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Abstract— This paper presents a biologically-inspired real-
time balance recovery control strategy that is applied to a lower
body exoskeleton with variable physical stiffness actuators at
its ankle joints. For this purpose, a torsional spring-loaded
flywheel model is presented to encapsulate both approximated
angular momentum and variable physical stiffness, which are
crucial parameters in describing the postural balance. In
particular, the incorporation of physical compliance enables
us to provide three main contributions: i) A mathematical
formulation is developed to express the relation between the
dynamic balance criterion ZMP and the physical ankle joint
stiffness. Therefore, balancing control can be interpreted in
terms of ankle joint stiffness regulation. ii) ’Variable physical’
stiffness is utilized in the bipedal robot balance control task for
the first time in the literature, to the authors’ knowledge. iii)
The variable physical stiffness strategy is compared with the
optimal constant stiffness strategy by conducting experiments
on our exoskeleton robot. The results indicate that the proposed
method provides a favorable balancing control performance to
cope with unperceived perturbations, in terms of center of mass
position regulation, ZMP error and mechanical power.

I. INTRODUCTION

Starting with Vukobratovic’s work [1], numerous lower
body exoskeletons have been developed for various applica-
tions, ranging from power augmentation [2] and robot-aided
rehabilitation [3] to paraplegia walking support [4]–[6] and
gait assistance [7]–[10]. An exhaustive review on lower limb
rehabilitation devices is provided in [11].

In exoskeleton actuators, the incorporation of physical
compliance is of importance when it comes to dependability,
low mechanical impedance, locomotion efficiency, inherent
safety and enhanced environmental interaction capabilities
[11]–[13]. Though the software-controlled active compliance
schemes can enhance environmental interaction capabilities
[6]–[8], the rest of the listed benefits may not be acquired due
to fundamental open-loop characteristics of actuators with
low compliance [13]. Consequently, several exoskeletons are
powered via passively compliant actuators [10], [14]–[16].

In this connection, compliant systems with VSAs (Variable
Stiffness Actuator) possess superior characteristics compared
to their unadaptable stiffness counterparts [17]. This is also
evident in biological systems; for instance, the central ner-
vous system modulates muscle impedance to address adap-
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tive control during daily tasks [18], resulting in improved
robustness and efficiency [19]–[21]. In order to emulate such
enhanced characteristics in robotic systems, a wide range of
VSA modules have been developed [17].

Despite the extraordinary cumulative effort in VSA de-
velopment [17], adjustable stiffness property has not been
exploited thoroughly in legged robotics, especially in ex-
oskeleton control. Robots that are equipped with VSAs were
manufactured (such as [16]); however, variable stiffness has
not been vastly exploited in the context of legged robot
control. Hence, this paper aims to contribute in this direction.

As hypothesized in [18]–[20], the stiffness modulation can
be interpreted by means of a control action to cope with
external disturbances. In particular, ankle stiffness regulation
in elderly people is observed to be of importance during
unperceived perturbation of standing motion [20]. Inspired
by the findings in [20], we propose a real-time balance
recovery control strategy for our lower body exoskeleton in
which the ankle stiffness is modulated to handle unperceived
perturbations. Our lower body exoskeleton is powered via
PAMs (Pneumatic Artificial Muscle) and its ankle joints are
driven antagonistically. This allows the real-time simultane-
ous control of both position and physical stiffness at its ankle
joints [22]. Considering these factors, this paper presents
three main contributions:

1) ’Variable physical’ stiffness is utilized in the bipedal
robot balance control task for the first time in the literature,
to the authors’ knowledge. Passively compliant exoskeletons
and humanoids with unadjustable physical stiffness [10],
[23], [24], and software-controlled virtually compliant sys-
tems [25]–[27] demonstrated balancing control; however,
the exploitation of variable physical stiffness has not been
investigated so far. Therefore, this is the first application
of variable physical stiffness for the bipedal system balance
control task.

2) A torsional spring-loaded flywheel model is introduced
by properly combining the concepts in [27] and [28]. In
doing so, the dynamic balance criterion, Zero Moment Point
(ZMP), is mathematically correlated with the variable physi-
cal stiffness. The model comprises both the physical stiffness
and the approximated angular momentum of the system,
which are of importance in describing postural balancing.

