IEEE Access

Multidisciplinary : Rapid Review : Open Access Journal

Received June 20, 2020, accepted June 25, 2020, date of publication June 30, 2020, date of current version July 13, 2020.

Digital Object Identifier 10.1109/ACCESS.2020.3005885

Deep Q-Learning Based Optimization
of VLC Systems With Dynamic
Time-Division Multiplexing

UMAIR F. SIDDIQI?, (Member, IEEE), SADIQ M. SAIT"1-2, (Senior Member, IEEE),
AND MURAT UYSAL“3, (Fellow, IEEE)

! Center for Communications and IT Research, Research Institute, King Fahd University of Petroleum & Minerals, Dhahran 31261, Saudi Arabia
2Department of Computer Engineering, King Fahd University of Petroleum & Minerals, Dhahran 31261, Saudi Arabia
3Department of Electrical and Electronics Engineering, Ozyegin University, 34794 Istanbul, Turkey

Corresponding author: Sadiq M. Sait (sadiq@kfupm.edu.sa)
This work was supported by the King Fahd University of Petroleum & Minerals, Dhahran, Saudi Arabia.

ABSTRACT The traditional method to solve nondeterministic-polynomial-time (NP)-hard optimization
problems is to apply meta-heuristic algorithms. In contrast, Deep Q Learning (DQL) uses memory of
experience and deep neural network (DNN) to choose steps and progress towards solving the problem. The
dynamic time-division multiple access (DTDMA) scheme is a viable transmission method in visible light
communication (VLC) systems. In DTDMA systems, the time-slots of the users are adjusted to maximize the
spectral efficiency (SE) of the system. The users in a VLC network have different channel gains because of
their physical locations, and the use of variable time-slots can improve the system performance. In this work,
we propose a Markov decision process (MDP) model of the DTDMA-based VLC system. The MDP model
integrates into deep Q learning (DQL) and provides information to it according to the behavior of the VLC
system and the objective to maximize the SE. When we use the proposed MDP model in deep Q learning with
experienced replay algorithm, we provide the light emitting diode (LED)-based transmitter an autonomy to
solve the problem so it can adjust the time-slots of users using the data collected by device in the past. The
proposed model includes definitions of the state, actions, and rewards based on the specific characteristics of
the problem. Simulations show that the performance of the proposed DQL method can produce results that
are competitive to the well-known metaheuristic algorithms, such as Simulated Annealing and Tabu search
algorithms.

INDEX TERMS Deep Q learning, deep reinforcement learning, dynamic time division multiple access,
visible light communications, optimization, non-deterministic algorithms.

I. INTRODUCTION

Reinforcement learning (RL), a branch of artificial Intel-
ligence (AI), deals with the development of self-learning
intelligent agents that can learn to solve specific tasks [1] by
taking a correct sequence of actions without any pre-trained
policy. In an reinforcement learning (RL) system, an agent
applies actions on the environment. The environment changes
its state and returns a reward value in response of each action
applied to it. The reward is a numerical feedback that tells
the agent about the quality of its last action. The goal of the
agent is to learn a policy that contains for each state of the
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environment, the action which can maximize the cumulative
future reward (i.e., reward in long run). The conventional
RL uses only tables/memory to store the history, and becomes
infeasible when the number of states and actions becomes
large. Deep learning (DL) [2] provides a handy solution by
approximating the cumulative future rewards of the state
action pairs using a deep neural networks (DNN) of many
layers.

The algorithms of RL that use the experience to predict the
best actions when the model of the environment is unknown
are termed as Temporal difference (TD) learning [3].
Q-learning [4] is a very popular model-free temporal dif-
ference (TD)-based method that uses a table to store the
Q-values of all possible state-action pairs. The Q-value

120375


https://orcid.org/0000-0002-9594-8034
https://orcid.org/0000-0002-4796-0581
https://orcid.org/0000-0001-5945-0813
https://orcid.org/0000-0003-1790-8640

IEEE Access

U. F. Siddiqi et al.: DQL-Based Optimization of VLC Systems With Dynamic Time-Division Multiplexing

0(s, a) of a pair of state (s) and action (a) is equal to the
expected cumulative future reward of the agent if it chooses
the action «a in state s, and the states until the end of episode
follow a given policy [3]. Deep Q-learning (DQL) is a type of
Q-learning that uses deep learning (DL) to approximate the
Q-values [4].

Deep Q-networks (DQN) gained popularity when they
were trained to learn to play Atari2600 games. They
played better than humans in some cases [5]. Some recent
applications of Q-learning include: (i) autonomous con-
trol of a power network; (ii) autonomous determination of
congestion-free paths in global routing [6]; (iii) dynamic path
planning [7]; and, (iv) path planning in grid graphs [8].

In visible light communications (VLC) systems, the light
emitting diodes (LED)s serve the dual purpose of provid-
ing illumination and serving as data-access points. The use
of VLC systems is rapidly growing, and the use of rein-
forcement learning techniques can significantly improve the
performance of many vital components such as LEDs and
encoders/decoders. Recently, Lee ef al. applied DL to design
a transceiver for VLC systems [9] that use the on-off keying
(OOK) method to transmit messages. In a OOK system,
the message is first encoded into a binary vector and then
transmitted through an LED. The number of ones in the
binary vector control the intensity level. DL helped in finding
optimal binary encoding for messages to meet the require-
ments on the intensity level and signal quality.

An LED can serve multiple users by using multiple access
schemes such as orthogonal frequency division multiple
access (OFDMA) or time-division multiple access (TDMA).
OFDMA is the most popular multiple access technique in
VLC systems, but it has a peak-to-average power ratio
(PAPR) problem that limits its usefulness [10]. Recently,
Abdelhady et al. proposed dynamic time-division multiple
access (DTDMA) which has excellent resource utilization
feature and is efficient in satisfying users’ requirements [11].
In DTDMA, the duration and power level of the signal in
any time slot are variable. They showed that DTDMA is
very useful when a single LED needs to send data to several
users [11].

