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Department of Computer Science
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ABSTRACT

Sparse matrix-vector multiplication (spMV) is a kernel operation in scientific com-

putation. There exist problems where a matrix is repeatedly multiplied by many

different vectors. For such problems, specializing the spMV code based on the matrix

has the potential of producing significantly faster code. This, in fact, has been one of

the motivational examples of program generation. Using program generation, spMV

code can be unfolded fully to eliminate loop overheads as well as enable high-impact

optimizations. In this work we focus on specialization of spMV by unfolding the code

according to a given matrix. We provide an experimental evaluation of performance

using 70 sparse matrices collected from real-world scientific computation domains. We

present optimizations with which high-performant assembly code can be generated

rapidly without having to generate source-level code and go through all the phases

of a general-purpose compiler. We finally present how one of the optimizations we

studied can be implemented as a code-transforming pass.
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ÖZETÇE

Seyrek matris-vektör çarpımı (spMV) bilimsel hesaplamalarda kullanılan çok temel

bir işlemdir. Kimi bilimsel problemlerde aynı matris farklı vektörlerle tekrar tekrar

çarpılmaktadır. Bu problemlerde kullanılan spMV kodunu matrise göre özelleşmiş bir

şekilde optimize edersek çok ciddi performans artışları sağlanabilir. Bunu gerçekleştirmek

için program üretimi teknikleri uygundur. Program üretimi ile spMV kodundaki

döngü yükleri kaldırılabilir, ayrıca etkili eniyilemeler uygulanabilir. Bu çalışmada,

spMV kodunun tam döngü açılımı vasıtasıyla çarpımı yapılmak istenen matrise göre

özelleştirilmesini inceledik. Gerçek örneklerden oluşan 70 adet matris üzerinde deney-

sel performans çalışmaları yaptık. Ayrıca, kaynak kod üretimi ve sonrasında genel

amaçlı derleyici kullanımına gerek bırakmayacak kadar yüksek kaliteli makine ko-

dunu hızlı bir şekilde üretmemizi sağlayacak eniyilemeler sunuyoruz. Son olarak da,

tanımladığımız eniyilemelerden birinin kod dönüşümü şeklinde nasıl tanımlanabileceğini

gösteriyoruz.

v



ACKNOWLEDGMENTS

I would like to thank Assistant Professor Barış Aktemur for his support and ad-
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CHAPTER I

INTRODUCTION

Sparse matrix-vector multiplication (spMV) is a kernel operation used intensively in

many scientific domains such as finite element modeling, circuit design, simulation,

etc. The real-world use-cases of spMV usually involve a large number of multipli-

cations with big matrices. Therefore, optimizing spMV is desirable and has a wide

impact.

A major factor in the performance of spMV is memory [1, 2]. SpMV usually suffers

from the CPU-memory bottleneck: CPU waits for data to arrive from the memory.

Well-known techniques such as hardware/software prefetching [3] fall short in fixing

the problem because the sparsity of the matrix in spMV creates irregular memory

access patterns when the matrix’s elements are spread out in non-regular ways.

Optimization of spMV has been studied extensively; a complete overview of the

literature, even if it were possible, would be out of the scope of this work. Previous

approaches in general focus on reducing the CPU-memory bottleneck by improving

the use of the CPU cache and/or reducing the amount of data required for the opera-

tion. To this aim, several matrix data representations and custom optimizations have

been investigated to make spMV more efficient for various targets such as modern

multicore CPUs and GPUs [4, 5, 6, 7]. Among these approaches, generative program-

ming aims to optimize spMV by specializing the multiplication for a given matrix [8].

In this approach, specialization helps reduce the number of executed instructions as

well as improve the memory access patterns.

Generative approaches are particularly useful for the problems where the same

matrix is multiplied with many different vectors (so that the cost of specialization
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pays off). This is the case seen in, for instance, the so-called Krylov subspace prob-

lems where iterative methods like conjugate gradient or generalized minimal residual

method (GMRES) are used. In these contexts, a sparse matrix (with fixed values,

or variable values but fixed non-zero positions) is multiplied with several hundreds

of vectors; the exact number of iterations depends on the parameters of the actual

problem, such as the desired accuracy and the matrix preconditioner [9].

In [8], several generative methods have been investigated to address the optimiza-

tion of spMV. One of these methods is to unfold the spMV loop. This method was

also recently formulated as a Shonan Challenge in the context of Hidden Markov

Modeling [10]. A drawback of unfolding is that the produced code may become too

long. This, in return, may have a negative impact on the instruction-cache behaviour.

1.1 Contributions

In this dissertation, we focus on unfolding the spMV loop. We make the following

contributions:

• Based on experiments, we show that unfolding not always gives speedup. There-

fore, although it provides a simple and easy-to-explain example to motivate

program generation, it should be used with a grain of salt for large, real-world

matrices.

• We examine five low-level (i.e. at the machine instruction level) optimizations

that aim to increase the speed of spMV code. In four of the five optimizations,

we observe performance improvements. We argue that by performing these

optimizations on a straightforwardly generated code, it is possible to achieve

the performance of code that is generated by an industry-level compiler. This

way, time-taking analyses and transformations may be by-passed, and code can

be generated much rapidly.
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• The optimizations we study are not dependent on any particular matrix; they

can be integrated into compilers. As a proof of concept, we provide an im-

plementation for one of the optimizations as a pass in the LLVM compiler

infrastructure [11, 12]. Being able to define optimizations modularly is crucial

for their reusability.

A major obversation we make in this thesis is that reducing the code size has

substantial impact on the performance. Code size reduction optimizations are partic-

ularly important for embedded devices with limited-storage [13]. Those optimizations

consider a wide range of code in general. In this thesis, we have focused on low-level

investigation of the code that is the outcome of unfolding. In-depth performance

evaluation of other specialization methods is left as a future work. The optimizations

we studied are appropriate for low-level code generation after higher-level transfor-

mations such as those in [14] are considered.

1.2 Sparse Matrix-Vector Multiplication

Sparse matrices are the matrices that contain a large number of zero elements (e.g.

90%). While a dense matrix is typically stored as a two-dimensional array, sparse

matrices are stored in custom formats that provide space savings. Condensed sparse

row, abbreviated as CSR, is such a format.

CSR format represents a matrix using three arrays, as shown in Figure 1:

• vals array contains the non-zero values of the matrix in row-major order.

• cols array contains the column indices of the non-zero values stored in the vals

array.

• rows array contains, for each row of the matrix, the starting index of the ele-

ments of the row in the vals array.
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· · 0.1 · 0.2 · 0.3 ·
· 0.4 · · · · · ·
· · · · · · 0.5 0.6

0.7 · · · · · · ·
· 0.8 0.9 · · · · ·

1.0 1.1 · 1.2 1.3 · · ·
· · 1.4 · · · · ·
· · · 1.5 · · · ·


0 3 4 6 7 9 13 14 15

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0 1.1 1.2 1.3 1.4 1.5

2 4 6 1 6 7 0 1 2 0 1 3 4 2 3

rows = 

vals = 

cols = 

Figure 1: A sample matrix and its representation in the CSR format.

for (int i = 0; i < N; i++) {

double ww = 0.0;

for (int k = rows[i]; k < rows[i+1]; k++) {

ww += vals[k] * v[cols[k]];

}

w[i] += ww;

}

Figure 2: SpMV implementation that computes w← w+Mv, where M is represented
using the rows, cols, and vals arrays according to the CSR format. This code will
be refered as PlainSpMV.

Assuming that the dimension of the matrix is N × N , and it has NZ non-zero

elements, the vals and cols arrays are of length NZ, whereas the rows array is of

length N + 1. The last element in the rows array (i.e. the “+1”), denotes the end

position of the last row. Figure 1 is an example of the CSR representation.

Based on the CSR format, a sparse matrix-vector multiplication is implemented as

given in Figure 2, where v is the input vector (assumed to be of length N), and w is the

output vector (again, assumed to be of length N). The code calculates w ← w + Mv,

where M is represented using the rows, cols, and vals arrays.
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In this dissertation we always assume that the matrix elements are double-precision

floating point numbers, and all the matrices are square.

1.3 Unfolding SpMV

Program generation is based on the idea that if a subset of the inputs to a program

are available, the program can be optimized using the available information until the

rest of the inputs become available. Many iterative problems in scientific computation

require the multiplication of a single matrix with many different vectors [9]. That is,

the matrix is static while the input vector is dynamic. Then, the PlainSpMV code

given in Figure 2 can be optimized with respect to the matrix, so that anytime the

matrix is to be multiplied with a vector, the optimized version can be used for faster

execution.

The most straightforward optimization would be to unfold the for-loops in Figure

2. (For other possible methods, see [8].) A variation of unfolding in the context of

Hidden Markov Models was also formulated as a Shonan Challenge [10]. Unfolding

of vector-vector multiplication is a well-known motivational example in the area of

program generation [15].

Unfolding the code for the matrix of Figure 1 gives the code in Figure 3. With

unfolding, we basically obtain a statement for each row of the matrix. From now on,

we will refer to this method of specializing the PlainSpMV code as Unfolding.

Unfolding the loop frees us from the overheads of the loop. The elements of the

input array v are no longer referenced indirectly via the cols array; instead, the

indices of v are embedded in the code. The drawback of unfolding is that it results in

very long code for large matrices. When the executed code is this long, some compilers

may give up on some of the optimizations that they would otherwise perform. Also,

the misses in the instruction cache may remarkably decrease efficiency.
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w[0] += 0.1 * v[2] + 0.2 * v[4] + 0.3 * v[6];

w[1] += 0.4 * v[1];

w[2] += 0.5 * v[6] + 0.6 * v[7];

w[3] += 0.7 * v[0];

w[4] += 0.8 * v[1] + 0.9 * v[2];

w[5] += 1.0 * v[0] + 1.1 * v[1] + 1.2 * v[3] + 1.3 * v[4];

w[6] += 1.4 * v[2];

w[7] += 1.5 * v[3];

Figure 3: Unfolding the loops in Figure 2 for the matrix in Figure 1. This way of
unfolding will be refered as Unfolding.

1.3.1 Remarks on the Performance of Unfolded Code

We have observed that Unfolding makes a big difference in the performance if the

matrix has few distinct nonzero values (we show benchmarking results in Section 1.5).

Here we shed some light on why this is the case.

Suppose that after unfolding we have the following two statements in the code:

w[10] += 0.9*v[2] + 0.9*v[4] + 0.5*v[7] + 0.3*v[8];

w[11] += 0.5*v[7] + 0.3*v[8] + 0.9*v[14];

In the object code produced by the compiler, the matrix values are emitted to the

data section of the code, and loaded from there using a move instruction, just like

reading values from an array (we have verified this for icc, gcc, and clang). Therefore,

the code given above is essentially equivalent to putting the matrix values into an

array, and reading the values from there. However, because the matrix values appear

as constants in the code, instead of blindly emitting the values into the data section,

the compiler may emit the distinct nonzero values only. This creates a pool from

where values are retrieved. So, the compiler may output object code as if the source

code were as given below. This optimization significantly reduces the loads from the

memory if the distinct nonzero values are few.
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double M[7] = {0.9, 0.5, 0.3};

w[10] += M[0]*v[2] + M[0]*v[4] + M[1]*v[7] + M[2]*v[8];

w[11] += M[1]*v[7] + M[2]*v[8] + M[0]*v[14];

Furthermore, because the nonzero values are constants, and, again, if the number

of distinct values are few, the compiler may find opportunities for arithmetic opti-

mizations. A potential optimization is the reverse distribution of multiplication over

addition; i.e. c× a+ c× b = c× (a+ b). When applied, this optimization reduces the

number of floating point multiplication instructions.

