in an RSG even if there are only two resources. Table 1 below summarizes these results.3

Equilibrium notions Resources
general two identical

Partition equilibrium +⋆ +∗ +∗

Laminar equilibrium −† +† +†

Contiguous equilibrium −† −† +†

Table 1. The existence and non-existence results in the literature (∗ by [10], ⋆ by [1], † by [5])

We take the question on the existence of equilibria under social coalition structures from the perspective
of computational complexity theory. We first consider the problem of deciding the existence of an equilibrium
in RSGs with respect to a given coalition structure. We show that this problem is NP -HARD even in the very
restricted setting where each coalition consists of exactly two agents and there are only two identical resources
(Theorem 1).

All the positive existence results in the literature in RSGs, except for the existence of a laminar equilibrium
in the two-resource setting in [5], were shown by presenting efficient (polynomial-time) algorithms. Although the
proof in [5] is a constructive one, the algorithm implied by the proof to find such an equilibrium has exponential
running time. We show that the problem of finding a laminar equilibrium in an RSG with two resources is in
P by presenting a polynomial-time algorithm that finds the desired equilibrium (Theorem 2).

As shown in [5] a contiguous equilibrium may not exist in an RSG with two resources. We find that in
this setting the cause of instability is those coalitions that consist of exactly two agents. More precisely, we show

1RSGs fall into the class of congestion games for which the existence of a Nash equilibrium is always guaranteed; for studies on
congestion games and its applications, see [2, 7, 18]

2In the counterexample in Caskurlu et al., singletons are deemed as viable coalitions. Therefore, their counterexample also
shows that in an RSG an organizational Nash equilibrium may not exist. Also, note that an organizational Nash equilibrium is by
definition also a laminar equilibrium. Therefore, the existence result in Caskurlu et al. in the identical- and two-resource settings
for a laminar equilibrium also hold for an organizational Nash equilibrium.

3Several other relevant works need mentioning. In the literature on RSGs, in addition to the above-mentioned equilibrium
notions, several other notions of equilibrium have been studied: the notions of a ‘centralized equilibrium’, a ‘collision equilibrium’
and a ‘considerate equilibrium’. For existence studies pertaining to these equilibrium notions, see [5, 11, 12], respectively.
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that in an RSG with two resources there always exists a contiguous equilibrium if no viable coalition consists
of exactly two agents; and under this stipulation we also show that an equilibrium can be computed efficiently
(Theorem 3).

In Section 2, we introduce the model. In Section 3, we establish the computational complexity of deciding
the existence of a C -stable allocation in RSGs. Section 4 is devoted to presenting efficient algorithms to compute
a laminar equilibrium and a contiguous equilibrium in two-resource RSGs.

2. The model
In a game in strategic-form, we have a set of agents N = {1, . . . , n} such that each agent i ∈ N is associated
with a set of possible strategies Si . An outcome of the game is a vector of strategies s = (s1, . . . , sn) where
si ∈ Si is the strategy selected by agent i ∈ N . A vector of strategies is also referred to as a strategy profile.
The set of all strategy profiles is referred to as the strategy space which we denote by S , i.e., S = S1× . . .×Sn .
For an agent i ∈ N and a strategy profile s ∈ S , the utility of agent i at strategy profile s is denoted by Ui(s) .
Each agent tries to maximize its utility.

A coalition c is a nonempty subset of the set of agents N . The domain of coalitions is P(N)\{∅} , where
P(N) is the power set of N . We use P≥1(N) to denote this domain. A coalition structure C is a set of viable
coalitions; i.e., C ⊆ P≥1(N) . Let Sc denote the restriction of the strategy space S for coalition c , and let sc

denote the restriction of the strategy profile s for coalition c . That is, Sc =×i∈c
Si and sc = (si)i∈c . Note

that the strategy space S and the strategy profile s can be written as (Sc, SN∖c) and (sc, sN∖c) , respectively.
The space Sc represents the domain of deviations for coalition c . At strategy profile s if coalition c takes

a deviation s̃c ∈ Sc , then the resulting strategy profile is (s̃c, sN∖c) ∈ (Sc, SN∖c) . s̃c is called an improving
deviation for coalition c at strategy profile s if for each i ∈ c , Ui(s̃c, sN∖c) ≥ Ui(s) , and for some i ∈ c ,
Ui(s̃c, sN∖c) > Ui(s) .

A strategy profile s is called c-stable if coalition c has no improving deviation at strategy profile s .
A strategy profile s is called C -stable if it is c-stable for each coalition c ∈ C . The notions of super strong
equilibrium and Nash equilibrium can be defined using this terminology as follows: A strategy profile is a super
strong equilibrium if it is P≥1(N) -stable. A strategy profile is a Nash equilibrium if it is P=1(N) -stable, where
P=1(N) = {c ⊂ N | |c| = 1} .