In this work, we introduce a deep Q-learning (DQL)-based
method for the LED transmitter that exploit the variability
of duration of the time-slots of the DTDMA to maximize
the overall spectral efficiency (SE) of the system. The main
contributions of the proposed work are as follows.

1) The conventional approach of solving optimization
problems is to apply (meta)-heuristic algorithms that
provide step-wise instructions. The DQL method how-
ever, uses the data of the previous runs (or trials)
to autonomously choose the steps that can eventu-
ally lead to the desired solution. To the best of our
knowledge, this is the first work that applies the DQL
method to optimize the duration of the time-slots in
DTDMA-based VLC system.

2) We propose Markov decision process (MDP) model of
the DTDMA-based VLC system, which can integrate
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into DQL and enable the LED to optimize the duration
of the time-slots and improve the SE of the system.

3) The proposed MDP model contains the definitions of
states, rewards, and actions. The state consists of the
variables that represent the unique characteristics of
the VLC system controlling the SE of the system. The
set of actions presents the agent with many possible
ways to alter the duration of the time-slots of the
DTDMA system. The reward function helps the agent
to improve the SE of the system and find a globally
optimal solution.

4) We performed simulations and demonstrate that the
solution quality of the DQL approach with the proposed
MDP model is competitive to two well-known meta-
heuristic algorithms: simulated annealing (SA) and
tabu search (TS). Both these algorithms have already
been applied to solve different optimization problems
in the realm of VLC systems [12], [13].

The organization of this article is as follows. The second
section shows some of the most relevant previous work.
In Sections IIT and IV, we discuss the VLC system model and
a brief introduction of the DQL method. Section V contains
the details of the proposed model. In section VI, we discuss
the simulation results and their analysis, and finally, the arti-
cle finishes with a conclusion and future work.

Il. RELATED WORK

In the recent past, many researchers have applied RL to solve
several engineering problems. In this section, we present a
brief discussion on the main components (i.e., state repre-
sentation, actions, and reward functions) of the MDP models
used in those works. The design of MDP is critical for the
efficient application of RL.

Liang et al. applied the double dueling deep Q networks
(3DQN) to improve the waiting times of vehicles at a
four-way intersection controlled by a traffic light [14]. They
mapped the intersection onto a rectangular grid where each
grid cell either occupies a vehicle or remains empty. They
also mapped the speed of the vehicles to another rectangular
grid with the same orientation as the previous one. These two
grids are collectively represented as matrices and indicate the
state of the system. The action set consists of an increment
or decrement of 5s in the green-light timings of any of the
two directions at the intersection. The reward of an action is
defined as the difference between the total waiting time of
vehicles before and after applying that action.

Liao et al. applied the DQL to solve the 3D global rout-
ing problem [6]. Their proposed approach first decomposes
the multiple pin nets into two pin subnets and then routes
the subnets on a weighted 3D mesh. The weight of edges
denote the available capacity of those edges. A single DQN
network iteratively routes all two-pin subnets. The state is a
12 dimension vector in which the first three indicate the x,y,z
coordinates of the current location of the agent, and the next
three coordinates indicate the distance of the target from the
current location along the X, y, and z directions. The next
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six coordinates indicate the capacity values of edges that
connect to the current location of the agent from any direc-
tion. The action space is the six directions (+x, —x, +y, —y,
+2z, —z) in the 3D mesh in which the agent can move. The
reward function is also simple, and the agent receives a reward
of 4100 upon reaching a state, which is the target pin of the
currently chosen subnet and a reward of —1 otherwise.

Mocanu et al. solved the multi-objective power
optimization problem using Deep Q-networks (DQN) [15].
They optimize power by controlling three critical devices: air
conditioner (AC), dishwasher, and electric vehicle (EV). The
state vector consists of 11 elements and contains information
such as time step, baseload, photovoltaic (PV) resource,
AC state, EV state, and dishwasher state. The number of states
could be huge because the attributes have continuous values.
The DQN employs a reward vector of three components in
which each component corresponds to an objective of the
optimization problem. The Q-value also has three compo-
nents because the reward value have three components. The
action set consists of all possibilities of changing the state
of the three devices. The action gets a positive reward if
it changes the state toward the goal, and a negative reward
otherwise. The DQN has eight outputs that correspond to the
possible on-off combinations of the three devices (AC, EV,
and dishwasher).

Demiral et al. addressed the problem when multiple inde-
pendent control systems need to communicate over a shared
communication resource [16]. They applied DQL to schedule
the multiple control systems to use a shared limited commu-
nication resource. The goal of the DQL method is to minimize
the loss due to delays in communications. The main features
of their MDP model are as follows: (i) The state consists
of all error values of all control systems at a given time;
(i1) The action space consists of the allocation of a subset of
control systems to use the communication resource at a given
time; and, (iii) The reward function is equal to the negative
summation of the error values of the control systems.

Wu et al. suggested that the unmanned aerial vehi-
cle (UAV) problem of finding a target is equivalent to a
snake game in which a snake needs to find a target in a 2D
plane [17]. They applied DQL to find and enable the snake
to find the target autonomously. The screen-shot of the game
screen at any particular time step serves as the state. To keep
the size of the state small, they down-sampled the original
image into 80 x 80. The set of actions consists of the snake’s
movement in the four directions (+X, —x, +y, —y). The value
of the reward lies between —100 to +100. The reward value
is +100 when the snake reaches the target. Otherwise, it is
chosen based on the proximity of the position of the snake
from the target.