3) The variable stiffness strategy is compared with the
optimal constant stiffness strategy [24] via experiments on
the real robot, in terms of CoM (Center of Mass) position
regulation, induced ZMP error, reaction force, mechanical
power and air mass consumption.

This paper is organized as follows. The lower body ex-
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Fig. 1. a) Joint frames of XoR in the sagittal plane. b) The actual robot,
XoR, while standing on its own with a dummy. c) Multi-DoF representation
of XoR in the sagittal plane. Knee and ankle joints are passively compliant.
The arrow on the ankle joint indicates the stiffness variability.
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Fig. 2. The lower body exoskeleton robot XoR, performing self-balanced
squatting motion with a dummy mannequin inside. The PAM-powered robot
demonstrates its feasible position control capabilities [22].

oskeleton platform we used in the experiments is introduced
in section II. The proposed real-time balance recovery control
is explained in section III. Experiment results are discussed
in section IV, and the paper is concluded in section V.

II. XOR: LOWER BODY EXOSKELETON

A bipedal lower body exoskeleton, named XoR, was devel-
oped at the BRI-Computational Neuroscience Labs. of ATR,
to serve as a testbed in our robot-aided rehabilitation, sen-
sorimotor learning and neurophysiology studies [23]. It has
3 active DoFs (Degrees of Freedom) in each leg (6 in total)
with hip-knee-ankle configuration, through flexion/extension.
Hence, it can perform two-legged squatting and balancing
with no support/tethering mechanism, although its motion is
constrained in the x-z plane. Fig. 1 displays the actual robot
and its joint frames. Its mechanical specifications are briefly
given in Table I. Fig. 2 shows three snapshots from the self-
balanced squatting experiments with a dummy mannequin.

The main power source in XoR is PAMs (Pneumatic Arti-
ficial Muscle). They are chosen because of their high power-
to-weight ratio and physical compliance [17]. Both ankle
joints are driven antagonistically via a pair of PAM units
(Festo MAS-10) through flexion/extension. Knee joints are
driven by single PAM units (Festo MAS-40) through flexion.

TABLE I
MECHANICAL SPECIFICATIONS OF XOR LOWER BODY

Hip - Knee length: 390 [mm]
Knee - Ankle length: 380 [mm]
Ankle - sole length: 140 [mm]

Total Weight 22.2 [kg]

Since the current version is mainly designed for the tasks
with no stepping involved, hip joints require the minimum
amount of torque. Thus they are actuated via low power
electrical motors (Maxon, EC-4 pole). This hybrid actuation
approach is considered so as to satisfy dimensional and
weight requirements while achieving physical compliance
and high joint torque output at the ankle and knee joints.

Antagonistically driven ankle joints allow the simultane-
ous control of position (q3) and variable physical stiffness
(k3) [22]. As knee joints are driven via single PAM units, we
can control its position (q2); however, its stiffness (k2) is not
controllable. Using the forward stiffness model and torque
measurements, we can estimate (observe) the changes in knee
joint stiffness [22]. Motor-powered hip joints allow position
control (q1) only. They theoretically possess no physical
compliance and we assume this holds true in practice.

The current version of XoR was primarily designed to
generate motions in the sagittal plane, for instance, sit-
down and stand-down rehabilitation [3], squatting and active
balancing. Therefore, this paper focuses on sagittal plane
motions in the x-z plane, in which the legs are moved in
a synchronized manner. Considering these facts, the robot is
modeled as a 4-link 3-DoF system with a variable stiffness
actuator at the ankle, a passively compliant actuator at the
knee, and a stiff actuator at the hip, as displayed in Fig. 1(c).
As robot legs move synchronously, the ankle joint stiffness
in this model is equally distributed to the left and right ankle
joints of XoR. This approach was practically confirmed to
be viable for a passively compliant biped [29].