Next, we define the notions of a laminar equilibrium and a contiguous equilibrium.

- A coalition structure C is laminar if for any pair of coalitions c1, c2 ∈ C such that c1 ∩ c2 ̸= ∅ , either
c1 ⊆ c2 or c2 ⊆ c1 . Given a laminar coalition structure C , a strategy profile is a laminar equilibrium if
it is C -stable.

- A coalition structure C is contiguous if there exists a permutation of agents π = (π1, π2, . . . , πn) such
that for each coalition c ∈ C , the agents in c are subsequently ordered under the permutation π . Given
a contiguous coalition structure C , a strategy profile is a contiguous equilibrium if it is C -stable.

Definition 1 A resource selection game (RSG) G is a triplet ⟨N,R, f⟩ where N = {1, 2, . . . , n} is a finite set
of agents, R = {1, 2, . . . ,m} is a finite set of resources, and f : (fj)

m
j=1 is a profile of strictly monotonically

increasing cost functions of the resources. We assume that fj(0) = 0 for all j ∈ {1, 2, . . . ,m} . Each agent is
to select exactly one resource to use. When q agents use resource j , each incurs a cost equal to fj(q) . Each
agent tries to minimize the cost that it incurs. In the rest of the paper we fix the game G = ⟨N,R, f⟩ .
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We say that agent i is allocated to resource j under strategy profile s if si = j . We define an allocation
of agents to resources as a sequence a : (aj)

m
j=1 , where aj denotes the set of agents allocated to resource j . Let

A be the domain of allocations. Notice that an RSG is a game in strategic-form, where Si = R for each agent
i , and the utility of agent i allocated to resource j is −fj(|aj |) . Since there is a one-to-one correspondence
between the strategy profiles and allocations, we will speak of them interchangeably.

For an allocation a , we define the makespan of a as the maximum cost an agent incurs at allocation
a , i.e., the makespan of a is equal to maxj∈Rfj(|aj |) . We define the minimum makespan of G as the
makespan of the allocation a for which the makespan is smallest, i.e., the minimum makespan of G is equal
to mina∈A{maxj∈Rfj(|aj |)} . We use α to denote the minimum makespan. For each resource j , we define the
quota qj of resource j as the maximum number of agents that can be allocated to resource j without making
the cost incurred at resource j greater than α , i.e., qj = maxz fj(z) ≤ α .

The resources are classified into two groups as follows: A resource j is called a ‘type 1’ resource if it
can attain a cost of α , i.e, if there exists a positive integer z such that fj(z) = α ; and a resource is called a
‘type 2’ resource if it cannot attain a cost of α . We also use T1 and T2 to denote the sets of type 1 and type
2 resources, respectively. Note that we cannot have T1 = ∅ by definition of α . Note also that for each type 1
resource j , we have qj ≥ 1 , whereas the quota of a type 2 resource may be 0 . For each type 1 resource j , we
use βj to denote the cost of resource j when the number of agents allocated to resource j is one less than its
quota, i.e., βj = fj(qj − 1) ; and we refer to βj as resource j ’s beta-value.

3. Computational intractability of finding a C -stable allocation

This section is devoted to establishing the computational complexity of deciding the existence of a C -stable
allocation in an RSG. Theorem 1 below proves that the problem is NP -HARD even in the very restricted setting
where (i) the size of each viable coalition is exactly two, (ii) and there are only two identical resources.

Theorem 1 Given an RSG G = ⟨N,R, f⟩ and a coalition structure C ⊆ P≥1(N) , it is NP-HARD to decide
the existence of a C -stable allocation if |c| = 2 for each c ∈ C , |R| = 2 , and f1(.) = f2(.) .

Proof We prove Theorem 1 via a polynomial-time mapping reduction from the HALF -VERTEX -COVER
problem, which is known to be NP -HARD .

In the HALF -VERTEX -COVER problem, we are given an undirected simple graph G = ⟨V,E⟩ . Without
loss of generality we can assume that |V | is odd since the HALF -VERTEX -COVER problem is NP -HARD even
then. Thus, let |V | = 2k + 1 for some positive integer k . We are asked to decide the existence of a subset
V ′ ⊆ V of vertices such that |V ′| ≤ k , and u ∈ V ′ or v ∈ V ′ for each edge (u, v) ∈ E . For a given HALF -
VERTEX -COVER instance H = ⟨V,E⟩ , we construct the corresponding RSG instance G = ⟨N,R, f⟩ and the
coalition structure C as follows:

- There is an agent in G corresponding to each vertex of H , i.e., N = {1, 2, . . . , |V |} .