The MDP models mentioned above have two limitations
for their application to solving the optimization problems
with large search space: (i) The reward functions either use
constants or parameters whose values should be determined
through trial-and-error; and (ii) They do not implement the
hill-climbing feature of the optimization methods that enable
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the search to skip local optimal solutions and find the globally
optimal ones. The reward function in our proposed work is
free from parameters and is equal to the ratios of the objective
function values or the degree of violation of constraints in
the current and next states. The reward function in our pro-
posed model also ensures that the search does not get trapped
into local optima. The MDP models are generally problem-
specific. The MDP models’ problem-specific nature has a
disadvantage that a change in the target problem requires a
redefinition of the MDP model.

lil. VISIBLE LIGHT COMMUNICATIONS SYSTEM
For the convenience of readers, we have described the sym-
bols and notations repeatedly used in this article in Table 1.

A. OVERVIEW

In this work, we consider a VLC system that has a single
LED transmitter and multiple users. The LED employs the
DTDMA method [11] to serve numerous users. In the stan-
dard TDMA, each user consumes the entire bandwidth within
its fixed time-slot. In contrast, the DTDMA has adjustable
time-slots which give the system flexibility to change the
duration of the time-slots to improve the system performance.
As an example, Fig. 1 illustrates a VLC system in which
the LED transmits data to up-to four users (ug,u1,u42,u43), and
the channel between the users and LED are indicated by
hi i = 0 to 3) for users ug to u3z, respectively. The VLC
networks usually contain mobile users that can change their
positions. A change in the position causes a change in the
channel condition between the LED and user. Fig. 2 shows
the structure of the signal in both TDMA and DTDMA.
In both these types, the signal is divided into time slots that
are assigned to different users. In TDMA, the duration of
the time slots is fixed, whereas, in DTDMA, the duration
of time slots is variable, as shown in Fig. 2(b). DTDMA
has better resource utilization and data-rates as compared to
the conventional TDMA [11]. In DTDMA, the intensity of
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FIGURE 1. lllustration of a VLC system in which LED uses the TDMA
method to transmit data to multiple users.
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TABLE 1. Description of the frequently used symbols and notations.

[ Symbol ] Description
VLC network
U A set that contains all users
Uj A user that belongs to U
K Number of users in the VLC network
Neo Electrical-to-optical conversion efficiency
Noe Optical-to-electrical conversion efficiency
h; Gain of the channel that exists between the LED and the user u; € U
Pa Semiangle at half-power of the LED
Ya field-of-view (FOV) of the PD
i Angle between the incident light and normal to the user’s PD which is placed horizontally facing upwards
on Variance of the additive white Gaussian noise (AWGN)
Yi The channel-to-noise ratio of the user u;
SL Intensity of current at the LED transmitter
S; Current intensity received at the PD of user u;
I Expected value of sp,
d; Distance of the user u; from the LED
i Duration of the time-slot allocated to user u;
Timin Minimum duration of the time-slot of any user
Zi(13) The data-rate of the user u; when the duration of its time-slot is 7;
Zih Minimum required data-rate for any user
By Bandwidth of the LED
DQL algorithm
S State space
A Action space
P State transition function
R Reward function.
¥ Discount factor
St State of the MDP at time step ¢
at Action chosen by the agent at time step ¢
Tt Immediate reward at time step ¢
Q(s,a) Q-Value function, where s € S, and a € A
Q(s,a;0) Approximation of Q-value function using the Q-network with parameters 6
Q(s,a;6”) Approximation of QQ-value function using the target network with parameters 6”
« Learning rate of the gradient descent algorithm
Dy Replay memory of size m,- transactions
M Number of episodes
T Maximum possible steps in any episode
C Number of steps between successive update of 6” to 0
€0 Initial value of the parameter € in the e- algorithm
€5 A unit decrement in the € value
€min Final value of the parameter e
B Batch size
Proposed Model
Ar Termination criterion of an episode
0 Unit change in the duration of time-slot
D # of hidden layers in the DNN
w # of neurons in the any hidden layer of DNN
- Uy uy u, ug B. SIGNAL MODEL
c Consider a system that has one LED and up-to K users
5 _ (U = A{uo,u1,...,ux—1}). The LED serves the users by
= time employing the DTDMA technique. The transmitter’s circuit
(a) encodes the data streams of the users by varying the excitation
u, U, u u, current of the LED while making sure to encode the data
2

frequency

FIGURE 2. Structure of the frame of (a) conventional TDMA and
(b) dynamic TDMA.

current at the LED can also be adjusted to improve the system
performance further.
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stream of each user within its time slot. Fig. 3 shows a simple
schematic diagram in which the LED transmits a signal to
user u;. The descriptions of notations used in the figure are
as follows: (i) sy is the current intensity used to transmit
a symbol from the LED; (ii) 7., indicates the electrical-to-
optical conversion efficiency of the LED; (iii) /; indicates the
transfer function or gain of the channel that exists between
u; and the LED; (iv) 7,4, is the optical-to-electrical energy
conversion efficiency of the photo-diode of u;; and, (v) s; is
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Channel \
LED / gain ~ User u;
St S,

FIGURE 3. A simplified signal model of the VLC system.

the current intensity received at the user u;, and its value
is equal to s; = ngeNeohisL. The user also receives noise
from the environment which is denoted by n; and is equal to
additive white Gaussian noise (AWGN). The value of channel
gain (h;) can be determined as follows:

_ (m+ DA,

b = Vi

cos ! (Yri)rect(— 1
2nd? (i) (%) ey
where m is the order of Lambertian emission and is equal to
m, ¢, is the semi-angle at half-power of the LED.
d; 1s the distance of u; from the LED, v; is the angle between
the incident light and normal to the user’s photodiode (it is
assumed that the photodiode is placed horizontally facing
upwards), and ¥, is the field of view of users’ photodiode.
Fig. 4 illustrates the angles that are used in the computation
of the channel gain using (1). The function rect(x) is given
by:

et(s) I (1) if x| <1 )

otherwise

User u;

FIGURE 4. The LOS channel of the user u; from the LED.