Another optimization is to eliminate multiplication when the nonzero value is the

identity element 1, i.e. 1×a = a. This further reduces the number of multiplications.

A similar optimization is to emit a subtraction instruction for −1 × a, instead of

multiplication.

Yet another potential optimization is common subexpression elimination (CSE).

When the distinct values are few, there may be many cases where an expression is

detected in many places. The expression M[1]*v[7] + M[2]*v[8] in the code above

is an example of this.

After applying CSE and arithmetic optimizations, the compiler would be able to

emit code equivalent to the following:

double M[7] = {0.9, 0.5, 0.3};

double temp = M[1]*v[7] + M[2]*v[8];

w[10] += M[0]*(v[2] + v[4]) + temp;

w[11] += temp + M[0]*v[14];

When the distinct nonzero values are not few, applying CSE and creating a pool

of distinct values may have negative impact on the performance because these trans-

formations change the order of the memory addresses loaded. This may reduce the

cache utilization. In the original PlainSpMV code (Figure 2), the values of the matrix

7



w[0] += vals[0] * v[2] + vals[1] * v[4] + vals[2] * v[6];

w[1] += vals[3] * v[1];

w[2] += vals[4] * v[6] + vals[5] * v[7];

w[3] += vals[6] * v[0];

w[4] += vals[7] * v[1] + vals[8] * v[2];

w[5] += vals[9] * v[0] + vals[10] * v[1]

+ vals[11] * v[3] + vals[12] * v[4];

w[6] += vals[13] * v[2];

w[7] += vals[14] * v[3];

Figure 4: Unfolding the loops in Figure 2 according to the positions of the matrix in
Figure 1; this version will be refered to as UnfoldingV2.

are loaded in strict consecutive order, giving as good cache utilization as possible for

the vals array.

1.4 Unfolding According to the Matrix Pattern

Unfolding, as shown in Figure 3, uses all the matrix data. So, to be able to unfold the

code, all the matrix data have to be available. There exist, however, pattern matrices

in the scientific computing area. Pattern matrices are those where the positions of

the non-zero values are known, but the actual values are not determined yet. There

are also scientific problems where the values of elements of a matrix change from one

iteration to the other, while the positions of these elements stay the same. For these

cases, it may be preferable to unfold the PlainSpMV code according to the positions

of nonzeros without embedding the actual values in the code. In this case, the values

are read from the vals array. Figure 4 shows the obtained code when unfolding is

done in this manner for the matrix in Figure 1. From this point on, we refer to this

version of unfolding as UnfoldingV2.

1.5 Performance Evaluation of Unfolding and UnfoldingV2

We generated code using Unfolding and UnfoldingV2 methods for 70 matrices arbi-

trarily selected from the Matrix Market [16] and the University of Florida collection
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[17]. All the matrices are sparse and square. They are used in a variety of real world

applications. The number of nonzero element of these matrices vary between ∼2000

and 50,000. In our environment, unfolding rarely brings speedup for matrices that

have more than 50,000 elements; therefore we did not include these matrices in our

study. Our matrix set contains pattern matrices; these are annotated with a (p) mark

next to their name.

In our experiment, we generated source code for each matrix using the Unfolding

and UnfoldingV2 approaches; in addition, there is the PlainSpMV code. Source codes

are then compiled using the icc compiler version 14.0 with the -O3 -no-vec flags (i.e.

vectorization is turned off). Then, we executed the three versions of multiplication

for each matrix for several thousand times, measured the elapsed time, repeated this

for 5 times, and used the minimum of those times. How many times to execute the

multiplication function was determined according to the matrix size: If the number

of nonzero values is less than 5,000, we repeated the functions for 500,000 times; if

there are more than 5,000 but fewer than 10,000 elements, the number of iterations

was 200,000; for matrices that have more than 10,000 elements, we repeated the code

for 100,000 times. We determined these number of iterations so that a run for each

matrix is about 2 seconds or more; this allows for reliable time measurements with

negligible noise. All the code was ran single-threaded. The experiment was done on

an unloaded machine that has an Intel Xeon E5-2620 2.00 GHz CPU with 32K L1

I/D cache, 256K L2 cache, 15M L3 cache. Before each multiplication, we zero-out the

output vector w. The source of pattern matrices, which are annotated with a (p) next

to their name, do not contain any values; for these matrices we generated nonzero

values where all the values are different from each other.

The speedups obtained by unfolding with respect to PlainSpMV are given in Tables

1 and 2. For each matrix, we list the number of rows, number of nonzero values,

number of distinct values, the time it took to run PlainSpMV (in microseconds), the
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ratio of PlainSpMV time to Unfolding’s time, and finally the ratio of PlainSpMV to

UnfoldingV2’s time. Having a ratio larger than 1 means that unfolding is faster than

PlainSpMV. These cases are marked in bold font in the tables. The tables are sorted

in ascending order according to the number of nonzero values.

Based on the data given in Tables 1 and 2, Unfolding gives an average perfor-

mance of 1.46x the performance of PlainSpMV for 70 matrices. In 50 of these 70

matrices we see a speedup; in 20 there is slowdown. For all the matrices where

the ratio of distinct values to the total number of nonzeros is less than 1%, there

is speedup. These matrices are: olm5000, gr 30 30, saylr4, G33, rdb1250, cdde3,

gre 1107, jpwh 991, M80PI n1, rw5151, and orsreg 1. In fact, for these matrices, the

performance of Unfolding is remarkably good: 2.26x on the average.

It is not surprising that UnfoldingV2 gives worse performance than Unfolding.

On the average, UnfoldingV2 performs 1.03x the performance of PlainSpMV. This

time, speedup is observed for only 29 matrices out of 70. However, the most striking

remark about UnfoldingV2 is that for all the pattern matrices (there are 17) except

lshp3466 and dwt 2680, UnfoldingV2 gives speedup with respect to PlainSpMV. For

pattern matrices, the average performance is 1.59x.

Our conclusion from this experiment is that unfolding as a specialization method

for spMV does not necessarily give speedup; it should not be applied blindly. That

said, significant speedup can be expected when there are few distinct values in the

matrix. Finally, UnfoldingV2, i.e. unfolding according to the matrix pattern, usually

provides substantial speedup for pattern matrices.
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dwt 419 (p) 419 1991 1991 5.8 1.72 1.73
str 600 363 3279 1972 6.1 1.29 1.15
minnesota (p) 2642 3303 3303 24.5 2.68 2.99
bcspwr06 (p) 1454 3377 3377 19.0 2.69 2.70
west0989 989 3518 1776 10.5 2.02 1.62
bfw398a 398 3678 92 5.9 1.23 0.89
bcsstk19 817 3835 1852 7.4 1.21 1.14
bcspwr08 (p) 1624 3837 3837 21.6 2.69 2.71
ck656 656 3884 3054 6.2 0.98 0.94
can 634 (p) 634 3931 3931 7.7 1.16 1.10
tub1000 1000 3996 1990 7.4 1.24 1.09
G33 2000 4000 2 13.0 2.37 1.25
bcsstk06 420 4140 1045 6.4 1.02 0.96
hor 131 434 4182 1553 6.4 1.06 0.88
gr 30 30 900 4322 2 8.0 4.04 1.01
pde900 900 4380 3248 8.1 2.74 0.94
cdde3 961 4681 5 8.7 3.50 0.84
bp 1600 822 4841 1803 13.2 1.86 1.46
email (p) 1133 5451 5451 18.3 1.55 1.66
steam2 600 5660 1071 8.6 0.93 0.88
gre 1107 1107 5664 11 14.5 1.82 1.21
fs 760 1 760 5739 4743 9.2 1.50 0.78
dwt 1242 (p) 1242 5834 5834 14.0 1.66 1.21
e05r0000 236 5846 1269 6.4 0.68 0.64
fpga dcop 51 1220 5892 953 14.5 1.63 1.36
jpwh 991 991 6027 14 14.5 2.14 1.02
EVA (p) 8497 6726 6726 37.3 1.77 1.76
can 1072 (p) 1072 6758 6758 15.5 1.19 1.12
rdb1250 1250 7300 6 12.6 1.45 0.80
west2021 2021 7310 4235 21.2 1.61 1.22
mahindas 1258 7682 3291 13.9 1.28 0.85
GD06 Java (p) 1538 8032 8032 23.2 1.28 1.24
nos3 960 8402 149 11.9 1.04 0.71
blckhole (p) 2132 8502 8502 20.5 1.00 1.02
c-18 2169 8657 4861 18.7 1.42 1.06

Table 1: (Part 1 of 2) Speedups obtained by Unfolding and UnfoldingV2, with
respect to PlainSpMV’s performance.
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tols4000 4000 8784 3188 23.3 2.61 0.96
pores 2 1224 9613 5407 14.5 0.80 0.64
spiral 1434 9831 3089 15.6 1.08 0.63
M80PI n1 4028 9927 70 25.8 2.11 0.86
dw2048 2048 10114 693 23.8 2.02 0.85
watt 1 1856 11360 6524 24.5 0.88 0.84
watt 2 1856 11550 6589 24.4 0.83 0.84
bayer09 3083 11767 5003 28.8 1.09 0.86
Pd 8081 13036 432 84.2 2.80 1.78
add20 2395 13151 7390 32.4 1.04 0.89
lshp3466 (p) 3466 13681 13681 34.8 0.91 0.91
dwt 2680 (p) 2680 13853 13853 34.1 0.93 0.93
as-735 (p) 7716 13895 13895 87.3 1.83 1.84
orsreg 1 2205 14133 111 24.3 2.35 0.63
ca-GrQc (p) 5242 14496 14496 63.0 1.37 1.37
adder trans 02 1814 14579 10327 30.0 0.85 0.78
bcsstk26 1922 16129 13480 32.3 0.84 0.79
plat1919 1919 17159 17120 27.6 1.06 0.61
wang2 2903 19093 1727 34.3 1.57 0.64
coater1 1348 19457 1380 27.2 0.69 0.52
add32 4960 19848 13883 62.6 1.17 1.07
olm5000 5000 19996 6 38.2 1.10 0.71
rw5151 5151 20199 150 41.1 2.25 0.63
sherman5 3312 20793 15096 36.5 0.70 0.69
saylr4 3564 22316 11 45.8 1.68 0.72
Oregon-1 (p) 11492 23409 23409 136.4 1.65 1.64
mcfe 765 24382 24381 26.4 0.41 0.40
lnsp3937 3937 25407 4176 42.9 0.69 0.63
fidap002 441 26831 11118 26.1 0.36 0.35
bcsstk14 1806 32630 14044 45.0 0.56 0.54
cavity05 1182 32632 3280 36.7 0.47 0.42
p2p-Gnutella04 (p) 10879 39994 39994 134.7 1.05 1.05
mbeause 496 41063 2100 41.3 0.44 0.34
cry10000 10000 49699 49599 88.7 1.96 0.62
mbeaflw 496 49920 19778 48.4 0.33 0.33

Table 2: (Part 2 of 2) Speedups obtained by Unfolding and UnfoldingV2, with
respect to PlainSpMV’s performance.
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CHAPTER II

LOW-LEVEL OPTIMIZATIONS

In Chapter 1 we have shown how unfolding can be done at the source level. Once

generated, the code is fed into a compiler so that the compiler can apply optimizations

and finally convert the code into machine instructions by running analyses such as

register allocation and instruction selection. Considering that code generation will

be performed at runtime in many cases, executing all the phases of a compiler (from

parsing at the front-end down to native code generation at the back-end) is a costly

operation.