- There are two identical resources in the RSG instance G , i.e., |R| = 2 , and f1(.) = f2(.).

- For every edge (i, j) ∈ E of H , there is a corresponding coalition in c ∈ C such that the coalition members
of c are the agents corresponding to the vertices i and j , i.e., c = {i, j} ∈ C .
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Note that G and C are as described in the theorem statement, i.e., |c| = 2 for all c ∈ C , |R| = 2 , and
f1(.) = f2(.) . Since f1(.) = f2(.) , we will refer to them as f(.) in the rest of the proof.

To complete the proof all we need is to show the following: There exists a subset V ′ ⊆ V of vertices of
H such that |V ′| ≤ k , and u ∈ V ′ or v ∈ V ′ for each edge (u, v) ∈ E if and only if there exists a C -stable
allocation a in G .

(Only If) Suppose that there exists a subset V ′ ⊆ V of vertices of H such that |V ′| ≤ k , and u ∈ V ′ or
v ∈ V ′ for each edge (u, v) ∈ E . We now show that the allocation a = (V ′, N \ V ′) is a C -stable allocation
in G by showing that a is c-stable for any c ∈ C . Note that |a1| ≤ k and thus |a2| ≥ k + 1 . Hence, the cost
incurred by the agents allocated to resource 1 f(V ′) is strictly less than that of the agents allocated to resource
2. Let c = {i, j} be an arbitrary coalition in C . Since for every (u, v) ∈ E , we have at least one of u and v in
V ′ , we have |a1 ∩ c| ∈ {1, 2} . It is easy to see that none of the deviations of c is an improving deviation.

(If) Suppose that there exists a C -stable allocation a in G . Since N = 2k + 1 , there exists a resource
that is allocated to at most k agents (and thus the other resource is allocated to at least k + 1 agents) by the
pigeonhole principle. Without loss of generality, let resource 1 be this resource, i.e., |a1| ≤ k and |a2| ≥ k + 1 .
Since a is C -stable, a is c-stable for any c ∈ C . Let c = {i, j} be an arbitrary coalition of the coalition
structure C . Notice that |a1 ∩ c| ∈ {1, 2} , since otherwise (c ⊆ a2 ) the deviation where agent i moves to
resource 1 is an improving deviation. Since |a1 ∩ c| ∈ {1, 2} for every c ∈ C , the subset of V that corresponds
to the agents in a1 covers all the edges in E . 2

4. On efficient computation of equilibria in two-resource RSGs
This section is devoted to our computational tractability results in two-resource RSGs. More specifically, we
show that given a two-resource RSG G and a coalition structure C ⊆ P≥1(N) , a C -stable allocation a can be
computed in polynomial time if (i) C is laminar, or if (ii) C is contiguous and for each c ∈ C , |c| ̸= 2 .

Before proceeding with our results, we present first two characterization results from the existing litera-
ture. These results become useful in showing our results later on. The first result is due to Anshelevich et al.
[1], who characterized the set of Nash equilibrium allocations in an RSG.

Characterization 1 (Anshelevich et al. [1]) In an RSG G = ⟨N,R, f⟩ , an allocation a is a Nash equilibrium
if and only if: (i) each resource j ∈ T1 is allocated either qj or qj −1 agents; (ii) a resource j ∈ T1 is allocated
exactly qj agents; and (iii) each resource j ∈ T2 is allocated exactly qj agents.

Let a be a Nash equilibrium allocation. At allocation a , we refer to a resource j ∈ T1 as a ‘high’ resource
if |aj | = qj , and we denote the set of high resources with H . Similarly, we refer to a resource j ∈ T1 as a
‘low’ resource if |aj | = qj − 1 , and we denote the set of low resources with L . Note that H ̸= ∅ (due to
Characterization 1), H ∩ L = ∅ , and H ∪ L = T1 .

Now, consider a two-resource RSG G . Note that RSGs are a subclass of congestion games, and therefore,
in G there always exists a Nash equilibrium allocation. (See [18] for the existence of Nash equilibrium in
congestion games.) Also, by Characterization 1 it is easy to see that a Nash equilibrium allocation can be
efficiently computed (for instance, via a simple greedy algorithm; see [1]). At some Nash equilibrium allocation
a , note that if we have L = ∅ , it means that we have L = ∅ at any Nash equilibrium allocation. Also, L = ∅
implies that a is c-stable for each c ⊆ N and hence a is C -stable for every coalition structure C . (These
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observations are straightforward. Nonetheless, if necessary, the reader may refer to Anshelevich et al. [1]).
Therefore, in the rest of the paper, without loss of generality we will assume that in G : (i) both resources are
of type 1, and (ii) at every Nash equilibrium allocation a , one of the resources is a high resource and the other
is a low resource. The second characterization result that we present, due to Caskurlu et al. [5], gives necessary
and sufficient conditions for an allocation to be c-stable in two-resource RSGs.