The system contains only one LED, therefore, it is free
from interference, and the signal to noise ratio (SNR) values
depends on the signal strength and noise, and SNR of the
user u; is denoted by y; and computed as follows [11]:

S enzon(z)ehlzl2 3

1 — 2—2 ( )
O

where I = [E(sp), i.e., is the average current intensity. The

goal of the VLC system is to maximize the overall SE of the
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system, which is given as follows:
=
fsE = 5 Z tilogy (1 + y) &
i=0
The objective of optimization is to maximize nsg and
satisfy the following constraints:

K—1
Y=t )
i=0

T; > Tmin, Vi (6)
Zi(ti) > Zn, Vi @)

The first constraint indicates that the total duration of the
time-slots of all users should be equal to one (Please note
that 1 corresponds to 100% utilization). The duration of any
time-slot (7;) can be changed in discrete steps of size =£4,
(where, § € R™). The second constraint ensures that the
duration of the time-slot of any user should not be less than
a minimum value. The constraint in (7) indicates that the
data-rate of the users should be greater than a given threshold.
In constraint (7), the term Z;(t;) denotes the data-rate of the
user u; when the duration of its time-slot is 7;, and the value
of Z; should be greater than a given minimum value Zg,.
A constraint on the minimum data-rate ensures that none
of the the users faces outage. The value of Z;(t;) can be
computed as follows:

1
Zi(ti) = EBvTiIOg2(1 + i) 3
We can denote the objective function as follows:

S TK-1) 9)

The objective function can be computed in two steps:
(i) In the first step, we compute the SNR values of all users
(v0s Y15 ---» Yk—1) using (3); and (ii) Compute the overall
SE of the system (nsg) using (4).

In this work, we assume that the unit or minimum change in
the percentage of the duration of time-slots is equal to §. The
value of Ty is minimal, and we can approximate it to zero.
The total number of possible solutions in the search space

f(/’lo,hl,...,h](_l, 70, T1, - -

is given by (%fol) When we assume a unit change equal
to 1% i.e., § = 0.01, and the number of users (K) is equal
to 10, then the search space contains a total of 4.26e12 possi-
ble solutions which is a very large number.

The class non-deterministic-polynomial-time (NP) con-
tains problems that cannot be solved in polynomial-time, but
a given solution can be verified in polynomial time. A prob-
lem is NP-hard if all problems in NP are reducible to it. The
NP-hard problems are at-least as hard as every problem in
NP. Therefore, an algorithm for solving the NP-hard problem
can be transformed in polynomial-time to solve any NP prob-
lem as well [18]. The problem considered in our work is a
hard non-convex optimization problem [11] and, therefore,
belongs to the NP-class [19]. An exhaustive search is infea-
sible because of the large search space size. We should apply
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heuristics to intelligently traverse the search space and find
near-optimal solutions. A non-convex optimization problem
could have multiple local minima. Therefore, the proposed
work also incorporates hill-climbing to reach to the globally
optimal solutions. The DQL method is model-free and can
solve any problem without any knowledge of the structure of
the problem using the data collected with the trial-and-error
experiments.

IV. DEEP Q-LEARNING (DQL) ALGORITHM
In this section, we first briefly describe some concepts in RL
and then the DQL algorithm.

A. REINFORCEMENT LEARNING (RL)
RL algorithms are an efficient tool to solve the decision prob-
lems of choosing a sequence of actions. The agent interacts
with the environment to learn an optimal policy. The decision
problem of choosing a sequence of actions to solve a task can
be mathematically expressed using the MDP. The MDP is
defined using a 5-tuple {S, A, P, R, y}, where, (i) S contains
a set of finite states of the environment as observed by the
agent; (ii) A contains the set of possible actions available
for the agent to apply to the environment; (iii) P are the
state transition probabilities with which the environment can
change its state. The expression P[s;, s;+1, a;] denotes the
probability of state transition from s; to 5,41 through applica-
tion of the action a;; (iv) R denotes the rewards that the agent
receives from the environment upon applying any action, and
it is a continuous value bounded in an interval [0, Ry« ]. The
expression R(s;, a;, Sy+1) denotes the reward when the agent
moves from s; to s;41 through application of the action a;;
and, finally, (v) y denotes the discount factor and it is the
weight of the rewards of the future states in the computation
of the cumulative reward.

The goal of the agent in RL is to learn a policy that optimize
a V-value function. A policy is denoted by 7 (s, a) : S x A —
[0, 1], where 7 (s, a) is the probability of applying action a in
state s. The set IT contains all possible policies. The V-value
function is denoted by V7 (s) : S — R and can be determined
using the following equation.

VI(s) = ELY_ v*rkls = 5,7 (10)
k=0

In (10), s¢, and s;41 denote the states at time ¢ and ¢ + 1,
respectively. The variable r; is equal to the expected reward of
the agent and is given by, » = [E  R(sy, a, s;41). We use

a~m(s¢,.)
expected value because the behavior of the environment is

probabilistic. The optimal V-value function can be defined as
follows:

V*(s) = malg[cV”(s) (11)

Another important function in RL is the Q-value function
O@s,a) : § x A — R, ie., it maps the pairs of state
and actions to real numbers. It returns the future cumulative
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reward when the agent chooses the action a on state s. Math-
ematically,

OGs,a) = E[ry + yri1 +y2rn+ ... Iss = s, a4, = a, , 7]

o
= E[Y_v'reuls =s,a, = a, 7] (12)
k=0

We represent the above equation using a recursive relation-
ship with the help of Bellman optimality equation as follows:

Q" (51, a1) = Z P(st, ar, s4+1)(R(sy, ar, Se41)

St+1 es

+y 0" (si41, ar41 = w(s41))  (13)

The optimal Q-valued function (Q*(s, a)) can be expressed
using the following equation.