In Tables 3 and 4, we show how much time is spent to compile the source codes

generated using the Unfolding and UnfoldingV2 methods. Here, the codes are com-

piled using icc with the -O3 -no-vec flags. Compilation times have been measured

using the time command. We report the measured time, and also the ratio of this

time to the time of executing PlainSpMV once. The latter value is provided to give

an impression of how many times we could have multiplied the matrix until the gen-

erated code becomes available; it is an underestimation because we do not include

the cost of generating the source codes; only the compilation times are reported.

Generating the code at runtime using the naive “produce a source file and feed it

to the compiler” approach is not feasible for unfolded spMV because the generated

code is long and the compilation takes very long time. While an spMV multiplication

is done in the orders of microseconds, compilation takes time in the order of seconds.

Therefore, we ask the question “How rapidly can we generate code at runtime?” To

this end, we have written a purpose-built compiler that takes a matrix as an input

and produces a dynamically loadable object file at runtime. We use the LLVM [11, 12]

13



Matrix PlainSpMV Unfolding UnfoldingV2 Unfolding/ UnfoldingV2/
(µs) compilation (s) compilation (s) PlainSpMV PlainSpMV

add20 32.4 3.49 4.41 107746 136235
add32 62.6 4.94 6.23 78927 99446
adder trans 02 30.0 5.06 6.33 168907 211042
as-735 (p) 87.3 4.67 5.81 53472 66522
bayer09 28.8 3.54 4.24 122928 147340
bcspwr06 (p) 19.0 1.25 1.54 65467 80927
bcspwr08 (p) 21.6 2.15 2.57 99314 119038
bcsstk06 6.4 1.25 1.14 193841 177079
bcsstk14 45.0 8.44 9.56 187433 212353
bcsstk19 7.4 0.95 1.09 127306 146550
bcsstk26 32.3 3.75 4.31 115941 133278
bfw398a 5.9 0.98 1.26 167298 215268
blckhole (p) 20.5 3.87 2.63 188467 127984
bp 1600 13.2 1.44 1.93 109114 146753
c-18 18.7 1.69 2.33 90674 124523
ca-GrQc (p) 63.0 4.35 5.36 68994 85060
can 634 (p) 7.7 1.44 1.16 187448 150584
can 1072 (p) 15.5 1.59 1.93 103035 124767
cavity05 36.7 12.21 13.19 332579 359418
cdde3 8.7 0.53 1.76 60345 201875
ck656 6.2 0.91 1.08 147032 174379
coater1 27.2 6.24 7.72 229343 283893
cry10000 88.7 3.89 13.81 43897 155770
dw2048 23.8 2.53 3.80 106382 159552
dwt 1242 (p) 14.0 1.64 1.81 117146 129518
dwt 2680 (p) 34.1 6.67 3.84 195752 112768
dwt 419 (p) 5.8 0.56 0.67 95332 115014
e05r0000 6.4 2.17 2.36 338498 368944
email (p) 18.3 1.66 1.96 90878 107336
EVA (p) 37.3 2.78 3.71 74299 99279
fidap002 26.1 13.76 16.17 527212 619641
fpga dcop 51 14.5 1.52 1.79 104411 123176
fs 760 1 9.2 1.31 2.00 142125 216881
G33 13.0 1.46 1.82 112279 139889

Table 3: (Part 1 of 2) The time it takes to compile generated code for each matrix
using the Unfolding and UnfoldingV2 methods.
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Matrix PlainSpMV Unfolding UnfoldingV2 Unfolding/ UnfoldingV2/
(µs) compilation (s) compilation (s) PlainSpMV PlainSpMV

GD06 Java (p) 23.2 2.59 2.81 111654 121224
gr 30 30 8.0 0.46 1.43 56675 177980
gre 1107 14.5 1.49 1.82 102209 124755
hor 131 6.4 1.18 1.35 184698 211240
jpwh 991 14.5 1.51 2.49 104341 172221
lnsp3937 42.9 5.80 6.76 135285 157852
lshp3466 (p) 34.8 6.21 4.28 178706 122991
M80PI n1 25.8 2.15 3.57 83359 138504
mahindas 13.9 2.06 2.95 148849 212631
mbeaflw 48.4 37.15 44.36 767280 916011
mbeause 41.3 24.78 36.61 599859 886135
mcfe 26.4 9.66 11.22 365681 424803
minnesota (p) 24.5 1.44 1.85 58701 75252
nos3 11.9 2.11 2.27 177505 190442
olm5000 38.2 3.76 5.92 98353 155097
Oregon-1 (p) 136.4 8.28 10.29 60682 75487
orsreg 1 24.3 1.70 4.58 69774 188545
p2p-Gnutella04 (p) 134.7 8.48 10.91 62993 81030
Pd 84.2 18.59 27.02 220654 320689
pde900 8.1 0.52 1.68 64948 207982
plat1919 27.6 3.71 5.07 134236 183263
pores 2 14.5 2.18 2.60 150205 179199
rdb1250 12.6 1.72 2.44 136593 194064
rw5151 41.1 2.05 8.04 49833 195828
saylr4 45.8 5.31 7.08 115801 154474
sherman5 36.5 6.05 8.16 165780 223506
spiral 15.6 12.17 4.25 780822 272723
steam2 8.6 1.49 1.66 173358 192814
str 600 6.1 0.85 1.03 139767 169929
tols4000 23.3 1.69 3.87 72823 166410
tub1000 7.4 0.88 1.19 117798 159302
wang2 34.3 3.02 5.90 87964 171648
watt 1 24.5 6.81 3.72 278219 151964
watt 2 24.4 6.90 3.86 282451 158246
west0989 10.5 3.54 1.28 337264 121922
west2021 21.2 8.15 2.44 383530 115012

Table 4: (Part 2 of 2) The time it takes to compile generated code for each matrix
using the Unfolding and UnfoldingV2 methods.
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compiler infrastructure’s back-end to handle details of object file format. We directly

write bits into a memory buffer to emit machine instructions.

2.1 Generating Machine-Level Code

We examined icc’s output for the UnfoldingV2 code to decide what machine instruc-

tions to emit. The statement

w[0] += vals[0] * v[2] + vals[1] * v[4] + vals[2] * v[6];

is translated by icc to X86 64 native code as follows:

movsd 16(%rdi), %xmm1 ;; xmm1 <- v[2]

movsd 32(%rdi), %xmm0 ;; xmm0 <- v[4]

movsd vals(%rip), %xmm4 ;; xmm4 <- vals[0]

movsd 8+vals(%rip), %xmm2 ;; xmm2 <- vals[1]

mulsd %xmm1, %xmm4 ;; xmm4 <- xmm4 * xmm1

mulsd %xmm0, %xmm2 ;; xmm2 <- xmm2 * xmm0

movsd 16+vals(%rip), %xmm3 ;; xmm3 <- vals[2]

addsd %xmm2, %xmm4 ;; xmm4 <- xmm4 + xmm2

movsd 48(%rdi), %xmm6 ;; xmm6 <- v[6]

;; omitted some instructions related to the next stmt

mulsd %xmm6, %xmm3 ;; xmm3 <- xmm3 * xmm6

addsd %xmm3, %xmm4 ;; xmm4 <- xmm4 + xmm3

addsd (%rsi), %xmm4 ;; xmm4 <- xmm4 + w[0]

;; omitted some instructions related to the other stmts

movsd %xmm4, (%rsi) ;; w[0] <- xmm4

icc uses movsd instructions to load values into the xmm registers. It uses addsd

and mulsd instructions to do both register-register and memory-register addition and

multiplication operations. icc reorders the instructions to a great deal, but the general

16



tendency we observed is that load operations are usually done in a batch to reduce

memory latency. We also observed similar output from clang and gcc.

Inspired by icc’s choice of instructions, for each row of the matrix, we emit code

using the following strategy:

• Load as many elements of the vector v as possible into the xmm registers. E.g.

for the statement given above, we do:

movsd 16(%rdi), %xmm0 ;; xmm0 <- v[2]

movsd 32(%rdi), %xmm1 ;; xmm1 <- v[4]

movsd 48(%rdi), %xmm2 ;; xmm2 <- v[6]

• Multiply matrix elements with the corresponding vector elements; keep the

values in xmm registers. E.g. for the statement given above, we do:

mulsd (%rdx), %xmm0 ;; xmm0 <- xmm0 * vals[0]

mulsd 8(%rdx), %xmm1 ;; xmm1 <- xmm1 * vals[1]

mulsd 16(%rdx), %xmm2 ;; xmm2 <- xmm2 * vals[2]

• Add up the values stored in the xmm registers so that the final result is in xmm0.

E.g. for the statement given above, we do:

addsd %xmm1, %xmm0 ;; xmm0 <- xmm0 + xmm1

addsd %xmm2, %xmm0 ;; xmm0 <- xmm0 + xmm2

To reduce dependency, we perform add operations in a binary-tree fashion. For

instance, if we are to reduce 10 xmm registers, we emit the following code:

addsd %xmm1, %xmm0 ;; xmm0 <- xmm0 + xmm1

addsd %xmm3, %xmm2 ;; xmm2 <- xmm2 + xmm3

addsd %xmm5, %xmm4 ;; xmm4 <- xmm4 + xmm5

addsd %xmm7, %xmm6 ;; xmm6 <- xmm6 + xmm7

17



addsd %xmm9, %xmm8 ;; xmm8 <- xmm8 + xmm9

addsd %xmm2, %xmm0 ;; xmm0 <- xmm0 + xmm2

addsd %xmm6, %xmm4 ;; xmm4 <- xmm4 + xmm6

addsd %xmm10, %xmm8 ;; xmm8 <- xmm8 + xmm10

addsd %xmm4, %xmm0 ;; xmm0 <- xmm0 + xmm4

addsd %xmm8, %xmm0 ;; xmm0 <- xmm0 + xmm8

• Load and add the output vector element onto the accumulated sum (which was

in register xmm0), then write the result back to the output vector. E.g. for the

statement given above, we do:

addsd (%rsi), %xmm0 ;; xmm0 <- xmm0 + w[0]

movsd %xmm0, (%rsi) ;; w[0] <- xmm0

The number of xmm registers is 16. Therefore, the code generation strategy given

above would run out of registers if a row has more than 16 nonzero elements. To

remedy this problem, when there are more than 15 elements in a row, we calculate

the result in chunks of 15 elements and accumulate results in the xmm15 register.

We refer to the code generation algorithm discussed above as MLUnfolding (for

“Machine-Level Unfolding”). A high-level overview of what Unfolding, UnfoldingV2,

and MLUnfolding do is shown in Figure 5.

Conceptually, MLUnfolding is a straightforward mapping of the UnfoldingV2 code

into native code. A sophisticated instruction reordering algorithm, such as one that

an industry-level compiler would apply, is not used here. Hence, a natural question

that arises is how does MLUnfolding performs with respect to UnfoldingV2. Table 5

gives the comparison, where we report the ratio of the time taken by UnfoldingV2’s

output to the time taken by MLUnfolding’s output. Having a value larger than 1

means that MLUnfolding gives better performance; these values are shown in the

table in bold font. We see that MLUnfolding performs very well; on the average, its
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Figure 5: A high-level overview of the Unfolding, UnfoldingV2, and MLUnfolding

methods.

performance is 1.09x the performance of UnfoldingV2. For 58 matrices out of 70,

MLUnfolding gives better performance than UnfoldingV2.

Our motivation in generating native code ourselves instead of using a compiler

was that the compiler takes too much time. So the next question to is, how much

time does MLUnfolding take to generate code. The measured timings are given in

Table 6. We see that code generation costs have dropped sharply, by roughly about

three orders of magnitude.