III. BALANCE CONTROL BY VARYING ANKLE STIFFNESS

A. Torsional Spring-Loaded Flywheel Model

Explicit mathematical formulation of dynamic equilibrium
for a multi-link passively compliant robot is usually challeng-
ing. Therefore, abstracted models are often used [24]–[28]. In
this study, we use the torsional-spring loaded flywheel model
which combines the concepts introduced in [27] and [28], see
Fig. 3. In this model, the robot is considered as a flywheel
disk with the rotational inertia of If and the total mass of
m. It is in contact with the floor through a telescopic leg
and a rectangular foot. The leg length l and the angle with
the vertical z-axis α describes the CoM position in polar
coordinates. A torsional spring with a variable stiffness of
kf connects the leg and the vertical z-axis. The spring is in
the rest state when α = α0.

This model is chosen due to the fact that it encapsulates
two important characteristics of postural balancing: i) It can
characterize the approximated angular momentum, unlike
point mass pendulums. Although the actual rotational inertia



Fig. 3. Torsional spring loaded flywheel model. The model captures the
approximated angular momentum and physical compliance of the robot.

of the system is joint state-dependent, we can capture a value
of If given the CAD data and motion range [28]. ii) It can
represent the physical compliance of the system through the
use of kf . The flywheel stiffness kf can then be mapped to
ankle joint stiffness k3, as described in the next subsection.

In order to formulate the relation between ZMP and phys-
ical stiffness, we use Lagrangian mechanics. CoM position
in polar coordinates (l, α) are the generalized coordinates.

T =
1

2
m

(
l̇2 + l2α̇2

)
+

1

2
If α̇

2 (1)

U =
1

2
kf (α− α0)

2
+mgl cosα (2)

D =
1

2
bf α̇

2 (3)

In (1)-(3), T , U and D symbolize total kinetic energy,
total potential energy and Rayleigh’s dissipation function.
bf accounts for the frictional and other damping effects
through α. When the Lagrangian is calculated as L = T−U ,
equations of motion can be derived as follows.

d

dt

∂L

∂l̇
− ∂L

∂l
+
∂D

∂l̇
= Fn (4)

d

dt

∂L

∂α̇
− ∂L

∂α
+
∂D

∂α̇
=Mn (5)

Fn and Mn are the external force and moment acting on
the system. When considering the postural balance, only eq.
(5) is relevant, as the external moment in the sagittal plane
can be expressed in terms of x-axis ZMP (Xzmp) and z-axis
external force (Fnz); see Fig. 3.

Mn = FnzXzmp (6)

Combining (5) and (6), the equation of motion is derived.

FnzXzmp = (ml2 + If )α̈+ 2mll̇α̇+ kf (α− α0)

+ bf α̇−mgl sinα (7)

In (7), If α̈ corresponds to the rate change of angular
momentum that is associated with the rotational inertia.

B. Mapping from Flywheel Stiffness to Ankle Joint Stiffness

Equation (7) expresses the mathematical relation between
the dynamic balance criterion ZMP (Xzmp) and flywheel
stiffness (kf ), in addition to other terms. Thus, mapping from
flywheel stiffness (kf ) to ankle joint stiffness (k3) is required
to construct the mathematical relation between Xzmp and k3.

kf = (Jpq(q)
T )#Kq(Jpq(q))

# (8)

In (8), the superscript # stands for the Moore-Penrose
pseudo inverse. As shown in Fig. 3, the model includes only a
single torsional spring through α, i.e., there is no translational
spring through l. Therefore, stiffness matrix of the model
solely includes kf . Kq in (8) is the stiffness matrix of XoR,
whose diagonal elements are compliant joint stiffness values
(k2, k3). As explained in section II, hip joints do not include
physical compliance, thus they are not considered in the
mapping. Joint state (q) dependent Jpq(q) is the Jacobian
matrix defined between α and joint coordinates.

Jpq(q) =

[
∂α

∂q2

∂α

∂q3

]
(9)

The kinematic relation between α and joint coordinates
can be obtained through coordinate transformation from
polar to Cartesian coordinates and forward kinematics.