0*(s, a) = maxQ” (s, a) (14)
mwell

The above equation can be solved using dynamic pro-
gramming when the number of states and actions are small.
However, dynamic programming becomes infeasible for a
large number of states and/or actions. Therefore, we need to
search for the near optimal solutions.

B. DEEP Q-LEARNING (DQL)

In this sub-section, we briefly describe the DQL algorithm.
The DQN is a DNN or a neural network whose function is
to approximate the Q-value function. The DQL algorithm
employs two DQNs, which are named as the Q-network
and target-network. The weights of the Q-network and
target-network are denoted by 6 and 6, respectively. The
DQL algorithm also contains a replay memory (Djs), which
is also known as experience replay. It also employs a gradient
descent algorithm for training the weights of the Q-network,
and an e-greedy algorithm for choosing actions. The gradient
descent is an optimization algorithm that minimizes a cost
function by moving in the direction of steepest descent, and
the size of each step is controlled by the parameter learning
rate (o).

Algorithm 1 shows the DQL procedure. An agent can
follow it to solve up-to M episodes of a given task. An episode
refers to completely solving an independent instance of the
problem. In our work, the problem is to determine the optimal
duration of the time-slots in a DTDMA VLC system. There-
fore, an episode finds the optimal duration of the time-slots
for a particular configuration of users. The input of the DQL
algorithm includes the following: (i) m, is the size of the
replay memory Dyy; (ii) y is the discount factor; (iii) « is the
learning rate of the gradient-descent algorithm; (iv) (€9, €min,
and €5) are the parameters of the e-greedy algorithm;
(v) C denotes the number of iterations after which we
update 6 to 6; and finally, (vi) B which denotes the batch
size and is a critical parameter in the training of DQN.

Lines 2-3 in Algorithm 1 perform the initialization. Both
DQNs (Q-network and target-network) are identical in struc-
ture, and we initialize the weights to the Q-network to random
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Algorithm 1: The DQL Algorithm

1 m;: Size of the replay memory; y: discount factor; «:
learning rate; M: Number of episodes; T: Maximum
iterations in an episode; {€q, €min€s}: Probability
values; C: Number of steps between successive update
of 0" to 0.; Initialize the replay memory Dy, .;

2 Initialize the weights of Q-network (i.e. #) with random
values and that of target network (i.e., 6") with 9.;

3 sete =¢€p;

4 for i= 1,M do
5 t=0;
6 while episode does not terminate do
7 With a probability € select a random action ay;
8 otherwise select a;= argmng(s,, as; 0).;
9 Apply action a; to the environment and observe
the immediate reward r; and next state s;41. ;
10 Store the transition (s;, a;, ¢, S;+1) in Dyy. ;
11 Sample random mini-batch of B number of
transitions from Djyy;. ;
12 Set y,=
ry if 5,41 is the terminal state of the episode.
r+ yygile(stH, a’; 0”) otherwise
Perform a gradient descent step on
e — OC(sy, ay; 0))* with respect to the
parameters 9 ;
13 € = max(e — €5, €min) ;
14 Every C steps reset " = 0,
15 t=t+1;
16 end
17 end

values and the weights of the target-network equal to the
weights of the Q-network. We also initialize €, that indi-
cates the probability of the random selection of the action to
its initial value (eg). The replay memory is initially empty
and stores the transactions as the execution proceeds. The
outer-most for loop executes for the number of times equal
to the number of test cases or the number of episodes. The
MDP also contains a function that can terminate the episode
upon the satisfaction of some criterion. The steps inside an
episode proceed as follows: (i) The agent sends the current
state s; to the Q-network which returns the Q-values for
each action in the action-space; (ii) The agent chooses an
action following the e-greedy algorithm in which the agent
chooses an action a; that could be a random action with
probability €, or the action that has the maximum Q-value
among all actions in the action-space with a probability 1-¢;
(iii) The agent applies the action to the environment, due to
which the environment changes its state from s; to s;41, and
returns a reward r;, where r; = R(sy, a;, s;+1); (iv) The agent
stores the complete transaction of 4-tuple (s;, a;, ¥z, St+1)
into the replay memory Djys; (v) The agent also performs
the training of the DQN by applying the following steps:
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(a) Retrieves a batch of B random observations from Dyy;
(b) Obtains a target value y; using the target-network which is
equal to r; if the episode terminates in the next iteration, and
if the next iteration is not the last iteration, then y, is equal
to r, + yn;a;le(s,H, a’; 0)”, i.e., the sum of the immediate

rewards aflg the maximum Q-value of any action of state 5,41
from the target-network; and, (c) The last step in training
is to apply the gradient descent algorithm and update the
parameters 6 (i.e., the weights of the Q-network).

Two important characteristics of the above-mentioned
DQL algorithm are as follows: (i) The use of replay mem-
ory (Dy); and, (ii) The use of a separate target-network
for the computation of target values. It has been found that
the consecutive transactions are correlated with each other,
whereas, for stable training, the data should be uncorrelated.
The replay memory breaks this correlation by sampling a
batch of random transactions. We update the weights of the
Q-network in every iteration. If we also use it to compute the
target value y;, then the target value changes in every itera-
tion. Therefore, we employ a target-network whose weights
remain unchanged for up-to C iterations. The readers can
refer to [5] for a more information on the DQL algorithm.

V. PROPOSED MODELS

In this section, we first discuss the design of the MDP model
of the environment and then show the architecture of the DQN
used to approximate the Q-values.

A. MDP MODEL

The MDP model represents the environment that provides
the feedback necessary for the DQN to learn and adjust the
duration of time-slots in a DTDMA-based VLC system. The
three major components of the MDP model are: (i) states,
(i1) actions, and, (iii) rewards. In the following, we discuss
them in detail.

1) STATES

We denote the state as a combination of the channel gains of
the users and their current time-slots values. The following
expression denotes the state representation.