In the following sections in this chapter, we discuss optimizations that we experi-

mented with to improve the quality of MLUnfolding’s output.
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Matrix MLUnfolding Matrix MLUnfolding
vs. UnfoldingV2 vs. UnfoldingV2

dwt 419 (p) 1.10 tols4000 1.00
str 600 0.96 pores 2 1.19
minnesota (p) 1.05 spiral 1.05
bcspwr06 (p) 1.06 M80PI n1 1.09
west0989 1.03 dw2048 1.18
bfw398a 1.12 watt 1 1.12
bcsstk19 1.00 watt 2 1.04
bcspwr08 (p) 1.06 bayer09 1.11
ck656 1.02 Pd 1.04
can 634 (p) 1.06 add20 1.08
tub1000 0.98 lshp3466 (p) 1.10
G33 1.27 dwt 2680 (p) 1.04
bcsstk06 1.00 as-735 (p) 1.05
hor 131 1.07 orsreg 1 1.11
gr 30 30 1.08 ca-GrQc (p) 1.07
pde900 1.15 adder trans 02 1.09
cdde3 1.31 bcsstk26 1.06
bp 1600 1.10 plat1919 1.05
email (p) 1.17 wang2 1.13
steam2 1.04 coater1 1.09
gre 1107 1.25 add32 1.06
fs 760 1 1.24 olm5000 1.00
dwt 1242 (p) 1.16 rw5151 1.19
e05r0000 1.02 sherman5 0.97
fpga dcop 51 0.99 saylr4 1.14
jpwh 991 1.41 Oregon-1 (p) 1.07
EVA (p) 1.05 mcfe 1.11
can 1072 (p) 1.11 lnsp3937 1.04
rdb1250 1.08 fidap002 1.15
west2021 1.18 bcsstk14 1.00
mahindas 0.98 cavity05 1.05
GD06 Java (p) 1.22 p2p-Gnutella04 (p) 1.06
nos3 0.99 mbeause 1.23
blckhole (p) 1.05 cry10000 1.05
c-18 0.94 mbeaflw 1.24

Table 5: The ratio of the running times of the codes generated using the UnfoldingV2
approach (and compiled with icc) to the codes generated by the MLUnfolding ap-
proach. A value larger than 1 means MLUnfolding is faster.
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add20 32.4 3959 122 GD06 Java (p) 23.2 2599 112
add32 62.6 6017 96 gr 30 30 8.0 1600 199
adder trans 02 30.0 4071 136 gre 1107 14.5 1934 133
as-735 (p) 87.3 5115 59 hor 131 6.4 1431 225
bayer09 28.8 3881 135 jpwh 991 14.5 1986 137
bcspwr06 (p) 19.0 3232 170 lnsp3937 42.9 6805 159
bcspwr08 (p) 21.6 2815 130 lshp3466 (p) 34.8 4305 124
bcsstk06 6.4 1448 225 M80PI n1 25.8 3663 142
bcsstk14 45.0 7988 177 mahindas 13.9 2418 174
bcsstk19 7.4 1492 201 mbeaflw 48.4 11315 234
bcsstk26 32.3 4442 138 mbeause 41.3 9452 229
bfw398a 5.9 1312 224 mcfe 26.4 5842 221
blckhole (p) 20.5 2809 137 minnesota (p) 24.5 3627 148
bp 1600 13.2 1670 127 nos3 11.9 2467 207
c-18 18.7 2842 152 olm5000 38.2 5948 156
ca-GrQc (p) 63.0 4656 74 Oregon-1 (p) 136.4 8291 61
can 634 (p) 7.7 3075 401 orsreg 1 24.3 3925 161
can 1072 (p) 15.5 2160 140 p2p-Gnutella04 (p) 134.7 10419 77
cavity05 36.7 7860 214 Pd 84.2 5341 63
cdde3 8.7 1689 193 pde900 8.1 1612 200
ck656 6.2 1411 227 plat1919 27.6 4750 172
coater1 27.2 5069 186 pores 2 14.5 2760 190
cry10000 88.7 14119 159 rdb1250 12.6 2299 183
dw2048 23.8 3114 131 rw5151 41.1 6030 147
dwt 1242 (p) 14.0 1971 141 saylr4 45.8 5966 130
dwt 2680 (p) 34.1 4168 122 sherman5 36.5 5879 161
dwt 419 (p) 5.8 1352 231 spiral 15.6 2953 189
e05r0000 6.4 1695 265 steam2 8.6 1766 206
email (p) 18.3 1876 103 str 600 6.1 1277 210
EVA (p) 37.3 2253 60 tols4000 23.3 3346 144
fidap002 26.1 6243 239 tub1000 7.4 1517 204
fpga dcop 51 14.5 1972 136 wang2 34.3 5108 149
fs 760 1 9.2 1862 202 watt 1 24.5 3263 133
G33 13.0 3330 255 watt 2 24.4 3307 135
GD06 Java (p) 23.2 2599 112 west0989 10.5 1487 142
gr 30 30 8.0 1600 199 west2021 21.2 2619 123

Table 6: The time it takes to generate code for each matrix using the MLUnfolding

method.
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2.2 Optimization 1: Using Small Offsets When Accessing
the Memory

Considering that unfolding results in long code, and that potentially induces negative

impact on the instruction cache utilization, the first optimization we evaluate aims to

decrease the generated code’s size. We do this by using small offsets when accessing

memory locations.

Matrix values in MLUnfolding are loaded from the memory in sequential order.

Recall that we use a mulsd instruction to load a matrix element and immediately

multiply it with an already-loaded vector element. In Figure 6 we show sample

mulsd instructions and the corresponding byte values in hexadecimal format. In

X86 64, instructions have variable lengths. Notice that when the offset is less than

128, a mulsd instruction takes 5 bytes. However, when the offset is 128 or more, the

instruction takes 8 bytes. This means, for the first 16 elements1 of the matrix, we

will emit 5-byte instructions, but for each of the remaining thousands of elements, 3

extra bytes will be emitted.

In the mulsd instruction, %rdx is the register that holds the address of the starting

point of the vals array. By shifting the value of %rdx forward in every 16 elements, we

can always keep the offsets within the [0-120] range. We do this emitting a leaq (load

effective address) instruction just before the offset is about to become 128. A sample

1Double precision values are stored in 8 bytes; therefore, the offset grows in increments of 8. We
reach 128 from 0 in 16 steps.

mulsd 104(%rdx), %xmm0

mulsd 112(%rdx), %xmm0

mulsd 120(%rdx), %xmm0

mulsd 128(%rdx), %xmm0

mulsd 136(%rdx), %xmm0

mulsd 144(%rdx), %xmm0

f2 0f 59 42 68

f2 0f 59 42 70

f2 0f 59 42 78

f2 0f 59 82 80 00 00 00

f2 0f 59 82 88 00 00 00

f2 0f 59 82 90 00 00 00

Figure 6: Sample mulsd instructions with offset values around 128, and the corre-
sponding X86 64 instructions in hexadecimal format.
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mulsd 104(%rdx), %xmm0

mulsd 112(%rdx), %xmm1

mulsd 120(%rdx), %xmm2

mulsd 128(%rdx), %xmm3

mulsd 136(%rdx), %xmm4

addsd %xmm1, %xmm0

addsd %xmm3, %xmm2

addsd %xmm2, %xmm0

addsd %xmm4, %xmm0

addsd %xmm0, %xmm7

addsd 8(%rsi), %xmm7

movsd %xmm7, 8(%rsi)

xorps %xmm7, %xmm7

movsd 8(%rdi), %xmm0

movsd 16(%rdi), %xmm1

movsd 24(%rdi), %xmm2

movsd 80(%rdi), %xmm3

movsd 88(%rdi), %xmm4

movsd 96(%rdi), %xmm5

movsd 152(%rdi), %xmm6

mulsd 144(%rdx), %xmm0

mulsd 152(%rdx), %xmm1

mulsd 160(%rdx), %xmm2

mulsd 168(%rdx), %xmm3

mulsd 176(%rdx), %xmm4

mulsd 184(%rdx), %xmm5

mulsd 192(%rdx), %xmm6

mulsd 104(%rdx), %xmm0

mulsd 112(%rdx), %xmm1

leaq 120(%rdx), %rdx

mulsd (%rdx), %xmm2 ;; offset reduced

mulsd 8(%rdx), %xmm3 ;; offset reduced

mulsd 16(%rdx), %xmm4 ;; offset reduced

addsd %xmm1, %xmm0

addsd %xmm3, %xmm2

addsd %xmm2, %xmm0

addsd %xmm4, %xmm0

addsd %xmm0, %xmm7

addsd 8(%rsi), %xmm7

movsd %xmm7, 8(%rsi)

xorps %xmm7, %xmm7

movsd 8(%rdi), %xmm0

movsd 16(%rdi), %xmm1

movsd 24(%rdi), %xmm2

movsd 80(%rdi), %xmm3

movsd 88(%rdi), %xmm4

movsd 96(%rdi), %xmm5

movsd 152(%rdi), %xmm6

mulsd 24(%rdx), %xmm0 ;; offset reduced

mulsd 32(%rdx), %xmm1 ;; offset reduced

mulsd 40(%rdx), %xmm2 ;; offset reduced

mulsd 48(%rdx), %xmm3 ;; offset reduced

mulsd 56(%rdx), %xmm4 ;; offset reduced

mulsd 64(%rdx), %xmm5 ;; offset reduced

mulsd 72(%rdx), %xmm6 ;; offset reduced

Figure 7: MLUnfolding produces the code on the left. Applying the offset-reducing
optimization gives the code on the right.

before/after comparison is given in Figure 7. Here, the code emitted by MLUnfolding

is given on the left-hand-side. On the right-hand-side, we see the code after emitting a

leaq to increase the value of %rdx by 120. We do not attempt to reduce the offsets of

the %rdi register in the movsd instructions because they are used for loading vector v’s

elements. Unlike the accesses to vals, accesses to v are arbitrary and hence the offsets

here do not necessarily increase monotonically. However, the accesses to the output

vector w are consecutive. Hence, we apply the same offset-reducing optimization to w

as well. This is not shown in Figure 7 due to space concerns.

A leaq instruction that increments the value of %rdx by 120 consumes 4 bytes.

However, it saves us 3 bytes 15 times. Therefore, for every 15 elements of the matrix,

we gain 45 bytes by compromising 4 bytes.
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movsd (%rdi), %xmm0

movsd (%rdi), %xmm1

movsd (%rdi), %xmm2

movsd (%rdi), %xmm3

movsd (%rdi), %xmm4

movsd (%rdi), %xmm5

movsd (%rdi), %xmm6

movsd (%rdi), %xmm7

movsd (%rdi), %xmm8

movsd (%rdi), %xmm9

movsd (%rdi), %xmm10

movsd (%rdi), %xmm11

movsd (%rdi), %xmm12

movsd (%rdi), %xmm13

movsd (%rdi), %xmm14

movsd (%rdi), %xmm15

f2 0f 10 07

f2 0f 10 0f

f2 0f 10 17

f2 0f 10 1f

f2 0f 10 27

f2 0f 10 2f

f2 0f 10 37

f2 0f 10 3f

f2 44 0f 10 07

f2 44 0f 10 0f

f2 44 0f 10 17

f2 44 0f 10 1f

f2 44 0f 10 27

f2 44 0f 10 2f

f2 44 0f 10 37

f2 44 0f 10 3f

Figure 8: Sample X86 64 instructions that use xmm registers and their corresponding
hexadecimal format. Using an xmm register with a number 8 or more consumes an
extra byte.