Characterization 2 (Caskurlu et al. [5]) Let G = ⟨N,R, f⟩ be a two-resource RSG such that both of the
resources are of type 1. Let a be a Nash equilibrium allocation such that one of the resources (say h) is a
high resource, and the other (say l) is a low resource. Let c ∈ N be a coalition of agents. The allocation a is
c -stable if and only if the conditions below are satisfied:

(C1) If |al ∩ c| = 0 then |ah ∩ c| ≤ 1 .

(C2) If βh = βl and |al ∩ c| > 0 then |ah ∩ c| ≤ |al ∩ c|+ 1 .

(C3) If βh < βl and |al ∩ c| > 0 then |ah ∩ c| ≤ |al ∩ c| .

Let G = ⟨N,R, f⟩ be a two-resource RSG as described above: i.e., |R| = |T1| = 2 , and |N | = q1 + q2 − 1

(so that at a Nash equilibrium allocation, one resource in T1 is high and the other is low). Without loss of
generality, we assume that β1 ≤ β2 . Recall that we are studying the existence of laminar and contiguous
equilibria in G . We will study the cases when β1 = β2 and β1 < β2 . We begin with the easier case, when
β1 = β2 . Below, in Lemma 1, we show that if β1 = β2 , for any given contiguous coalition structure C there
always exists an allocation a such that a is both C -stable and a Nash equilibrium, and this allocation can
be computed efficiently. Note that this result is directly applicable for laminar coalition structures, too, since
Caskurlu et al. [5] showed that a coalition structures which is laminar is also contiguous. We will deal with the
case when β1 < β2 later on in Subsection 4.1.

Lemma 1 Let G = ⟨N,R, f⟩ be a two-resource RSG where both resources are of type 1 and β1 = β2 . Let C

be a contiguous coalition structure. Then, there exists an allocation a such that a is both C -stable and a Nash
equilibrium, and such an allocation can be computed in polynomial time.

Proof Let G = ⟨N,R, f⟩ be a two-resource RSG where both resources are of type 1 and β1 = β2 . Let C be
a contiguous coalition structure. Without loss of generality, assume that: (i) q1 ≤ q2 , and (ii) for each c ∈ C ,
the agents in c are subsequently ordered under the identity permutation πI = (1, 2, . . . , n) of N . Algorithm 1
below, which runs in polynomial time, returns an allocation as desired: i.e., it returns an allocation a such that
a is C -stable and a Nash equilibrium. We explain below why Algorithm 1 returns the desired allocation a .

Algorithm 1 Polynomial-time algorithm that computes a C -stable allocation for the case β1 = β2 .
1: Initially a1 = a2 = ∅
2: for i = 1, . . . , 2 · q1 − 1 do
3: if i mod 2 = 1 then
4: a1 = a1 ∪ {i}
5: else
6: a2 = a2 ∪ {i}
7: for i = 2 · q1, . . . , n do
8: a2 = a2 ∪ {i}
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In Algorithm 1, agents are allocated to resources in a round-robin fashion until resource 1 is allocated
q1 agents and becomes a high resource. And then all the remaining agents are allocated to resource 2: In
sum, resource 2 is allocated q2 − 1 agents and it becomes a low resource. Let a be the allocation returned
by Algorithm 1. Note that by Characterization 1, the allocation a is a Nash equilibrium. To see that a is
C -stable, consider a coalition c ∈ C . Since C is contiguous, the agents in c are subsequently ordered in πI .
Let c = {i, i + 1, . . . j} where i, j ∈ N and i ≤ j . We will show that a is c-stable using Characterization 2:
Note that the condition (C3) is not applicable since β1 = β2 . Also, note that if a2 ∩ c = ∅ then |c| = 1 , and
hence at a the condition (C1) is satisfied. Now, consider an agent k ∈ c (i.e., i ≤ k ≤ j ). Note that if k ∈ a1

and k < j , Algorithm 1 allocates agent k + 1 ∈ c to resource 2. This implies that |a1 ∩ c| ≤ |a2 ∩ c|+ 1 . But
then the condition (C2) of Characterization 2 is also satisfied. Therefore, a is c-stable. Since our choice of c

was arbitrary, this also shows that the allocation a is C -stable. This completes our proof. 2