S IN-1} (15)

where s; denotes the state at time ¢, and all attributes are real
numbers. The values of channel gains (h;) can be obtained
using Equation (1). The values of duration of time-slots (t;)
lie between (0,1), and indicate the percentage duration of the
time-slot allocated to the user u;.

s; =1{ho, 1, ..., hn—1, 70, T1, ..

2) ACTIONS

The duration of time-slots of the users is expressed as the per-
centages of the total frame duration. To increase the duration
of the time-slot of any one user we should reduce the duration
of the time-slot of some other user by an equal amount
because the sum of the percentages of all users should always
remain equal to one. An action comprises the following
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two steps. The first step is to choose two users, and the second
step is to increase the duration of the time-slot of the first
user by an amount equal to &, and decrease the duration of
the time-slot of the second user by an amount equal to §.
The value of § is kept very small such as 0.1, 0.01. The
action space contains a total of 1 4+ 2 x (I§ ) actions without
any duplication. Any arbitrarily action ¢* (where, k = 0 to
2 X (12( )) can be denoted using the following mathematical
expression:

d" = {t; + 80(8), 7y — 85 (8)}, where,
0 ifk=0
1  otherwise
i#j ,and i,j€{0,.K—1}  (16)

o(8) =

The first action is denoted by a° and it does not change the
duration of the time-slots. The remaining actions contain all
possible combinations to increase and decrease the duration
of the time-slots of any two users at a time. Fig. 5 illustrates
an example that has three users ({ug, u1, up}), and the initial
duration of the time-slots is {9, 71, 72}. The agent has up-to
seven actions, it can increase/decrease the duration of the
time-slots of any two users at a time, and it can also leave
the time-slots unchanged.

FIGURE 5. Illustration of the action space.

3) TRANSITION TO A NEW STATE

The state vector has two terms: channel gain, and, duration
of time-slots. In the previous subsection, we mentioned that
the application of actions changes the duration of time-slots.
However, the state also changes if any user changes its posi-
tion, and this causes a change in the value of the channel gain.
In this subsection, we specify the two exceptional conditions
in which the state of the environment does not change.

St ifa, = d°

Si+1 = 3§ 8¢ if 3, €a;s.t. i —38 < Tyn 17

=s €S otherwise

The first case in the above equation shows that the appli-
cation of action a® on any state, does not change the duration
of time-slots, and hence the state remains unchanged (i.e.,
si+1 = 7). The second case is for any action a; = a*, where
(k > 0) applied on the state s;, but the action a; has a problem
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that it reduces the duration of at least one time-slot 7; € s;
whose existing value is 7; < Tmin + 6, i.e., any decrease in
the t; value is the violation of the constraint (6). In both these
cases, the environment returns a reward but does not change
its state.

4) REWARDS

Reward is the feedback on the last action taken by the agent.
The reward function is usually closely tied to the goal or
objective function. In our work, the goal is to maximize the
SE of the system. The reward function is therefore expressed
using the following equation.

R(s;, ar, S1+41)
—1 if a; =a
-1 if dt; € a;

0

St. T, — 8 < Thin
Z.
— X - min(Zn D) 35 € s,
1l

= st Z(t) < Zy, (18

F(s .
;_—t;)l) if F(si41) > F(sy)
St .
- f F F
Fsra1) 1 (Se41) < F(sp)
0, otherwise

In the above equation, the first two cases do not change the
state of the environment, as discussed in the previous sub-
section. In the first two cases, we assigned a negative reward
to prevent the agent from choosing actions that do not change
the state of the environment. In the optimization process, it is
critical that the search continues and should not freeze at any
local minima. The third case occurs when the data-rates of
one or more users in the state s;4 is lesser than the minimum
required value (Zy,). In the third case, the reward expression
returns a negative value of magnitude equal to the summation
of the ratio ZZT; of those users whose data-rate is less than the
minimum required value. In the fourth case of (18), we assign
a positive reward because it refers to the condition when the
new state is better than the previous one. The fifth case refers
to the condition when the SE value of the new state is worst
than the previous state, and we assign it a negative reward.
The function F is described in (4) and (9) and determine the
average SE value of the state.

5) TERMINATION CONDITION OF THE EPISODES

The initial state in the proposed model can be any random
state that meets the constraint on the minimum duration of
time-slots (i.e., constraint (6)). The episodic tasks come to an
end after a finite number of iterations. The termination crite-
rion in the episodes that solve a combinatorial optimization
problem can be the attainment of minimum solution quality.
We assume that the termination criterion of the episode is
Aj iterations after the episode reaches a given target SE
value denoted by Agp. We can set the value of Ay using the
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user requirements and/or information of the other existing
methods.

B. ARCHITECTURE OF THE DQN

As mentioned earlier, the DQL architecture employs two
DQNs that are essentially DNNs. Fully connected neural
networks are mostly a general type of DNN and have no
requirements about the type of input data. The mathematical
equation of the output of a neuron in the fully connected
neural network is as follows.

y=0o()_ wix) (19)

In the above equation, the number of inputs is equal to L,
and the weights are denoted by w; and inputs by x;. o denotes
the activation function. We also observed through simulations
that the DQN of fully neural networks produce good results.
Fig. 6 shows the architecture of the DQN that has D+-2 layers,
the first and the last layers are the input and output layers and
have a number of nodes (or neurons) equal to the number of
attributes in the state, i.e., 2K, and number of possible actions,
respectively. The DNN has up-to D hidden layers, and the
number of neurons in any hidden layer is equal to W. W and D
are also often referred to as the depth and width of the DNN.
The activation function of all layers is the Rectified Linear
Unit (ReLu). The output of ReLu is given by y = max(0, x),
where x is the input. The suitable values for the parameters
will be determined through simulations.

O
O

Output Layer
#of nodes=1 + 2 X (';)

O O
O | O O

Input layer
# of nodes= 2K

O

Hidden Layer H
# of nodes= W

Hidden Layer 1
# of nodes= W

Hidden Layer 2
# of nodes= W

T
# of hidden layers= D

FIGURE 6. Architecture of the DQN which is used to approximate the
Q-value.