In Table 7, we report the impact of the offset-reducing optimization with respect

to MLUnfolding. We show the performance and the size of the code, both relative to

the performance and size of code produced by MLUnfolding, respectively. For almost

all cases performance is increased and code size is decreased significantly. On the

average, the performance is 1.19x, and the code size is 0.83x of MLUnfolding.

2.3 Optimization 2: Using a Restricted Set of Registers

Another optimization we experimented with again aims to reduce the code size. Let

us first take a look at how xmm registers effect the instruction lengths. In Figure 8,

we show sample instructions in ASCII and hexadecimal format.

Recall from MLUnfolding that the multiplication of a matrix value and a vector

element is stored in an xmm register. Using a xmm register numbered 8-15 consumes

an extra byte in the instruction as opposed to using a register with number 0-7. To

save space, we limit the set of the available registers to xmm0-xmm7 and we do not use

xmm8-xmm15.

Limiting the set of xmm registers to 0-7 will have no effect on rows that have fewer
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dwt 419 (p) 1.45 0.83 tols4000 1.31 0.79
str 600 1.19 0.85 pores 2 1.13 0.84
minnesota (p) 1.28 0.76 spiral 1.35 0.84
bcspwr06 (p) 1.25 0.79 M80PI n1 1.29 0.79
west0989 1.23 0.81 dw2048 1.34 0.82
bfw398a 1.18 0.85 watt 1 1.17 0.83
bcsstk19 1.02 0.82 watt 2 1.33 0.83
bcspwr08 (p) 1.24 0.79 bayer09 1.20 0.82
ck656 1.20 0.83 Pd 1.22 0.77
can 634 (p) 1.18 0.84 add20 1.17 0.83
tub1000 1.21 0.82 lshp3466 (p) 1.22 0.81
G33 1.16 0.78 dwt 2680 (p) 1.21 0.82
bcsstk06 1.17 0.85 as-735 (p) 1.19 0.79
hor 131 1.18 0.85 orsreg 1 1.19 0.83
gr 30 30 1.21 0.82 ca-GrQc (p) 1.27 0.82
pde900 1.21 0.82 adder trans 02 1.15 0.84
cdde3 1.21 0.82 bcsstk26 1.22 0.84
bp 1600 1.19 0.83 plat1919 1.17 0.85
email (p) 0.86 0.83 wang2 1.17 0.83
steam2 1.18 0.85 coater1 1.23 0.86
gre 1107 1.20 0.83 add32 1.20 0.82
fs 760 1 0.99 0.84 olm5000 1.23 0.82
dwt 1242 (p) 1.02 0.82 rw5151 1.19 0.81
e05r0000 1.15 0.86 sherman5 1.16 0.84
fpga dcop 51 1.17 0.83 saylr4 1.17 0.83
jpwh 991 1.20 0.83 Oregon-1 (p) 1.21 0.79
EVA (p) 1.14 0.84 mcfe 1.16 0.86
can 1072 (p) 1.10 0.83 lnsp3937 1.19 0.83
rdb1250 1.36 0.83 fidap002 1.17 0.87
west2021 1.08 0.81 bcsstk14 1.17 0.86
mahindas 1.21 0.84 cavity05 1.17 0.86
GD06 Java (p) 1.12 0.83 p2p-Gnutella04 (p) 1.13 0.84
nos3 1.27 0.84 mbeause 1.12 0.87
blckhole (p) 1.37 0.82 cry10000 1.18 0.82
c-18 1.16 0.82 mbeaflw 1.14 0.87

Table 7: The impact of offset-reducing optimization on performance and object code
size with respect to MLUnfolding.
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;; Row has 12 nonzero elements

movsd (%rdi), %xmm0

movsd 8(%rdi), %xmm1

movsd 16(%rdi), %xmm2

movsd 24(%rdi), %xmm3

movsd 72(%rdi), %xmm4

movsd 80(%rdi), %xmm5

movsd 88(%rdi), %xmm6

movsd 96(%rdi), %xmm7

movsd 144(%rdi), %xmm8

movsd 152(%rdi), %xmm9

movsd 160(%rdi), %xmm10

movsd 168(%rdi), %xmm11

mulsd 48(%rdx), %xmm0

mulsd 56(%rdx), %xmm1

mulsd 64(%rdx), %xmm2

mulsd 72(%rdx), %xmm3

mulsd 80(%rdx), %xmm4

mulsd 88(%rdx), %xmm5

mulsd 96(%rdx), %xmm6

mulsd 104(%rdx), %xmm7

mulsd 112(%rdx), %xmm8

mulsd 120(%rdx), %xmm9

mulsd 128(%rdx), %xmm10

mulsd 136(%rdx), %xmm11

addsd %xmm1, %xmm0

addsd %xmm3, %xmm2

addsd %xmm5, %xmm4

addsd %xmm7, %xmm6

addsd %xmm9, %xmm8

addsd %xmm11, %xmm10

addsd %xmm2, %xmm0

addsd %xmm6, %xmm4

addsd %xmm10, %xmm8

addsd %xmm4, %xmm0

addsd %xmm8, %xmm0

;; Row has 12 nonzero elements

movsd (%rdi), %xmm0

movsd 8(%rdi), %xmm1

movsd 16(%rdi), %xmm2

movsd 24(%rdi), %xmm3

movsd 72(%rdi), %xmm4

movsd 80(%rdi), %xmm5

movsd 88(%rdi), %xmm6 ;; reached reg. limit

mulsd 48(%rdx), %xmm0

mulsd 56(%rdx), %xmm1

mulsd 64(%rdx), %xmm2

mulsd 72(%rdx), %xmm3

mulsd 80(%rdx), %xmm4

mulsd 88(%rdx), %xmm5

mulsd 96(%rdx), %xmm6

addsd %xmm1, %xmm0

addsd %xmm3, %xmm2

addsd %xmm5, %xmm4

addsd %xmm2, %xmm0

addsd %xmm6, %xmm4

addsd %xmm4, %xmm0

addsd %xmm0, %xmm7 ;; save partial result

movsd 96(%rdi), %xmm0

movsd 144(%rdi), %xmm1

movsd 152(%rdi), %xmm2

movsd 160(%rdi), %xmm3

movsd 168(%rdi), %xmm4

mulsd 104(%rdx), %xmm0

mulsd 112(%rdx), %xmm1

mulsd 120(%rdx), %xmm2

mulsd 128(%rdx), %xmm3

mulsd 136(%rdx), %xmm4

addsd %xmm1, %xmm0

addsd %xmm3, %xmm2

addsd %xmm2, %xmm0

addsd %xmm4, %xmm0

addsd %xmm0, %xmm7

Figure 9: Left: code generated by MLUnfolding method. Right: code obtained when
the xmm register set is limited to 0-7.
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than 8 elements. However, if there are more elements, the partial result will have to

be stored in the accumulator register more often than using xmm0-xmm15. This means,

while we are saving space by using small register numbers, we will have to emit extra

instructions (and thus lose space) to accumulate partial results.

Figure 9 illustrates the impact of this optimization when there are 12 nonzero ele-

ments in a row. Here, the left-hand-side shows the code generated by the MLUnfolding

method; the right-hand-side shows the same code when the register set is limited to

xmm0-xmm7. On the left, 12 elements of the vector are loaded into xmm registers 0-11

at once. Then, 12 multiplication operations are performed. Finally, the results of

multiplications are added together into xmm0. On the right, because the registers

are limited to 0-7, the first 7 registers are used to load vector elements. Then, 7

multiplication operations are performed, followed by addition operations that calcu-

late the sum of 7 multiplications into xmm0. This partial result is then put into the

accumulator register xmm7. The right-hand-side has an extra register-register addsd

instruction. The length of this instruction is 4 bytes. The left-hand-side has 4 movsd,

4 mulsd, and 4 addsd instructions that use an xmm register in range 8-15; giving,

in total 12 extra bytes. So, in this example 12 bytes were saved while 4 bytes were

introduced for an additional register-register instruction.

Table 8 lists the performance, object code size, and the instruction count when

register set limiting optimization is applied on top of MLUnfolding. All the numbers

are relative values with respect to the corresponding values of MLUnfolding. We

see that the performance of the code may change both positively and negatively: In

the worst case, dwt 1242’s performance went down to 0.74x; in the best case, 1.12x

performance was obtained for rdb1250. Changes in the code size are less variable;

the minimum size is 0.93x. On the average, this optimization resulted in 0.98x per-

formance while reducing the code size to only 0.99x. Better results may have been

achieved if this optimization was turned on/off for each row depending on the number
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dwt 419 (p) 0.99 1.00 1.02 tols4000 0.98 0.99 1.00
str 600 1.06 0.95 1.01 pores 2 0.91 1.01 1.04
minnesota (p) 1.00 1.00 1.00 spiral 1.05 0.95 1.00
bcspwr06 (p) 1.00 1.00 1.00 M80PI n1 0.96 1.00 1.00
west0989 1.00 1.01 1.02 dw2048 0.93 1.00 1.00
bfw398a 1.01 0.99 1.03 watt 1 0.97 1.00 1.00
bcsstk19 0.97 1.00 1.00 watt 2 1.06 1.00 1.00
bcspwr08 (p) 0.86 1.00 1.00 bayer09 0.97 0.99 1.02
ck656 0.85 1.00 1.04 Pd 1.00 1.00 1.00
can 634 (p) 1.00 0.99 1.03 add20 1.03 0.98 1.00
tub1000 1.00 1.00 1.00 lshp3466 (p) 0.96 1.00 1.00
G33 0.98 1.00 1.00 dwt 2680 (p) 1.00 1.01 1.02
bcsstk06 1.04 0.98 1.04 as-735 (p) 1.02 1.00 1.00
hor 131 1.01 1.00 1.05 orsreg 1 1.01 1.00 1.00
gr 30 30 1.00 1.00 1.00 ca-GrQc (p) 1.05 0.99 1.01
pde900 0.87 1.00 1.00 adder trans 02 1.00 1.00 1.03
cdde3 0.77 1.00 1.00 bcsstk26 0.98 0.98 1.03
bp 1600 1.01 0.99 1.02 plat1919 1.03 0.98 1.05
email (p) 1.00 0.99 1.02 wang2 1.00 1.00 1.00
steam2 0.84 0.98 1.05 coater1 1.07 0.96 1.02
gre 1107 0.89 1.00 1.00 add32 1.00 1.00 1.01
fs 760 1 0.96 0.99 1.03 olm5000 1.00 1.00 1.00
dwt 1242 (p) 0.74 1.00 1.01 rw5151 1.00 1.00 1.00
e05r0000 1.10 0.94 1.01 sherman5 1.04 0.97 1.02
fpga dcop 51 0.80 0.99 1.00 saylr4 0.99 1.00 1.00
jpwh 991 0.79 1.01 1.03 Oregon-1 (p) 1.00 0.99 1.00
EVA (p) 1.04 0.96 1.00 mcfe 1.09 0.93 1.00
can 1072 (p) 0.75 1.01 1.03 lnsp3937 0.99 1.00 1.03
rdb1250 1.12 1.00 1.00 fidap002 1.07 0.93 1.00
west2021 1.04 1.01 1.02 bcsstk14 1.05 0.95 1.01
mahindas 1.09 0.97 1.01 cavity05 1.08 0.94 1.00
GD06 Java (p) 0.89 0.98 1.02 p2p-Gnutella04 (p) 1.00 1.00 1.06
nos3 1.00 1.01 1.06 mbeause 1.05 0.93 1.00
blckhole (p) 0.95 1.00 1.00 cry10000 1.01 1.00 1.00
c-18 0.84 0.99 1.02 mbeaflw 1.06 0.93 1.00

Table 8: The speedup, code size reduction, and instruction count increases imposed
by the register set limiting optimization with respect to MLUnfolding.
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of nonzero elements of the row. However, we have not tested this idea. We tested

this optimization also on another matrix set that includes larger matrices. There, we

saw the optimization to provide around 3% speedup relatively consistently. Thus, we

decided to include this optimization in the final version of our code generator.