4.1. Computing equilibrium using a fitting set

This subsection is devoted to our analysis when β1 < β2 in a two-resource RSG. Our findings are as follows:
In Theorem 2, we show that for any laminar coalition structure C , we can compute in polynomial time an
allocation a such that a is both C -stable and a Nash equilibrium. In Theorem 3, we show that for a contiguous
coalition structure C , if no coalition in C consists of exactly two agents, then there exists an allocation a

such that a is both C -stable and a Nash equilibrium, and this allocation can be computed in polynomial time.
In our proofs, the main idea is as follows: For a given coalition structure C , we refer to a subset of agents
F ⊂ N satisfying some condition as a fitting set. When a fitting set exists for C , we present a polynomial-time
algorithm that takes a fitting set as part of its input and then computes a C -stable allocation. We then conclude
our proof(s) by showing that for a coalition structure C a fitting set always exists and it can be computed in
polynomial-time if (i) C is laminar, or if (ii) C is a contiguous and for each c ∈ C , |c| ̸= 2 .

Our fitting set notion, defined below, is simple: Given a coalition structure C , a fitting set F ⊂ N is a
subset of agents such that for each c ∈ C , |c| > 1 , the set F includes at least one agent in c but no more than
half the agents in c . Note that it may be that for C a fitting set may not exist.

Definition 2 A subset of agents F ⊂ N is a fitting set for coalition structure C if for each c ∈ C such that
|c| > 1 , F satisfies 1 ≤ |F ∩ c| ≤ ⌊ |c|

2 ⌋ .

Below in Lemma 2, using the notion of a fitting set we show the following: In a two-resource RSG, if a
fitting set exists for coalition structure C , then we can compute in polynomial time an allocation a such that
a is C -stable and a Nash equilibrium. Lemma 2 plays a key role in showing our Theorems 2 and 3.

Lemma 2 Let G = ⟨N,R, f⟩ be a two-resource RSG where both resources are of type 1 and β1 < β2 . Let C

be a coalition structure for which a fitting set F exists. Then, there exists an allocation a such that a is both
C -stable and a Nash equilibrium, and given F such an allocation can be computed in polynomial time.

Proof Let G , C , and F be as described in the statement. Algorithm 2 below, which runs in polynomial time,
returns an allocation as desired: i.e., it returns an allocation a such that a is C -stable and a Nash equilibrium.
We explain below why Algorithm 2 returns the desired allocation a . Since Algorithm 2 conditions on the size
of F , we will consider the two cases pertaining to the size of F separately.
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Algorithm 2 Polynomial-time algorithm that computes a C -stable allocation for the case β1 < β2 .
1: Initially a1 = a2 = ∅
2: if |F | ≤ q1 − 1 then
3: Let K ⊂ N be such that F ⊆ K and |K| = q1 − 1
4: a1 = a1 ∪K
5: a2 = a2 ∪N \K
6: else
7: Let K ⊂ N be such that K ⊆ F and |K| = q1
8: a1 = a1 ∪K
9: a2 = a2 ∪N \K

(If) Suppose that |F | ≤ q1 − 1 . Then, a1 = K where F ⊆ K and |K| = q1 − 1 . Also, we have |a2| = q2

since n = q1 + q2 − 1 . Hence, at a resource 1 is a low resource and resource 2 is a high resource. Note that
by Characterization 1, the allocation a is a Nash equilibrium. To see that a is C -stable, consider a coalition
c ∈ C . We will show that a is c-stable using Characterization 2: Note that the conditions (C2) and (C3) are
not applicable since β1 < β2 and resource 1 is the low resource. Also, note that if |c| = 1 , then a is c-stable
since a is a Nash equilibrium. So, let |c| > 1 . Note that Condition (C1) of Characterization 2 holds at a since
|a1 ∩ c| ̸= 0 . Therefore, a is c-stable. Since our choice of c was arbitrary, this also shows that the allocation a

is C -stable.
(Else) Suppose that |F | > q1−1 . Then, a1 = K where K ⊆ F and |K| = q1 . Also, we have |a2| = q2−1

since n = q1 + q2 − 1 . Hence, at a resource 1 is a high resource and resource 2 is a low resource. Note that
by Characterization 1, the allocation a is a Nash equilibrium. To see that a is C -stable, consider a coalition
c ∈ C . We will show that a is c-stable using Characterization 2: Note that Condition (C2) is not applicable
since β1 < β2 . Also, note that if |c| = 1 , then a is c-stable since a is a Nash equilibrium. So, let |c| > 1 . Note

that Condition (C1) holds at a since |a2 ∩ c| ≥ ⌈ |c|
2 ⌉ > 0 . Also, note that Condition (C3) of Characterization

2 also holds at a since |a2 ∩ c| = |c| − |a1 ∩ c| ≥ ⌈ |c|
2 ⌉ ≥ ⌊ |c|

2 ⌋ ≥ |a1 ∩ c| . Therefore, a is c-stable. Since our
choice of c was arbitrary, this also shows that the allocation a is C -stable. 2

We are now ready to present Theorem 2.
Theorem 2 Let G = ⟨N,R, f⟩ be a two-resource RSG and let C be a laminar coalition structure. Then, there
exists an allocation a , and which can be computed in polynomial time, such that a is both C -stable and a Nash
equilibrium.