C. COMPUTATIONAL COMPLEXITY

In each iteration, in addition to the computation of the objec-
tive function, the DQL-based optimization methods update
the weights of the DNN. In this subsection, we discuss the
computational complexity of the process that updates the
weights of the DNN in each iteration. The process comprises
several forward propagations and one backpropagation, and
the computations mostly are matrix multiplications. We can
assume that the number of neurons in any layer is equal to W
(the number of neurons in the input and output layers cannot
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be more than W, and the hidden layers contain W neurons).
Thus the complexity of the feed-forward propagation step is
given as O((D+ 2)W?3) or O(DW?), where D is the number of
hidden layers and W3 is the complexity of a matrix multipli-
cation operation. The two main steps of the backpropagation
are: (i) back propagate the error of the neurons from the
output to the input layer; and, (ii) computation of new weights
using the error values of the neurons. The back propagation
of error has a complexity of O(DW?), and the updating of the
weights has a complexity of O(DW?). The complexity of the
backpropagation step is equal to O(DW?3). In each iteration,
we have forward propagation steps equal to twice the batch
size and one step of backpropagation. Hence, the complexity
of the process to update the weights in each iteration is equal
to O(DW?3 + 2BDW?3), which can be reduced to O(W?),
considering that D and B are constants and have small values.

VI. SIMULATIONS

We implemented the VLC system and the DQN model using
Python and Pytorch. Table 2 lists the values of the parameters
of the VLC system. Abdelhady ef al. [11] proposed a range
of values of their DTDMA-based VLC system and the values
mentioned in Table 2 are within the suggested range. We gen-
erated a total a 6000 test problems, in which the room size
is equal to 10mx 10mx5m, and the locations of users in the
room is random. The number of users in each of the 2000 test
cases are equal to 6, 8, and 10, respectively, and the LED is
located in the center of the room. Each test case is solved by
an episode of the proposed model.

TABLE 2. Parameters values of the VLC system.

[ parameter | value |
Ny 10e-22 W/Hz
Ap 1 cm?

Pa 60
Ya 85
Toe 0.6 AIW
TNeo 1
I 35A
Tmin le-8 sec
By 20 MHz
Zih 5e4 bps

We also implemented two well-known optimization meta-
heuristic algorithms: (i) SA algorithm; and, (ii) TS algo-
rithm [20] to benchmark the performance of the proposed
model. Both of these metaheuristic algorithms have suc-
cessfully solved different optimization problems in the VLC
systems [10], [12], [13]. The results of the TS algorithm are
significantly better than the SA algorithm and are used as
target values, (Ap), to be reached by the proposed model. The
DTDMA is a recent development, and there are no specific
heuristic algorithms for it. Table 3 shows the parameters
values of both the algorithms. The neighbor function in both
SA and TS algorithms is to randomly choose two users and
increase and decrease the duration of their time-slots by
amounts equal to § (where § = 0.01). The aspiration criterion
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TABLE 3. Parameters values of the SA and TS algorithm.

Parameter
Symbol | Description [ Value
SA algorithm
« Cooling rate 0.98
B Rate of increase in the value of M 1
My Number of iterations in the Metropolis function 4
To Initial temperature lel2
Ag Termination criterion (iterations) 50,000
TS algorithm
Ts Size of the Tabu list 7
N, Number of neighbor solutions 5
Ar Termination criterion (iterations) 50,000

in TS algorithm is to allow the moves from the Tabu-list if
they improve the SE value of the current solution. The SA and
TS algorithms were executed for 50,000 iterations on each
test case, which is a very large value and allows the search to
converge to its best value.

The values of hyperparameters are critical in any DQL
model. We set the values of the hyperparameters of the pro-
posed DQN model using either the available guidelines or
determine the most suitable values by experimenting with
several alternatives. Table 4 lists the values of the hyper-
parameters used in this work. An important component of
the proposed model is a DNN for which we need to decide
the number of layers (D) and the number of neurons in
each layer (W). The role of the DNN is to approximate the
Q-function, and D equal to 2 is considered sufficient to
approximate functions. The number of neurons in any layer
should lie between the number of neurons in the input and
output layers. In our case, the input layer has 2K (where K is
the number of users) neurons, and the output layer has (] +22K )
neurons. Based, on these guidelines, we selected D = 2, and
W values between 2K and 2 x (12() +1 [21]. Another important
parameter is €, and we should define its starting value, final
value, and a unit decrement in its value. The proposed DQL
model adopts the e-greedy method in choosing actions. In the
e-greedy method, the agent selects a random action with
a probability equal to € and selects the action that has the
maximum Q-value as returned by the DQN with probability
equal to 1 — €. The initial value of € is usually set to 1, and its
final value to a small non-zero value that enables the DQL to
keep on exploring new states, actions, and rewards. In our

TABLE 4. Hyperparameters values of the DQL model.

Hyperparameter
parameter Value
€0 1
€min 0.25
€s le-5
ol 0.99
C 500
B 8
my 200,000
Ag 200
0 0.01
D 3
W 64
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problem, the size of the search space is huge. Therefore,
continuous exploration benefits the search process to avoid
getting trapped in local optima. It was empirically determined
that when the minimum value of € is equal to 0.25, then there
is a good balance between exploration and exploitation.

Fig. 7 shows the results of the proposed DQN model when
the number of users (K) is equal to 6, 8, and 10. The graph
shows the SE values obtained in each episodic task solved by
the proposed model. Each episodic task solves the problem of
optimizing the duration of time-slots for a particular position
of users. The graph conveys the following information about
the SE values, when K = 6, 8, and 10. Here, the SE
values lie in the ranges of 3.576—4.492, 2.892-4.436, and
3.431-4.4.465, respectively. This observation shows that the
system can handle users from 6—10 without any significant
effect on the performance.

