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Abstract

The pace of proliferation for smart systems in city wide applications is unmatched. The introduction of Internet of Things (IoT), an
enabler of smart city phenomenon, has incubated a productive environment for such innovations. Smart things equipped with IoT
capabilities, allow for developing smart city applications at such large scale that each application can be represented as a system of
systems (SoS). Nevertheless, the complexity of engineering such SoS has been a major challenge in developing and maintaining
smart city applications. One of the engineering challenges that industry face today is the verification of a SoS smart city application
at runtime. We introduce utilization of a model-based runtime monitoring approach for providing reliable service. We propose to
use message sequence charts for representing a smart city application, later allow the practitioners to express expected behavior
of an application in terms of complex-event processing patterns. We demonstrate the fidelity of our approach on a sample smart
parking system. Our approach is one of its kind in enabling a non-intrusive monitoring of IoT behavior at runtime (online).
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1. Introduction

Thanks to improvements achieved in fitting such great computing power and memory in a small form factor that
smartness flavor has permeated every domain of industry and research venues. Technological breakthroughs such as
IoT have already been identified as enablers of smart objects in various applications [1]. Software and software systems
have become so widespread that we cannot think of any aspect in everyday life that does not involve a product with
such a system in it. The scale of computing capabilities has penetrated a diverse spectrum of application domains
encompassing end user artifacts such as key-chains, all the way up to an industrial factory automation. A technology
innovation driven by introduction of IoT phenomenon has increased the momentum towards implementing systems of
systems with more smartness features [1]. The driver behind such an impetus of IoT is that it allows for engineering
such integrated systems that merely require human interaction; thereby, enabling invention of new functionalities
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that is composed of autonomous endpoints operating in an accord with respect to a predefined service composition
definition.

Every new capability built on groundbreaking concepts brings along a challenge in engineering the systems that
we used to develop with older conventions. IoT systems have already shifted the engineering paradigm for building
systems of systems (SoS). The SoS that are architected with IoT principles exemplifies a domain of large-scale systems
with so intricate detailed design elements that it necessitates innovative engineering solutions to tackle with. Because,
the size of an IoT system might scale from a system of tens of endpoints up to thousands (Fig.1). According to a recent
research by Gartner' the estimated number of IoT devices installed in year 2020 will be 20,415 millions of units. The
total number of IoT devices installed in year 2017 has already passed the total number of human beings on this planet.

Fig. 1: A Large-Scale Smart City Application[2]

IoT systems are enabled by several underlying technologies (e.g., communication protocols, wireless sensor net-
works, service-oriented architecture, complex-event processing, etc.). One of the those technologies that makes those
system easy to design, develop and test are the application layer communication protocols. Event though those sys-
tems might be built around hundreds or thousands of devices that are manufactured by different companies, the
service-oriented architecture (SOA) principles adopted by some of the protocols facilitates the engineering process.
Constrained-Application Protocol (CoAP), an OSI Layer-7 application layer protocol [3], is designed with RESTful
API guidelines ([4]) as the building block of the protocol. The IETF Constrained RESTful Environments (CoRE)
working group ([5]) has compiled the best practices as CoAP standard for supporting a SOA-based application de-
velopment for resource constrained devices in IoT. RESTful services perspective has a tremendous advantage over
other architectural approaches when it comes to discovery, composition, integration and execution of various services
procured by different subsystems. Thus, engineering an IoT as a SoS is extremely streamlined with the introduction
of such application protocols as CoAP.

A smart city infrastructure (Fig.1) hosts diverse applications of IoT systems [2]. The elements of such a system
might contain smart parking, smart traffic lights, smart metering and similar smart vertical domain applications. That’s
why, such a system might be composed of thousands of interconnected IoT enabled endpoints. This paper extends our
research reported in [6] and [7] onto smart city domain, and address the verification challenge of engineering a smart
parking system with IoT devices. We particularly focus on runtime verification (RV) of such a system. We first explore
how model-based testing can be utilized for representing the expected behavior of such a system. Then, we transform
the messaging interactions amongst the IoT endpoints in the network into executable runtime monitors in the form
of complex-event processing (CEP) statements by using a seamless model-to-text (M2T) transformation in a model-
based testing (MBT) environment. We believe that researchers and practitioners of smart city applications will benefit
from our solution approach.