Proof Let G = ⟨N,R, f⟩ be a two-resource RSG and let C be a laminar coalition structure. All we need is
to show that we can find a fitting set for C in polynomial-time.

For each c ∈ C let L>1(c) = {c′ ∈ C | c′ ⊊ c and |c′| > 1} , i.e., L>1(c) is the set of nonsingleton
coalitions in C that is a subset of coalition c . Notice that L>1(c

′) ⊊ L>1(c) and |c′| < |c| for each coalition
c′ ∈ L>1(c) .

Let R>1 = {c ∈ C | L>1(c) = ∅ and |c| > 1} . Notice that a nonsingleton coalition c ∈ C is in R>1 if
and only if no nonsingleton subset c′ ⊊ c is in C .

Let c, c′ ∈ R>1 such that c ̸= c′ . We now show that c and c′ are disjoint, i.e., c ∩ c′ = ∅ . Assume that
c ∩ c′ ̸= ∅ . Since C is a laminar coalition structure and c, c′ ∈ C it should be that c ⊂ c′ or c′ ⊂ c . Without
loss of generality, assume c′ ⊂ c . Note that |c′| > 1 since c′ ∈ R>1 . But then c′ ∈ L>1(c) . This contradicts
with c ∈ R>1 .
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We construct a set of agents F ⊂ N by choosing exactly one agent arbitrarily from each coalition in
R>1 . Note that F can be clearly computed in polynomial-time. We need to show that F is a fitting set, i.e.,
for each c ∈ C where |c| > 1 , it is the case that 1 ≤ |F ∩ c| ≤ ⌊ |c|

2 ⌋ .
Let c ∈ C be such that |c| > 1 .
Assume that c ∈ R>1 . Then, |F ∩ c| = 1 , since F is constructed by choosing exactly one agent from

each coalition in R>1 , and thus 1 ≤ |F ∩ c| ≤ ⌊ |c|
2 ⌋ .

Assume that c /∈ R>1 . Then L>1(c) ̸= ∅ . We now show that L>1(c) ∩ R>1 ̸= ∅ . Let c′ ∈ L>1(c) be
such that |c′| ≤ |c∗| for each c∗ ∈ L>1(c) . Assume that c′ /∈ R>1 . But then L>1(c

′) ̸= ∅ since |c′| > 1 .
This contradicts that |c′| ≤ |c∗| for each c∗ ∈ L>1(c) . Thus, c′ ∈ R>1 , and L>1(c) ∩ R>1 ̸= ∅ . Let
k = |L>1(c) ∩ R>1| . Notice that |F ∩ c| = k since F is constructed by choosing exactly one agent from each
coalition in R>1 . We know that k ≥ 1 . Since the coalitions in R>1 are disjoint and no coalition in R>1 is a
singleton coalition, we have |c| ≥ 2k . Thus, 1 ≤ |F ∩ c| ≤ ⌊ |c|

2 ⌋ .
This completes our proof. 2

As shown in Theorem 2, for each laminar coalition structure C there exists a fitting set F . As it turns
out, however, this finding cannot be generalized for contiguous coalition structures. We give an example below
in Figure 2: Consider the coalition structure C such that the circles in Figure 2 correspond to the coalitions
in C (i.e., a circle in the figure corresponds to the coalition consisting of agents that lie inside that circle).
Obviously, the coalition structure C is contiguous. It is easy to verify that there exists no fitting set for C .
This is indeed not surprising: In a two-resource RSG, by Lemmas 1 and 2, we know that a C -stable allocation
exists if C has a fitting set. But Caskurlu et al. [5] showed via an example that in a two-resource RSG a
C -stable allocation may not exist for a contiguous coalition structure. Indeed, in their example, the coalition
structure considered is precisely the one depicted in Figure 2. Nonetheless, below in Theorem 3, we show that
a positive existence result can be obtained if no coalition consists of exactly two agents: We show that in a
two-resource RSG, for a contiguous coalition structure C such that for each c ∈ C , |c| ̸= 2 , there always exists
a fitting set, and hence, an allocation always exists, and can be computed in polynomial time, which is C -stable
and a Nash equilibrium.

1 2 3 4 5 6

Figure 2. A contiguous coalition structure without a fitting set.