2.4 Optimization 3: Using a Pool of Distinct Values

In Section 1.3.1 we commented on how having few distinct values can enable sig-

nificant performance improvements. As another optimization attempt, we perform

a distinct value analysis to emit more efficient code. In this analysis, we identify

distinct values of a matrix, and put these values in a pool. For each row, multiplica-

tions that have the same constant multiplier are grouped together and the reverse of

distribution of multiplication over addition is applied; i.e. c× a+ c× b = c× (a+ b).

Hence, for each group, we emit addition operations followed by a single multiplication

operation. In this section we show code snippets to explain how this optimization is

realized.

Let us suppose that we are to emit assembly code for the following computation,

represented in source code:

w[2] += 7*v[106] + 7*v[329] + 7*v[1040] + 7*v[4952] + 3*v[19247];

w[3] += 7*v[129] + 7*v[201] + 7*v[329] + 7*v[14911];

After grouping the vector elements for the same constant value, we essentially

emit code corresponding to the following computation:

w[2] += 7*(v[106] + v[329] + v[1040] + v[4952]) + 3*v[19247];

w[3] += 7*(v[129] + v[201] + v[329] + v[14911]);
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movsd 848(%rdi), %xmm0 ; xmm0 <- v[106]

movsd 2632(%rdi), %xmm1 ; xmm1 <- v[329]

addsd 8320(%rdi), %xmm0 ; xmm0 <- v[106] + v[1040]

addsd 39616(%rdi), %xmm1 ; xmm1 <- v[329] + v[4952]

addsd %xmm1, %xmm0 ; xmm0 <- v[106] + v[329] + v[1040] + v[4952]

mulsd (%rdx), %xmm0 ; xmm0 <- vals[0] * (v[106] + v[329] + v[1040] + v[4952])

addsd %xmm0, %xmm15 ; save the partial result

movsd 153976(%rdi), %xmm0 ; xmm0 <- v[19247]

mulsd 8(%rdx), %xmm0 ; xmm0 <- vals[1] * v[19247]

addsd %xmm0, %xmm15 ; xmm15 <- vals[0] * (v[106] + v[329] + v[1040] + v[4952])

; + vals[1] * v[19247]

addsd 16(%rsi), %xmm15 ; xmm15 <- xmm15 + w[2]

movsd %xmm15, 16(%rsi) ; w[2] <- xmm15

movsd 1032(%rdi), %xmm0 ; xmm0 <- v[129]

movsd 1608(%rdi), %xmm1 ; xmm1 <- v[201]

addsd 2632(%rdi), %xmm0 ; xmm0 <- v[129] + v[329]

addsd 119288(%rdi), %xmm1 ; xmm1 <- v[129] + v[14911]

addsd %xmm1, %xmm0 ; xmm0 <- v[129] + v[201] + v[329] + v[14911]

mulsd (%rdx), %xmm0 ; xmm0 <- vals[0] * (v[129] + v[201] + v[329] + v[14911])

addsd 24(%rsi), %xmm0 ; xmm0 <- xmm0 + w[3]

movsd %xmm0, 24(%rsi) ; w[3] <- xmm0

Figure 10: A sample assembly code that performs computation according to distinct
values.

Recall that the floating point constants are emitted to the data section as a pool.

So, what we have is

double vals[] = {7, 3};

w[2] += vals[0]*(v[106] + v[329] + v[1040] + v[4952]) + vals[1]*v[19247];

w[3] += vals[0]*(v[129] + v[201] + v[329] + v[14911]);

Figure 10 shows the assembly code we generate that corresponds to this example.

Note that the distinct value optimization requires that we have access to the ma-

trix values. The previous two optimizations, namely, the offset-reducing optimization

and the register set limiting optimization, did not make any use of actual matrix

values.

As part of this optimization we also apply two arithmetic optimizations:

• ...+ 1× a = ...+ a. In this case we simply omit the multiplication.
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• ... + −1 × a = ... − a. In this case we omit the multiplication and emit a

subtraction instruction instead of addition.

Distinct value optimization is expected to bring substantial performance improve-

ments when there are few distinct values because it

• reduces the number of matrix elements loaded from the memory,

• reduces the number of floating point operations,

• reduces the code size by eliminating instructions.

However, this optimization also has drawbacks when the distinct values are not

few:

• Because the values are put into a pool, matrix elements are not necessarily

accessed sequentially. For this reason, offset-reducing optimization cannot be

applied to the vals array.

• Not accessing the elements sequentially may have negative impact on cache

utilization.

• If the number of distinct values is close to the number of nonzero elements (i.e.

very few common elements in the matrix), the emitted code will be very long

due to premature partial result accumulations.

Table 9 shows the speedup and code size reduction obtained by this optimization

with respect to MLUnfolding. In this table, we sort the matrices in ascending order

according to the percentage of their distinct values. So the matrices close to the top

have fewer distinct values. It is clear from this table that distinct value optimization

brings substantial improvement for matrices with relatively few number of distinct

values. (One exception is gre 1107, which has only 11 distinct values, but we got

0.94x slowdown in performance.) The optimization has negative impact on matrices

that do not have few distinct values.
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olm5000 6 0% 1.20 0.78 west0989 1776 50% 0.99 0.88
gr 30 30 2 0% 1.39 0.63 c-18 4861 56% 1.01 0.88
saylr4 11 0% 1.40 0.68 add20 7390 56% 1.07 0.91
G33 2 0% 1.30 0.63 pores 2 5407 56% 0.96 0.94
rdb1250 6 0% 1.52 0.70 watt 2 6589 57% 1.03 1.00
cdde3 5 0% 1.03 0.87 watt 1 6524 57% 0.98 1.00
gre 1107 11 0% 0.94 0.84 west2021 4235 58% 0.94 0.92
jpwh 991 14 0% 1.49 0.60 str 600 1972 60% 1.05 0.88
M80PI n1 70 1% 1.27 0.76 add32 13883 70% 0.94 0.97
rw5151 150 1% 1.29 0.74 adder trans 02 10327 71% 0.96 0.95
orsreg 1 111 1% 1.21 0.85 sherman5 15096 73% 1.00 0.91
nos3 149 2% 1.28 0.90 pde900 3248 74% 0.89 1.01
bfw398a 92 3% 1.22 0.75 ck656 3054 79% 0.91 1.00
Pd 432 3% 1.30 0.66 fs 760 1 4743 83% 0.93 0.98
mbeause 2100 5% 1.59 0.65 bcsstk26 13480 84% 0.96 0.97
dw2048 693 7% 0.97 0.94 plat1919 17120 100% 0.95 0.96
coater1 1380 7% 1.37 0.78 cry10000 49599 100% 0.90 1.01
wang2 1727 9% 1.08 0.90 mcfe 24381 100% 1.02 0.93
cavity05 3280 10% 1.16 0.88 as-735 (p) 13895 100% 0.91 0.96
fpga dcop 51 953 16% 1.06 0.90 bcspwr06 (p) 3377 100% 0.87 0.99
lnsp3937 4176 16% 1.01 0.95 bcspwr08 (p) 3837 100% 0.87 0.99
steam2 1071 19% 1.00 0.93 blckhole (p) 8502 100% 0.83 1.01
e05r0000 1269 22% 0.88 0.90 ca-GrQc (p) 14496 100% 0.94 0.96
bcsstk06 1045 25% 0.97 0.96 can 634 (p) 3931 100% 0.91 0.99
spiral 3089 31% 1.30 0.85 can 1072 (p) 6758 100% 0.86 1.01
tols4000 3188 36% 0.98 0.87 dwt 1242 (p) 5834 100% 0.80 1.01
hor 131 1553 37% 1.03 0.90 dwt 2680 (p) 13853 100% 0.89 1.01
bp 1600 1803 37% 1.13 0.80 dwt 419 (p) 1991 100% 0.88 1.01
mbeaflw 19778 40% 0.98 0.93 email (p) 5451 100% 0.62 0.98
fidap002 11118 41% 1.07 0.91 EVA (p) 6726 100% 0.89 0.94
bayer09 5003 43% 0.98 0.90 GD06 Java (p) 8032 100% 0.83 0.97
mahindas 3291 43% 1.05 0.87 lshp3466 (p) 13681 100% 0.84 1.01
bcsstk14 14044 43% 1.02 0.93 minnesota (p) 3303 100% 0.91 0.91
bcsstk19 1852 48% 0.90 1.00 Oregon-1 (p) 23409 100% 0.89 0.96
tub1000 1990 50% 0.94 0.95 p2p-Gnutella04 (p) 39994 100% 0.96 0.98

Table 9: The speedup and code size reduction obtained by distinct value optimization
with respect to MLUnfolding. Matrices are sorted according to the percentage of their
distinct values.
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Figure 11: ADDPD instruction

2.5 Optimization 4: Using Vector Instructions

Out target architecture X86 64 has SIMD (Single Instruction Multiple Data) instruc-

tions that operate on vector registers (i.e. xmm’s). The xmm registers are 128-bit; they

can hold two double-precision floating point values, one in the upper 64 bits and the

other in the lower 64 bits. Vector instructions allow performing calculations with the

two halves of xmm registers simultaneously. An example is the addpd instruction. It

adds the lower and upper halves of its operands independently at the same time, then

writes the results to the lower and upper halves of its destination. This is illustrated

in Figure 11.

In the code generated by MLUnfolding, matrix values are accessed consecutively.

Depending on the shape of the matrix, there may be cases where the vector ele-

ments, with which matrix elements are multiplied, are also accessed consecutively.

For instance, after unfolding, we may see a case such as

... + vals[4] * v[18] + vals[5] * v[19] + ...

For the multiplication operations in this code, MLUnfolding produces the following

assembly:
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movsd 144(%rdi), %xmm4 ; xmm4 <- v[18]

movsd 152(%rdi), %xmm5 ; xmm5 <- v[19]

...

mulsd 32(%rdx), %xmm4 ; xmm4 <- xmm4 + vals[4]

mulsd 40(%rdx), %xmm5 ; xmm5 <- xmm5 + vals[5]

Here, two consecutive elements from the vals array, and two consecutive elements

from the v array are loaded. Vectorized computation is ideal for this situation. So,

the computation above can be done as shown below, where we use ’::’ to denote

concatenation of the lower and upper parts of a vector register.

movapd 144(%rdi), %xmm4 ; xmm4 <- v[18] :: v[19]

...

mulpd 32(%rdx), %xmm4 ; xmm4 <- vals[4] * v[18] :: vals[5] * v[19]

Above, we show uses of the movapd and mulpd instructions. The movapd instruc-

tion moves 128 bits from the given memory location to the destination register. It

requires that the memory location is aligned to 128 bits. When the memory is not

aligned, we make use of the movupd instruction. The mulpd instruction multiplies

two consecutive 64-bit values read from the memory with lower and upper halves

of a vector register, and then writes the results to the corresponding halves of the

register. (There is also a register-register version of the mulpd instruction that works

exactly the same way as addpd as explained in Figure 11.) mulpd requires the mem-

ory location to be aligned to 128 bits. Finally, we also use the haddpd instruction

that performs “horizontal add” on a vector instruction: sums up the lower and upper

halves of its source register, write the result into the lower half of its destination

register. A bigger example that illustrates the use of these instructions is given in

Figure 12.