The remaining of the paper is organized as follows: Section-2 explains the domain of runtime verification, where
we borrow the runtime monitor definition. In Section-3 we outline the case strudy by defining the faults under scrutiny

! https://www.gartner.com/newsroom/id/3598917
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in smart parking domain. Then, Section-4 explains our contributions in MBT approach. Later, we cover a short list of
related work in Section-6, then we conclude the paper with future directions in Section-7.

2. Background

Recent developments in software-as-a-service business has made it possible for software systems to become much
more prevalent than ever. Those systems operate more autonomously thanks to innovations introduced as agent-
based smart objects [8]. Such improvements in engineering software systems necessitate innovative approaches to
verification of those in order to enable reliable system operation.

RV has usually been considered as an intimidating verification method by the practitioners ([10]). That’s why, it is
poorly utilized in the industry. However, large-scale systems such as [oT call for feasible solutions for RV, because of
the fact that those systems are deployed with such devices that are line-replaceable-units (LRUs); which means that
an [oT device can be easily swapped with another one providing similar or new services. This capability has been
introduced owing to the SOA based CoAP protocol.

With a broad perspective, verification methods can be listed as (i) theorem proving, (ii) model checking, (iii) and
testing [9] (see Fig.2). Theorem proving explores the correctness of a software by using certain proof techniques.
Model checking, a technique that generally requires formal analysis of the system under test (SUT), is more related
with verifying a software automatically at design time (i.e., without executing the SUT on production environment),
which is usually represented as finite-state machines. On the other hand, testing is practically examining the SUT to
demonstrate non-existence of faults in it [9].
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Fig. 2: Verification Techniques

Fig.2 summarizes the relation between different verification techniques. Theorem proving and model checking are
types of formal verification, which involve mathematical models and proofs of system correctness through formal
algebra. Those two types of verification constitute static analysis methods. However, RV, having its roots in formal
specification of a SUT and being applied to SUT at runtime, is a complementary technique between functional testing
and formal verification. It allows for reacting to unexpected behaviors at runtime [9].
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Fig. 3: Runtime Verification Recapped

Fig.3 recaps the principles of RV technique. Runtime verification is defined as examining a systems execution trace
against its specification expressed in correctness properties. A correctness property formally captures the expected
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behavior of a particular system specification, which enables checking whether a runtime instance of the system con-
forms to that specification or not via runtime monitors. A runtime monitor is a tool that observes execution trace of
a SUT and returns verdicts on the verification of a particular specification against its correctness property. Execution
trace represents a finite run of a program, usually expressed in SUT’s states.

3. Smart Parking Problem Re-Defined

Smart parking systems (SPS) are prevalently deployed in many of the smart cities around the world”. Those systems
are designed with usability considerations in order to maximize the effective utilization of limited parking resources
around a city. The smart parking capability is enabled by installing smart sensors (Fig.4) with IoT features that seam-
lessly integrate to a back-end system.

P: P3 P4
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Fig. 4: Smart Parking Problem

The usability of a SPS is achieved through a component-based design of overall architecture, which provides
its resources as services. The service-oriented architecture is enabled by using CoAP ([3]) on IoT devices. CoAP
allows designers to describe system behavior by using RESTful-like APIs; thereby, supporting utilization of message-
sequence charts * (MSC) as design method. In a previous work [6] we proposed to use MSC as the representation
tool for expected behavior of an IoT system; because, it enables us to express the behavior in terms of event calculus
(EC) ([6]). A Parking back-end system periodically collects the status of each parking space, then each sensor at a
particular slot (i.e., Park-1, Park-2,..) responds with a current value of its state, via CoAP message exchanges (Fig.5a).

A use case scenario of SPS can be depicted by using MSC’s as in Fig.5b. The reservation of a certain parking space
starts by a Car parking in an empty slot. The Park-x slots interrogates the id of the Car via a built-in system on it or
through a software tool on the customer’s smart phone. Then, Park-x updates its status to Parking back-end system.
The leaving of Car from Park-x renders the slot available again.
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Fig. 5: Smart Parking Represented in MSCs

As we explained in Section-1, IoT is made possible via several enabling technologies; which means that a fault
can occur due to many reasons. However, we’re interested in two particular failures of a SPS for demonstration of our
contribution. Specific fault that we seek to detect is Stuck-At, which might arise due to a failure at the sensor node.