Given (9), solving (8) yields k3 in terms of k2 and kf .

k3 =
kf

(
J2
pq1 + J2

pq2

)2 − k2J2
pq1

J2
pq2

(10)

Jpq1 and Jpq2 are the first and second elements of Jpq(q)
and can be computed using joint angle measurements, q.
As described in section II, changes in k2 can be estimated
using the respective PAM model parameters and torque
measurements [22]. Afterward, estimated k2 can be inserted
to (10), together with the desired kf , to achieve the mapping
kf 7→ k3.

C. ZMP-based Balance Control Strategy via Ankle Stiffness

In order to distinguish the torques related to Xzmp and
kf , we define Tc which includes all the torque terms in (7),
except the ones related to flywheel stiffness and x-axis ZMP.

Tc = (ml2 + If )α̈+ 2mll̇α̇+ bf α̇−mgl sinα (11)

A ZMP feedback scheme with a PD controller is con-
structed so as to introduce real-time sensory feedback for
the ZMP regulation. The ZMP feedback controller output is
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Fig. 4. ZMP-based real-time balance control scheme, in which variable
ankle stiffness is utilized. Superscripts ref and cmd denote reference and
command (controller output) signals. Note that position and stiffness control
of PAMs [22] is not illustrated here.

defined as Xcmd
zmp . With the ZMP feedback controller in mind,

the final derivation of kf is obtained by using (7) and (11).

kf =
FnzX

cmd
zmp − Tc

α− α0
(12)

The control scheme is given in Fig. 4. For the implementa-
tion of this controller, Tc is computed from the actual l and
α states, computed via joint angle measurements. Second
derivatives are computed using approximate differentiation.
Fnz and Xzmp are obtained via sensory measurement. PD
gains are tuned empirically and kept the same for all exper-
iments. Once kf is obtained, eq. (10) is utilized to compute
the corresponding k3 trajectory. Simultaneous position and
stiffness control is achieved by the method explained in [22].

IV. EXPERIMENT RESULTS AND DISCUSSION

In order to validate the balance controller’s performance,
we conducted two types of experiments on our lower body
exoskeleton XoR. 1) The robot is balanced using the pro-
posed method in which variable ankle stiffness is utilized.
This experiment protocol is called VAR. 2) The robot is
balanced using the optimal constant stiffness value [24]. This
experiment protocol is called OPT. In [24], Mosadeghzad et
al. used an abstracted model that allows the computation of
optimal constant ankle stiffness for bipedal robot balancing.

In both experiment protocols, the following conditions are
identically met.
a) A constant standing position of l = 0.65 [m] and α = 4.8o

are input as the CoM position reference.
b) A 1.25 [m]-long pendulum with a tip mass of 4 [kg] was
released towards the approximate robot CoM. The pendulum
tip mass was released from an angular distance of 15o with
no initial velocity. It did hit the robot when the angular
distance is around 0o.
c) The pendulum was released 3 consecutive times. In
between each release, an equal amount of delay was applied.
d) The robot is balanced in 3-D, without any tethering or
supporting mechanism. It also carried a large bundle of
electrical and pneumatic cables at the back on its own,
without losing its balance in both cases.

The main result is displayed in Fig. 5. In these plots,
solid green and purple lines depict the experiment results
obtained from OPT and VAR, respectively. Yellow hatched
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angular deflections). e) Total mechanical power variations. f) Normalized
air mass consumption plots.



areas cover the periods in which the robot was perturbed, and
then subsequently it reacted to recover from the perturbation.

Horizontal reaction force responses in Fig. 5(a) indicate
that the robot was perturbed in terms of equal disturbances
in each experiment protocol (see the peaks indicated with
circles). Right after the perturbation, the horizontal reaction
force response varied between -50∼75 [N], in the case of
OPT. This variation was more limited in the case of VAR;
it varied between ±24 [N] and settled comparatively faster.