Theorem 3 Let G = ⟨N,R, f⟩ be a two-resource RSG. Let C be a contiguous coalition structure such that
|c| ̸= 2 for each c ∈ C . Then, there exists an allocation a , and which can be computed in polynomial time, such
that a is both C -stable and a Nash equilibrium.

Proof Let G = ⟨N,R, f⟩ be a two-resource RSG and let C be a contiguous coalition structure such that
|c| ̸= 2 for each c ∈ C . Without loss of generality, suppose that for each c ∈ C the agents in c are subsequently
ordered under the identity permutation πI = (1, 2, . . . , n) of N . By Lemmas 1 and 2, to show the desired result
it is sufficient to show that we can find a fitting set for C in polynomial-time.

For agent i ∈ N , let e(i) = {c ∈ C | i ∈ c and |c| > 1} ; i.e., e(i) is the set of nonsingleton coalitions in
C that include agent i . We say that i covers the nonsingleton coalitions in e(i) . (The idea is that when we
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pick agent i , we would be picking at least one agent from each coalition in e(i) .) For a subset of agents F ,
let E(F ) denote the set of nonsingleton coalitions covered by agents in F (i.e., E(F ) =

⋃
i∈F e(i)). Algorithm

3 below constructs a set F which turns out to be a fitting set for C and hence proves the desired result. To
ease of understanding, we first explain verbally what Algorithm 3 does. Initially the set F is empty. Then we
iterate over agents in N in ascending order and update the set F as follows:

• If F = ∅ , we add agent i to the set F and proceed (with the next agent in the ascending order).

• If F ̸= ∅ , let j be the last agent added to the set F . Then we check whether E(F ∪ {i}) is equal to
E(F ∪{i}\{j}) . If the answer is yes, we remove agent j from F , add agent i to F , and then proceed. If
the answer is no, we check whether or not the set E(F ) expands if agent i is added to F . If the answer
is yes, we add agent i to F and then proceed. If the answer is no, we keep F unchanged and proceed.

In Algorithm 3, the set of agents F is implemented as a stack data structure. Note that the pop() method
removes and returns the least recently added element of the stack, while the peek() method only returns (does
not remove) the least recently added element of the stack. If F is empty, then pop() and peek() methods
return ∅ .

Algorithm 3 Polynomial-time algorithm that computes a fitting set.
1: Let F be an empty set of agents.
2: for agent i = 1, . . . , n do
3: if E(F ∪ {i}) = E(F \ {F.peek()} ∪ {i}) then
4: F.pop()
5: F.push(i)
6: else if e(i) ̸⊆ E(F ) then
7: F.push(i)

8: return F

To show that the set F returned by Algorithm 3 is a fitting set for C , we need to show that for each
c ∈ C , |c| > 1 , we have 1 ≤ |F ∩ c| ≤ ⌊ |c|

2 ⌋ . Consider an arbitrary c such that c ∈ C and |c| > 1 .
We now show that 1 ≤ |F ∩ c| . By way of contradiction, suppose that F ∩ c = ∅ , i.e., c ̸∈ E(F ) . Note

that when Algorithm 3 runs if at some point a nonsingleton coalition c′ ∈ C is covered by F , then c′ continues
to be covered until the algorithm terminates. Since F ∩ c = ∅ , it means that no agent in c is ever pushed to
the stack throughout the execution of the algorithm. Consider an agent i ∈ N . Then, in the algorithm, before
the ith iteration, we must have e(i) ̸⊆ E(F ) . But then it is clear that Algorithm 3 pushes agent i to the stack
at the ith iteration (at line 7 of Algorithm 3), contradicting that F ∩ c = ∅ . Thus, we obtain that 1 ≤ |F ∩ c| .

We now show that |F ∩ c| ≤ ⌊ |c|
2 ⌋ . Let i, j ∈ F be such that j > i . We first show that j > i + 2 . By

way of contradiction, suppose that j ∈ {i+ 1, i+ 2} .
Suppose that j ̸= n . Then, j + 1 ∈ N . Consider the (j + 1)th iteration of the algorithm. Consider a

coalition c′ ∈ C such that c′ ∈ e(j) . (Note that by definitions of e(j) and C , |c′| ̸= 1 and |c′| ̸= 2 .) It is easy
to observe that either c′ ∈ e(i) or c′ ∈ e(j +1) . But then, since i ∈ F , j is replaced by j +1 at this iteration.
But then j /∈ F , a contradiction.