2 http://www.smart-cities.eu/
3 http://www.itu.int/rec/T-REC-Z.120/en
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Stuck-at can occur when a parking sensor gets stuck at a particular status. When this fault arises, new Car’s are not
notified correctly on the availability of the parking spaces, which hinders the usability of SPS. In the next section, we
describe how to utilize MBT for expressing those faults by using EC and CEP methods.

This kind of failures cause a SPS to lose its grip on providing an effective, efficient, and green smart parking
solution. Because, Cars are oriented towards, in fact occupied spaces, causing those to consume more time and fuel.

4. Model-Based Runtime Monitoring for Smart Parking

Providing an online and non-instrumented RV solution for such IoT systems as described above is the main moti-
vation of this paper. We seek for an online solution because SoSs engineered with LRUs require instant verification
of sustained reliability. The driving idea behind providing a non-instrumented approach in such environments as loT
where those devices from various manufacturers can be plugged in and out of the SoS at will, is that we can not inject
any instrumentation code to proprietary commercial-off-the-shelf products. That’s why we adopt the framework that
we proposed in [7], and do not go into a detailed design in this paper.

We streamline the process of designing for runtime verification, which establishes a foundation on representing
messaging model of CoAP in terms of events, then utilizing CEP techniques to yield success/failure verdicts on
observed behaviors of a SoS. The MBT approach is achieved through deriving an extended UML profile on an open-
source modeling tool [7]. Owing to the domain-specific modeling capability provided with UML profile extension,
we can use sequence diagrams (SD) to describe both the expected behavior and faulty behavior of a system.

4.1. Event Stream Processing for Verification
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Fig. 6: A sequence diagram depicting ”Stuck-At” fault

Let us now describe how we can represent those faults by using SD’s. Note that, in [6] we showed how Esper* can
be utilized in revealing the complex relations between simple events taking place in an IoT network. Fig.6 illustrates
the behavior manifested by the SUT whenever a Stuck-At fault occurs. This scenario depicts that a parking sensor,
Park-x, has a Stuck-At fault, which causes it to report its status as available, even though the space is occupied. The
failure manifests itself when 4 Cars consecutively queries for available space in Locl within 10 minutes, and Parking
system does NOT receive any status update from Park-x for its new status as occupied. This failure raises a problem
in the SPS as directing Cars to occupied spaces supposing they are available.

4 http://www.espertech.com/
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E1: {GET, “car1”, “parking”, “loc1”} | E2: {RSP, “loc1”, parkid} | -E3: {RSP-OBS, “car1”, “loc1”, FULL}
E4: {GET, “car2”, “parking”, “loc1”} | E5: {RSP, “loc1”, parkld} | —-E6: {RSP-OBS, “car2”, “loc1”, FULL}
E7: {GET, “car3”, “parking”, “loc1”} | E8: {RSP, “loc1”, parkld} | -E9: {RSP-OBS, “car2”, “loc1”, FULL}
E10: {GET, “car4”, “parking”, “loc1”}

A car parking scenario consists of tuples of events:
P=¢ E,E,E, > where {3 (i,j,k) | E.msgld = E.msgld & t;< t;< t, & E.carld = E,.carld}

Stuck@Avail Fault occurs when ¢« Ey,E;, ¢ EgEs, ¢ E5,Eg), ¢ Eyp,Eqp2 4 pairs of events occur without any
Epa,k(carld, locld, F) event occurring in between those pairs in 30 minutes.

Fig. 7: Events of a Stuck-At case

4.2. Capturing Complex Relations

The events of Fig.6 can be defined as in Fig.7. By applying the process described in [7], we can have a Esper
statement as in Fig.8. Those EPL [6] statements constitute the runtime monitors as described in Section-2.

insert into E1.unique(carld, locld)

insert into E2.unique(carld, locld)

create TimedEventWin with parkld when select parkld, carld from E2.unique(carld, locld)

insert into TimedEventWin select * from E1.unique(carld, locld) as e1, E2.unique(carld, locld) as e2
where el.carld = e2.carld and el.locld = e2.locld

select parkld from TimedEventWin.length batch(4) where count(parkld) group by parkid

within.time(30min)

Fig. 8: CEP statements for Stuck-At expressed in Esper’s EPL

5. Discussion

Smart parking systems have been deployed in various cities of the world since 1996 with the introduction of
Stadinfo Koln project [12]. The survey conducted by Lin et al. [12] emphasizes the significance of smart parking
solutions in driving the motivation for smart city projects. According to the survey, there are 50000 sensors installed
in city of Moscow, which is the largest installation case for a smart parking solution. Considering the scale of those
parking systems, it’s obvious that engineering such large scale SoS’s require an immense effort in maintaining those,
as well.