Ankle joint stiffness variations can be viewed in Fig. 5(b).
In the case of OPT, the optimal constant stiffness obtained
through the computation in [24] was utilized. This value is
58 [Nm/rad] for XoR. In the case of VAR, the ankle joint
stiffness was varied in accordance with the balance control
strategy, disclosed in section III. As the robot was per-
turbed by the pendulum swings, it changed between 48∼58
[Nm/rad]. When undisturbed, it stayed constant around 56
[Nm/rad] which is within the vicinity of the optimal stiffness.

x-axis ZMP error variations are given in Fig. 5(c). After
being perturbed, peak-to-peak x-axis ZMP error was ob-
served to be within -4∼6 [cm] for the case of OPT. This
variation was 70% less for the case of VAR; it varied between
-1∼2 [cm]. In both experiments, the robot maintained the
dynamic balance, as the ZMP error always stayed within the
support polygon envelope.

Flywheel angle deflection, CoM position error in other
words, is provided in Fig. 5(d). Similar to the other measure-
ments, the α angle needed to deflect much more in the case of
OPT. This is due to the fact that the constant stiffness strategy
is less reactive compared to the variable stiffness strategy; the
CoM needs to travel more to handle perturbations.

Total mechanical power is depicted in Fig. 5(e). For
this criterion, we obtained approximately 50% decreases in
peak-to-peak mechanical power measurements. As the CoM
needed to travel less for the case of VAR, the required me-
chanical power was reduced. This appears to be an important
advantage of using the variable stiffness strategy.

Fig. 5(f) displays the normalized air mass consumption.
Observing this figure, we realized that we needed 70% more
air mass supply for the case of VAR. This is due to the
fact that simultaneous position and variable stiffness control
exploits the actuator redundancy in the antagonistic setup,
and demands more changes in the PAM pressure levels.
Consequently, it consumes more air supply. Therefore, this
appears to be the only negative result for the VAR strategy.

Fig. 6 shows a phase diagram for a single perturbation
and the subsequent recovery period. It was obtained by using
the experimental flywheel angle data in Fig. 5(d). After the
perturbation, both strategies followed a similar trajectory
up to an extent. Afterward, the variable stiffness strategy
diverged and settled much faster, as the CoM followed a
shorter trajectory to converge to the quiet standing state. The
same convergence took a longer period for the OPT, it settled
after following a longer path.

To further validate the variable stiffness strategy for vari-
ous initial conditions, a series of numerical simulations are
conducted. Fig. 7 illustrates the phase diagrams. As a result,

the variable stiffness strategy enabled the CoM to settle faster
as it followed shorter paths while converging to the quiet
standing state.

Examining Fig. 4, one can see that the variable stiffness
strategy utilizes a ZMP feedback strategy and it depends on
the ankle joint stiffness variation in a way to minimize Xzmp

error. The ZMP feedback controller output (Xcmd
zmp), which is

obtained via the multiplication of PD block and Xzmp error,
needs to be minimized. In this case, eq. (12) tells us that
minimizing kf , and therefore k3, would result in minimizing
Xcmd

zmp . This is why the ankle stiffness temporarily went down
(see Fig. 5(d)) as the robot was perturbed, in the case of VAR.

In the case of OPT, k3 stays constant. In order to cope
with the perturbation, the angular deflection, (α−α0), must
be relatively larger (see eq. (12)). Due to this, the CoM
travels more, resulting in a longer convergence to the quiet
standing state. Considering this factor, it is safe to claim
that the variable stiffness strategy improves the convergence
speed, and decreases CoM and ZMP errors. Consequently, it
provides improved balancing characteristics compared to the
optimal constant stiffness method. In exchange, it demands
more air mass supply, which appears to be the price to be
paid to obtain improved balancing characteristics.

V. CONCLUSION AND FUTURE WORK

We proposed a novel real-time balance recovery method
which exploits the ’variable physical’ stiffness for the first
time in the literature. It combines the variable ankle stiffness
property with a ZMP feedback controller, so as to achieve
active balancing. Compared to the optimal constant stiffness
strategy, it showed superior performance in terms of con-
vergence speed, decreased CoM/ZMP error and reduced me-
chanical power requirement. Increased air mass consumption
rate, on the other hand, appeared to be a limitation.

As the future work, the controller will be extended in a
way so as to consider the human-robot co-existence. Changes
in the human state is planned to be monitored so that
the robot will react accordingly to recover from possible
unbalanced situations.
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