42 44

a0

38

Average SE (bits/sec/Hz)
286

34

3.2

0 500 1000 1500 2000
episodes

FIGURE 7. SE values of the solutions returned by the proposed DQN
method for different values of K.

Fig. 8 shows the number of steps or iterations in each
episode. The medians of the number of iterations per episodes
are equal to 325, 569, and 707, for K = 6, 8§, and 10,
respectively. The graph also shows that the third quartile (Q3)
of the number of steps is equal to 456, 902, and 1352, for

5000 50000
|

Number of steps
500

50
!

10
.
.

0 500 1000 1500 2000

episodes

FIGURE 8. Number of steps or iterations in each episodes for different
number of users (K).
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iterafions (or steps)
FIGURE 9. The curve showing the change in the value of SE within an
episode.
K = 6, 8, and 10, respectively. The curve in Fig. 9 shows
the change in the average SE value of the solution within
an episode. It illustrates the effect on the SE value of the
solution in response to the actions chosen by the agent. The
curve contains many down-hills and up-hills before it can
reach the maximum value in the 11460™ iteration. This curve
also shows that the proposed model, similar to hill climbing,
enables the agent to avoid trapping into local maxima and
continue to search for the global maxima.

In the remaining part of this section we use box-plots
to show the results, therefore, it is worthwhile to briefly
discuss their key features. The key features of box-plots are:
(1) The lines in the middle of the rectangles (or box) show
the median of a data series; (ii) The lower and upper edges
of the rectangle represent the Q1 and Q3 percentile of a
data-series; (iii) The whiskers are small horizontal lines. The
values of which terminate the vertical lines originating from
the rectangles, and denote the minimum and maximum values
of a data-series; and, (iv) The values denoted by points below
the whiskers are known an outliers and denote the unexpected
values.

Now, we start discussion on the comparison of the pro-
posed model with that of the TS and SA algorithms. The
box-plots in Fig. 10 show the SE values of solutions returned
by the proposed model, TS, and SA algorithms. The plots
show that based on the average SE values of solutions,
the proposed model outperforms both TS and SA algorithms.
In Fig. 11, we used the box-plots to show the difference
between the SE values of the solutions of the proposed model
with the solutions of TS and SA algorithms. In Fig. 11,
the positive values indicate that the SE value of the solution
of the proposed model is better than the solution of the SA or
TS algorithms by that amount. The plots show that medians of
the difference between the SE values of the proposed model

1y 7] o]
SR < 7 i ! w = — i
A - | 3T - | ol - —
g ' i 1 E | ! 1 ,ﬁ% T i i
LA - B | | | &z i | |
= [Te) ' ! ! o : I 1
i - s 34 —= 5 w0 i .
2 ! ] ® ' E '
g - ' i % (= i | g [=] §
oo | g " ' 2 e i
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’ oo T o —
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{a) K=6 (b) K=8 (C) K=10
FIGURE 10. SE values of the proposed model and that of the TS and SA algorithms for different values of the number of users (K).
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FIGURE 11. Difference between SE values of the proposed model and that of the TS
and SA algorithms for different values of the number of users (K).

VOLUME 8, 2020

120385



IEEE Access

U. F. Siddiqi et al.: DQL-Based Optimization of VLC Systems With Dynamic Time-Division Multiplexing

and that of the SA algorithm are equal to 0.986, 0.975, and
0.977, when K = 6, 8, and 10, respectively. The medians of
the difference between the SE values of the proposed model
and that of the TS algorithm are equal to 0.246, 0.132, and
0.080 for K = 6, 8, and 10, respectively. It is important
to mention again that the TS and SA algorithms executed
for up-to 50,000 iterations. In contrast, the proposed model
only executed an average of 1112 iterations, and a maximum
of 49,000 iterations in one episode. Therefore, the perfor-
mance of the proposed model is better than SA and TS
algorithms in terms of its ability to converge to good quality
solutions.

Finally, we also used the paired Wilcoxon test [22], [23]
to compare the results of the proposed model with that of
SA and TS algorithms. The results indicated that the average
SE values of the proposed model are significantly better than
that those of TS and SA algorithms.

In short, the simulations in this section show that the
proposed model is efficient in applying the DQL to solve the
problem to optimize the duration of time-slots. The results
of the DQL using the proposed model are competitive to two
well-known metaheuristic algorithms.

VII. CONCLUSION AND FUTURE WORK

The DTDMA-based VLC system offers a high data-rate and
does not suffer from the high PAPR problem. In a VLC sys-
tem, the users are spread in a room and experience different
channel strengths. We can maximize the SE of the system by
adjusting the duration of the time-slots of the users. In this
work, we proposed a model of the MDP that captures the
functionality of the DTDMA based VLC system and enables
the DQL algorithm to get trained and optimize the duration of
the time-slots. The definition of the MDP includes innovative
and problem-specific descriptions of the state, actions, and
rewards. We considered episodic tasks whose goal is to adjust
the duration of the time-slots of users; and an episode termi-
nates when SE of the system reaches a given target value. The
DNN used in our work has two-layers, is fully connected,
with ReLu deployed as an activation function. Simulations
showed that the proposed MDP model is efficient, and can
integrate into the DQL algorithm to optimize the duration of
time-slots and find globally optimal solutions. Simulations
also showed that the performance of the proposed model is
competitive to two metaheuristic algorithms: SA and TS. The
current DTDMA technique is for the single LED-based multi-
users VLC networks. An extension of the DTDMA technique
to the multi-LEDs and multi-users VLC networks introduces
interference in the network. In a multi-LED network, an LED
cannot act in isolation and need to collaborate with other
LEDs to achieve overall maximum efficiency. Extension of
DTDMA to multi-LEDs and development of DQL based
method of optimization is an important direction of future.
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