We implemented a vectorized version of unfolding. In this version we analyze the

matrix data and identify pairs of elements (e.g. elements that form an expression like
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w[0] += vals[0] * v[0] + vals[1] * v[1]

+ vals[2] * v[9] + vals[3] * v[10]

+ vals[4] * v[18] + vals[5] * v[19];

movapd (%rdi), %xmm0 ; xmm0 <- v[0] :: v[1]

movupd 72(%rdi), %xmm1 ; xmm1 <- v[9] :: v[10]

movapd 144(%rdi), %xmm2 ; xmm2 <- v[18] :: v[19]

mulpd (%rdx), %xmm0 ; xmm0 <- vals[0] * v[0] :: vals[1] * v[1]

mulpd 16(%rdx), %xmm1 ; xmm1 <- vals[2] * v[9] :: vals[3] * v[10]

mulpd 32(%rdx), %xmm2 ; xmm2 <- vals[4] * v[18] :: vals[5] * v[19]

addpd %xmm1, %xmm0 ; xmm0[0:63] <- xmm0[0:63] + xmm1[0:63]

; xmm0[64:128] <- xmm0[64:128] + xmm1[64:128]

addpd %xmm2, %xmm0 ; xmm0[0:63] <- xmm0[0:63] + xmm2[0:63]

; xmm0[64:128] <- xmm0[64:128] + xmm2[64:128]

haddpd %xmm0, %xmm0 ; xmm0[0:63] <- xmm0[0:63] + xmm0[64:128]

addsd (%rsi), %xmm0 ; xmm0 <- xmm0 + w[0]

movsd %xmm0, (%rsi) ; w[0] <- xmm0

Figure 12: A sample statement in C and its vectorized code in assembly.

vals[i] × v[p] + vals[j] × v[q]) that are vectorizable. For a pair to be vectorizable,

the following conditions must hold:

• The accessed matrix elements must be consecutive, i.e. j = i+ 1.

• The accessed vector elements must be consecutive, i.e. q = p+ 1.

• The accessed matrix elements must be aligned to 128-bits, i.e. i must be a

multiple of 128/8. This condition is required to be able to do mulpd.

In MLUnfolding, all the accesses to the matrix elements are consecutive. So the

first condition above is easily satisfied. Table 10 gives the number of vectorized pairs

and the performance obtained when vectorization is applied on top of MLUnfolding.

On the average, 1.19x performance is achieved.

The offset-reducing and register set restriction optimizations are orthogonal to

vectorizability; they can be applied together in harmony. Distinct value optimization,

however, does not work in favor of vectorization. Because the distinct value analysis

creates a pool of values, the emitted code does not contain consecutive accesses to

matrix values anymore. This makes the code less prone to vectorization. In our
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dwt 419 1991 456 1.44 tols4000 8784 756 1.04
str 600 3279 642 1.26 pores 2 9613 1507 1.08
minnesota 3303 50 1.00 spiral 9831 3719 1.64
bcspwr06 3377 257 1.05 M80PI n1 9927 1833 1.16
west0989 3518 418 1.10 dw2048 10114 1966 1.06
bfw398a 3678 120 1.02 watt 1 11360 1674 1.11
bcsstk19 3835 1098 1.28 watt 2 11550 1735 1.15
bcspwr08 3837 278 1.04 bayer09 11767 1443 1.11
ck656 3884 1042 1.31 Pd 13036 1062 1.04
can 634 3931 1045 1.11 add20 13151 1743 1.11
tub1000 3996 998 1.20 lshp3466 13681 3302 1.19
G33 4000 78 1.01 dwt 2680 13853 3315 1.27
bcsstk06 4140 1399 1.51 as-735 13895 76 1.00
hor 131 4182 530 1.12 orsreg 1 14133 2100 1.19
gr 30 30 4322 1262 1.28 ca-GrQc 14496 79 1.05
pde900 4380 842 1.16 adder trans 02 14579 1630 1.08
cdde3 4681 930 1.16 bcsstk26 16129 4164 1.31
bp 1600 4841 236 1.04 plat1919 17159 4589 1.32
email 5451 203 1.03 wang2 19093 2829 1.10
steam2 5660 828 1.14 coater1 19457 2776 1.14
gre 1107 5664 381 0.80 add32 19848 3021 1.11
fs 760 1 5739 425 1.04 olm5000 19996 9998 1.50
dwt 1242 5834 1528 1.23 rw5151 20199 2 1.01
e05r0000 5846 2500 1.73 sherman5 20793 6218 1.33
fpga dcop 51 5892 774 1.14 saylr4 22316 3040 1.08
jpwh 991 6027 92 1.02 Oregon-1 23409 135 1.00
EVA 6726 2013 1.30 mcfe 24382 6974 1.37
can 1072 6758 1009 1.12 lnsp3937 25407 1364 1.04
rdb1250 7300 1248 1.11 fidap002 26831 11832 1.87
west2021 7310 893 1.04 bcsstk14 32630 12136 1.55
mahindas 7682 1575 1.25 cavity05 32632 11916 1.56
GD06 Java 8032 673 0.94 p2p-Gnutella04 39994 3809 1.06
nos3 8402 3188 1.66 mbeause 41063 14251 1.49
blckhole 8502 1926 1.03 cry10000 49699 9803 1.15
c-18 8657 912 1.07 mbeaflw 49920 16781 1.45

Table 10: The number of vectorized pairs and performance with respect to MLUn-

folding when vectorization optimization is applied to MLUnfolding.
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experiments we have seen seldom improvement in performance when vectorization is

applied on top of distinct value analysis, therefore we exclude their combination from

our tests and reports.

2.6 Optimization 5: Embedding Matrix Values into the Text
Section of the Code

In this section we discuss a transformation that caused slowdown in the performance.

We still dedicate a section to this approach so that ideas that did not work are also

documented for future reference.

Recall that in the native code produced by the compiler, matrix values that appear

as constants in the source code are emitted to the data section of the object code.

These values are loaded from the memory as if they were values in an array. Instead of

emitting matrix values in the data section, we experimented with an approach where

the values are moved into registers from immediate values. Hence, the values are

embedded directly in the text section of the code. A before/after comparison is shown

in Figure 13. Here, the left-hand-side shows the original assembly emitted by the

MLUnfolding method; the right-hand-side shows the assembly when the matrix values

are embedded in the instructions are immediate values. This approach increases the

code size significantly. However, our motivation in experimenting with this code was

that at the L1 level, CPU has separate caches for instruction and data. To maximize

the utilization, moving part of the data to the instruction side is a feasible idea.

When we measured the performance, we saw that embedding the data in the

instructions causes significant slowdown for all of the matrices in our set. On the

average, there is 27% slowdown. The smallest code size is 60KB (for dwt 419, which

has 1991 nonzero values). The machine on which we run experiments has 32K L1 in-

struction and data caches. Because the code size for the smallest matrix is already too

large for the L1 cache, we also measured the performance for much smaller matrices

that have around 500 elements. We observed similar slowdowns.
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; load vector elements

movsd (%rdi), %xmm0

mulsd 216(%rdi), %xmm1

movsd 248(%rdi), %xmm2

movsd 656(%rdi), %xmm3

movsd 664(%rdi), %xmm4

movsd 680(%rdi), %xmm5

movsd 1288(%rdi), %xmm6

; mult. with matrix values

mulsd (%rdx), %xmm0

mulsd 8(%rdx), %xmm1

mulsd 16(%rdx), %xmm2

mulsd 24(%rdx), %xmm3

mulsd 32(%rdx), %xmm4

mulsd 40(%rdx), %xmm5

mulsd 48(%rdx), %xmm6

; sum up the values

addsd %xmm1, %xmm0

addsd %xmm3, %xmm2

addsd %xmm5, %xmm4

addsd %xmm2, %xmm0

addsd %xmm6, %xmm4

addsd %xmm4, %xmm0

addsd %xmm0, %xmm7

; load matrix values

movabsq $4599271452859079754, %r9 ; 3.1085317326728e-01

movd %r9, %xmm0

movabsq $-4706094344638026474, %r10 ; -9.8909426205185e-07

movd %r10, %xmm1

movabsq $-4692542897400292683, %r11 ; -7.9816150893424e-06

movd %r11, %xmm2

movabsq $-4703078975711860500, %r12 ; -1.6276234691992e-06

movd %r12, %xmm3

movabsq $-4701605526230882399, %r13 ; -1.9719284338375e-06

movd %r13, %xmm4

movabsq $-4706094344638026474, %r14 ; -9.8909426205185e-07

movd %r14, %xmm5

movabsq $-4706094344638026474, %r15 ; -9.8909426205185e-07

movd %r15, %xmm6

; multiply with vector elements

mulsd (%rdi), %xmm0

mulsd 216(%rdi), %xmm1

mulsd 248(%rdi), %xmm2

mulsd 656(%rdi), %xmm3

mulsd 664(%rdi), %xmm4

mulsd 680(%rdi), %xmm5

mulsd 1288(%rdi), %xmm6

; sum up the values

addsd %xmm1, %xmm0

addsd %xmm3, %xmm2

addsd %xmm5, %xmm4

addsd %xmm2, %xmm0

addsd %xmm6, %xmm4

addsd %xmm4, %xmm0

addsd %xmm0, %xmm7

Figure 13: Left: code generated by MLUnfolding method. Right: code obtained when
matrix values are set from immediate values instead of loading from the memory.

2.7 Combination of the Optimizations

We have presented five optimization ideas:

1. Reducing the memory offset values to have shorter instructions.

2. Restricting the xmm register set to xmm0-xmm7.

3. Creating a pool of distinct values.

4. Using vector instructions.

5. Embedding matrix values in the instructions.
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Based on experimental results, we have seen that optimization idea (1) gives sub-

stantial speedup; (5) always gives significant slowdown; optimization (2) sometimes

provides small amount of improvement; optimizations (3) and (4) give good speedup

under certain conditions.

We have integrated optimizations (1) and (2) into our purpose-built compiler.

Idea (5) is discarded. We have made optimizations (3) and (4) optional (recall that

they do not go well together, though). Vectorization in the icc compiler can be

turned off by passing the -no-vec flag; it is enabled by default in the -O3 level of

optimization. In Section 1.5, the time measurements were done using code compiled

with the -no-vec flag. In this section we compare the performance obtained by icc,

both with and without vectorization, to the performances that we are able to achieve.

In this comparison, the following are the method names we use:

• OurUnfoldingV1: This is MLUnfolding together with optimizations (1) and (2).

• OurUnfoldingV2: This is MLUnfolding together with optimizations (1), (2),

and (3).

• OurUnfoldingV3: This is the vectorized version of OurUnfoldingV1. That is,

MLUnfolding together with optimizations (1), (2), and (4).