Now, suppose that j = n . Consider a coalition c′ ∈ C such that c′ ∈ e(j) . But then c′ ∈ e(i) since
|c| ≥ 3 . But then j would not be pushed to the stack in the jth iteration of the algorithm without i being
popped, contradicting that i, j ∈ F .
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Thus, we conclude that if i, j ∈ F and j > i then j > i + 2 . In other words, we showed that if i ∈ F

then i+1 /∈ F and i+2 /∈ F . Therefore, we obtain that |F ∩ c| ≤ ⌈ |c|
3 ⌉ and ⌈ |c|

3 ⌉ ≤ ⌊ |c|
2 ⌋ (since |c| ≥ 3). This

concludes our proof. 2

Acknowledgment

This work is supported by The Scientific and Technological Research Council of Turkey (TÜBİTAK) through
grant 118E126. B.C.& O.E. collectively devised the efficient algorithm for laminar equilibrium, whereas F.E.K.
proved the intractability result, and devised the efficient algorithm for contiguous equilibrium.

References

[1] Anshelevich E, Caskurlu B, Hate A. Partition equilibrium always exists in resource selection games. Theory of
Computing Systems 2013; 53 (1): 73-85. doi: 10.1007/s00224-013-9463-2

[2] Anshelevich E, Dasgupta A, Kleinberg J, Tardos E, Wexler T et al. The price of stability for network design with
fair cost allocation. SIAM Journal on Computing 2008; 38 (4): 1602-1623. doi:10.1137/070680096

[3] Aumann RJ. Acceptable points in general cooperative n-person games. Contributions to the Theory of Games 1959;
4: 287-324. doi: 10.1515/9781400882168-018

[4] Baye MR, Tian G, Zhou J. Characterizations of the existence of equilibria in games with discontinuous and non-
quasiconcave payoffs. The Review of Economic Studies (1993); 60 (4): 935-948. doi: 10.2307/2298107

[5] Caskurlu B, Ekici O, Kizilkaya FE. On existence of equilibrium under social coalition structures. arXiv:1910.04648
[cs.GT] 2019.

[6] Christodoulou G, Koutsoupias E, Nanavati A. Coordination mechanisms. Theoretical Computer Science 2009; 410
(36): 3327-3336. doi: 10.1016/j.tcs.2009.01.005

[7] Cohen JE, Horowitz P. Paradoxical behaviour of mechanical and electrical networks. Nature 1991; 352 (6337):
699-701. doi: 10.1038/352699a0

[8] Correa JR, Schulz AS, Stier-Moses NE. A geometric approach to the price of anarchy in nonatomic congestion
games. Games and Economic Behavior 2008; 6 4(2): 457-469. doi: 10.1016/j.geb.2008.01.001

[9] Czumaj A, Krysta P, Vöcking B. Selfish traffic allocation for server farms. SIAM Journal on Computing 2010; 39
(5): 1957-1987. doi: 10.1137/070693862

[10] Feldman M, Tennenholtz M. Structured coalitions in resource selection games. ACM Transactions on Intelligent
Systems and Technology 2010; 1 (1): 1-21. doi: 10.1145/1858948.1858952

[11] Hayrapetyan A, Tardos E, Wexler T. The effect of collusion in congestion games. Proceedings of the thirty-eighth
annual ACM symposium on Theory of computing (STOC’06), 2006.

[12] Hoefer M, Penn M, Polukarov M, Skopalik A, Vocking B. Considerate equilibrium. Proceedings of 22nd International
Joint Conference on Artificial Intelligence 2011; 234-239. doi: 10.5591/978-1-57735-516-8/IJCAI11-050

[13] Kamihigashi T, Keskin K, Sağlam Ç. Organizational refinements of Nash equilibrium. Discussion Paper Series
DP2017-25, Research Institute for Economics & Business Administration, Kobe University, 2017.

[14] Milinski M. An evolutionarily stable feeding strategy in sticklebacks. Zeitschrift für Tierpsychologie 1979; 51 (1):
36-40. doi:10.1111/j.1439-0310.1979.tb00669.x

[15] Nash J. Non-Cooperative Games. Annals of Mathematics 1951; 54 (2): 286-295. doi: 10.2307/1969529

[16] Quint T, Shubik M. A model of migration. Cowles Foundation for Research in Economics, Yale University 1994;
1088.

1697



ÇAŞKURLU et al./Turk J Elec Eng & Comp Sci

[17] Reny PJ. On the existence of pure and mixed strategy Nash equilibria in discontinuous games. Econometrica 67.5
(1999): 1029-1056.

[18] Rosenthal RW. A class of games possessing pure-strategy Nash equilibria. International Journal of Game Theory
1973; 2: 65–67. doi: 10.1007/bf01737559

1698


	Introduction
	The model
	Computational intractability of finding a C-stable allocation
	On efficient computation of equilibria in two-resource RSGs
	Computing equilibrium using a fitting set