Model-driven engineering not only enables the practitioners with an design-based development of systems, but also
promises to perform a seamless maintenance and fault-tolerance experience on those systems. Runtime monitoring of
smart parking systems is a phase of maintenance and verification processes. That’s why the contributions of this paper
equips the practitioners with the ability to deploy un-intrusive monitoring solution on those large-scale systems with
such an ease.

The framework proposed in [7] employs a model-driven engineering solution for runtime monitoring. Our solution
approach adopts an event-based monitoring of network communication messages between CoAP endpoints. The ar-
chitecture uses a complex-event processing (CEP) engine for analyzing the patterns of interactions in order to detect a
deviation from an expected behavior, which is to be specified via a sequence diagram. By using our solution, one can
utilize UML diagrams not only for specifying design of interactions, but also implicitly describe runtime monitors
for examining performance of the final application. The framework seamlessly analyzes the sequence diagrams, and
derives event relations out of those, then automatically generates CEP expressions. Those CEP expressions are later
deployed in a CEP engine for runtime monitoring. As we stated in [7], the complexity of CEP engine for monitoring
a smart parking system is linearly proportional to the unique instances of interactions in the system.



Koray Incki et al. / Procedia Computer Science 134 (2018) 75-82 81

6. Related Work

Monitoring of activities and data has also been studied in provenance domain [13—18]. These studies mainly fo-
cused on W3C metadata standards such as OPM and PROV-O used for defining the lineage of the data. In [19], they
contribute a solution for tackling the challenges introduced with verification of an IoT system running CoAP against
CoAP standard. The proposed framework operates in an offline fashion, which incurs logging of all CoAP traffic, then
exerting verification test scenarios on those raw packages. The test cases that examine observance of certification are
pre-coded and fixed cases. This solution can not be easily ported to an online testing scenario.

Medhat et al. [22] propose to implement such a runtime monitoring approach that buffers any events that take
place in between any two consecutive calls to monitor, and later examined by the monitor whenever it’s called to do
so. In their approach, the monitored entity is the embedded device itself, so they don’t provide a SoS perspective on
interconnection of those devices. Moreover, their solution requires to interfere with the original execution of a device
by instrumenting at the source code level. Therefore, this solution entails more resources in terms of memory and
processing power when compared to our solution.

A predictive runtime monitoring approach has been proposed in [23] for cyber-physical systems (CPS). Their
motivation is to provide a solution that will prevent any failure before happening by using predictive techniques.
In order to achieve this goal, the SUT must be instrumented at the source-code level, which will generate events at
runtime. Again, this solution does not deal with system aspects of IoT devices.

A runtime monitoring architecture has been contributed to the literature by Kane in [24]. In his research, Kane
observes the runtime behavior of a safety-critical vehicular systems by adopting a black-box testing approach. The
solution architecture is built on CAN network by using a passive bus-monitor. The bus-monitor attaches itself to the
network of SUT, and records the runtime behavior as images. Afterwards, the monitor analyzes those recorded images
for revealing any faulty behavior. Although, this research builds on similar principles as ours, we differentiate from
their research in terms of formal specification method, the model-driven engineering approach for generating runtime
monitors, using CEP as runtime monitoring medium, and finally the domain of discourse, IoT. Moreover, our solution
operates on live network traffic, whereas they propose to use recorded images of execution traces of an SUT.

7. Conclusion

RV is a complementary verification technique along-side model-checking and theorem proving. Contrary to the
value it adds to reliability of software systems, it has been poorly utilized in the industry. This is due to the fact
that the formal methods employed in RV has been intimidating the practitioners. In this paper, we explained how we
promote to proliferation of RV by contributing a MBT based runtime monitoring approach. The case study on smart
parking demonstrates that representing CoAP behaviors on SD’s help express them in event domain, whereby, we
utilize CEP statements as runtime monitors. The future holds promising research in extending the work to cover other
fault types and system configurations. The contributions in this research encourages investigation of new approaches
to RV challenges of large-scale systems, especially those that are engineered with SOA principles (e.g., CoAP). That’s
why, we intend to explore portability of the contributions other domains with those principles.
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