Tables 11 and 12 give the comparison of icc’s output to ours when vectorization is

disabled. We see that the quality of our output is on par with icc’s. The last column

in the tables show the ratio of icc-compiled code’s time to our code’s time; having

a value greater than 1 means that our output is faster. On the average, our code is

1.07x the performance of icc’s output. For 51 matrices out of 70, our code performs

better than icc. Out of 19 matrices for which our code is worse, there are only 5 where

we are not faster than PlainSpMV. So, in conclusion, we are able to generate code

that can compete with icc’s output, while avoiding the analyses and transformations

that icc goes through.
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Performances wrt PlainSpMV
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dwt 419 (p) 419 1991 1991 1.72 1.73 2.61 1.89 1.51
str 600 363 3279 1972 1.29 1.15 1.44 1.26 1.12
minnesota (p) 2642 3303 3303 2.68 2.99 4.04 3.44 1.35
bcspwr06 (p) 1454 3377 3377 2.69 2.70 3.57 2.88 1.32
west0989 989 3518 1776 2.02 1.62 1.72 1.92 0.95
bfw398a 398 3678 92 1.23 0.89 1.08 1.37 1.11
bcsstk19 817 3835 1852 1.21 1.14 1.39 1.15 1.15
bcspwr08 (p) 1624 3837 3837 2.69 2.71 3.56 2.88 1.31
ck656 656 3884 3054 0.98 0.94 1.14 0.83 1.17
can 634 (p) 634 3931 3931 1.16 1.10 1.40 1.18 1.21
tub1000 1000 3996 1990 1.24 1.09 1.30 1.14 1.05
G33 2000 4000 2 2.37 1.25 1.80 2.56 1.08
bcsstk06 420 4140 1045 1.02 0.96 1.15 1.01 1.13
hor 131 434 4182 1553 1.06 0.88 1.11 1.06 1.05
gr 30 30 900 4322 2 4.04 1.01 1.32 1.82 0.45
pde900 900 4380 3248 2.74 0.94 1.31 1.08 0.48
cdde3 961 4681 5 3.50 0.84 1.33 1.28 0.38
bp 1600 822 4841 1803 1.86 1.46 1.93 2.01 1.08
email (p) 1133 5451 5451 1.55 1.66 2.01 1.62 1.21
steam2 600 5660 1071 0.93 0.88 1.10 1.00 1.19
gre 1107 1107 5664 11 1.82 1.21 1.57 1.84 1.01
fs 760 1 760 5739 4743 1.50 0.78 1.16 0.97 0.77
dwt 1242 (p) 1242 5834 5834 1.66 1.21 1.68 1.38 1.01
e05r0000 236 5846 1269 0.68 0.64 0.77 0.76 1.14
fpga dcop 51 1220 5892 953 1.63 1.36 1.72 1.62 1.06
jpwh 991 991 6027 14 2.14 1.02 1.70 2.42 1.13
EVA (p) 8497 6726 6726 1.77 1.76 2.25 1.86 1.27
can 1072 (p) 1072 6758 6758 1.19 1.12 1.62 1.10 1.36
rdb1250 1250 7300 6 1.45 0.80 1.02 1.49 1.03
west2021 2021 7310 4235 1.61 1.22 1.67 1.54 1.03
mahindas 1258 7682 3291 1.28 0.85 1.01 1.10 0.86
GD06 Java (p) 1538 8032 8032 1.28 1.24 1.82 1.41 1.42
nos3 960 8402 149 1.04 0.71 0.82 0.90 0.87
blckhole (p) 2132 8502 8502 1.00 1.02 1.36 1.06 1.32
c-18 2169 8657 4861 1.42 1.06 1.29 1.16 0.91

Table 11: (Part 1 of 2) Comparison of the performance of the code we generate to
the output of icc. Vectorization is disabled.
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Performances wrt PlainSpMV
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tols4000 4000 8784 3188 2.61 0.96 1.27 1.19 0.49
pores 2 1224 9613 5407 0.80 0.64 0.87 0.85 1.09
spiral 1434 9831 3089 1.08 0.63 0.92 0.97 0.90
M80PI n1 4028 9927 70 2.11 0.86 1.19 1.58 0.75
dw2048 2048 10114 693 2.02 0.85 1.23 1.25 0.62
watt 1 1856 11360 6524 0.88 0.84 1.14 1.04 1.29
watt 2 1856 11550 6589 0.83 0.84 1.12 1.00 1.34
bayer09 3083 11767 5003 1.09 0.86 1.22 1.13 1.12
Pd 8081 13036 432 2.80 1.78 2.27 3.04 1.08
add20 2395 13151 7390 1.04 0.89 1.25 1.12 1.20
lshp3466 (p) 3466 13681 13681 0.91 0.91 1.18 0.94 1.30
dwt 2680 (p) 2680 13853 13853 0.93 0.93 1.19 0.98 1.27
as-735 (p) 7716 13895 13895 1.83 1.84 2.40 1.98 1.30
orsreg 1 2205 14133 111 2.35 0.63 0.85 1.03 0.44
ca-GrQc (p) 5242 14496 14496 1.37 1.37 1.82 1.52 1.33
adder trans 02 1814 14579 10327 0.85 0.78 1.00 0.92 1.17
bcsstk26 1922 16129 13480 0.84 0.79 0.98 0.86 1.16
plat1919 1919 17159 17120 1.06 0.61 0.80 0.66 0.76
wang2 2903 19093 1727 1.57 0.64 0.85 0.88 0.56
coater1 1348 19457 1380 0.69 0.52 0.70 0.83 1.21
add32 4960 19848 13883 1.17 1.07 1.38 1.20 1.18
olm5000 5000 19996 6 1.10 0.71 0.84 1.00 0.92
rw5151 5151 20199 150 2.25 0.63 0.89 1.09 0.48
sherman5 3312 20793 15096 0.70 0.69 0.81 0.74 1.15
saylr4 3564 22316 11 1.68 0.72 0.97 1.34 0.80
Oregon-1 (p) 11492 23409 23409 1.65 1.64 2.17 1.80 1.32
mcfe 765 24382 24381 0.41 0.40 0.55 0.48 1.34
lnsp3937 3937 25407 4176 0.69 0.63 0.78 0.74 1.12
fidap002 441 26831 11118 0.36 0.35 0.51 0.47 1.40
bcsstk14 1806 32630 14044 0.56 0.54 0.67 0.59 1.19
cavity05 1182 32632 3280 0.47 0.42 0.56 0.55 1.19
p2p-Gnutella04 (p) 10879 39994 39994 1.05 1.05 1.25 1.12 1.19
mbeause 496 41063 2100 0.44 0.34 0.51 0.71 1.62
cry10000 10000 49699 49599 1.96 0.62 0.78 0.65 0.40
mbeaflw 496 49920 19778 0.33 0.33 0.50 0.41 1.49

Table 12: (Part 2 of 2) Comparison of the performance of the code we generate to
the output of icc. Vectorization is disabled.

41



Tables 13 and 14 give the comparison of icc’s output to ours when vectoriza-

tion is enabled. Here, we do not list UnfoldingV2 because its vectorized version is

never significantly better than vectorized Unfolding. When vectorized, we see that

PlainSpMV has become noticeably fast. Unfolding is better than PlainSpMV for 39

matrices out of 70. There is substantial slowdown, in particular for the big matrices

in our set. The code that we generate is still on par with icc-compiled code; on the

average our performance is 1.01x the performance of icc’s output. Our code is better

than icc’s for 45 of the matrices. A vectorization algorithm that is more sophisticated

than the one we used in this work might bring better results. This is left as a future

work.
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dwt 419 (p) 419 1991 1991 1.05 1.59 1.51
str 600 363 3279 1972 0.87 0.97 1.11
minnesota (p) 2642 3303 3303 1.59 2.37 1.49
bcspwr06 (p) 1454 3377 3377 1.49 1.98 1.33
west0989 989 3518 1776 1.36 1.15 0.85
bfw398a 398 3678 92 1.00 0.88 0.87
bcsstk19 817 3835 1852 1.18 1.36 1.15
bcspwr08 (p) 1624 3837 3837 1.47 2.13 1.45
ck656 656 3884 3054 0.98 1.14 1.16
can 634 (p) 634 3931 3931 1.03 1.14 1.10
tub1000 1000 3996 1990 1.31 1.37 1.04
G33 2000 4000 2 2.09 1.60 0.77
bcsstk06 420 4140 1045 0.85 0.96 1.12
hor 131 434 4182 1553 0.92 0.96 1.04
gr 30 30 900 4322 2 4.55 1.34 0.29
pde900 900 4380 3248 3.34 1.34 0.40
cdde3 961 4681 5 3.93 1.34 0.34
bp 1600 822 4841 1803 1.05 1.09 1.04
email (p) 1133 5451 5451 0.84 1.08 1.29
steam2 600 5660 1071 0.82 0.95 1.16
gre 1107 1107 5664 11 1.37 1.18 0.86
fs 760 1 760 5739 4743 1.72 1.09 0.63
dwt 1242 (p) 1242 5834 5834 1.36 1.36 1.00
e05r0000 236 5846 1269 0.53 0.69 1.29
fpga dcop 51 1220 5892 953 1.14 1.32 1.16
jpwh 991 991 6027 14 1.47 1.15 0.79
EVA (p) 8497 6726 6726 1.68 2.12 1.26
can 1072 (p) 1072 6758 6758 0.87 1.19 1.38
rdb1250 1250 7300 6 1.48 1.05 0.71
west2021 2021 7310 4235 1.11 1.13 1.01
mahindas 1258 7682 3291 1.11 0.81 0.73
GD06 Java (p) 1538 8032 8032 0.74 1.13 1.52
nos3 960 8402 149 0.98 0.78 0.79
blckhole (p) 2132 8502 8502 0.96 1.18 1.23
c-18 2169 8657 4861 1.13 1.01 0.90

Table 13: (Part 1 of 2) Comparison of the performance of the code we generate to
the output of icc. Vectorization is enabled.
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tols4000 4000 8784 3188 2.65 1.16 0.44
pores 2 1224 9613 5407 0.85 0.90 1.07
spiral 1434 9831 3089 1.04 0.78 0.75
M80PI n1 4028 9927 70 1.72 1.14 0.66
dw2048 2048 10114 693 1.77 1.00 0.57
watt 1 1856 11360 6524 0.69 0.92 1.34
watt 2 1856 11550 6589 0.73 0.93 1.27
bayer09 3083 11767 5003 0.83 0.97 1.17
Pd 8081 13036 432 1.62 1.38 0.85
add20 2395 13151 7390 0.81 0.94 1.15
lshp3466 (p) 3466 13681 13681 0.80 0.96 1.20
dwt 2680 (p) 2680 13853 13853 0.79 0.94 1.19
as-735 (p) 7716 13895 13895 1.73 2.25 1.30
orsreg 1 2205 14133 111 2.27 0.87 0.38
ca-GrQc (p) 5242 14496 14496 1.36 1.79 1.32
adder trans 02 1814 14579 10327 0.69 0.81 1.17
bcsstk26 1922 16129 13480 0.60 0.72 1.20
plat1919 1919 17159 17120 1.03 0.71 0.69
wang2 2903 19093 1727 1.59 0.84 0.53
coater1 1348 19457 1380 0.57 0.57 1.00
add32 4960 19848 13883 0.72 0.85 1.18
olm5000 5000 19996 6 1.14 0.87 0.77
rw5151 5151 20199 150 2.07 0.89 0.43
sherman5 3312 20793 15096 0.59 0.68 1.16
saylr4 3564 22316 11 1.78 0.92 0.51
Oregon-1 (p) 11492 23409 23409 1.44 1.90 1.32
mcfe 765 24382 24381 0.36 0.48 1.34
lnsp3937 3937 25407 4176 0.61 0.69 1.12
fidap002 441 26831 11118 0.33 0.46 1.40
bcsstk14 1806 32630 14044 0.46 0.55 1.19
cavity05 1182 32632 3280 0.42 0.50 1.19
p2p-Gnutella04 (p) 10879 39994 39994 0.89 1.06 1.19
mbeause 496 41063 2100 0.38 0.45 1.17
cry10000 10000 49699 49599 2.20 0.81 0.37
mbeaflw 496 49920 19778 0.30 0.44 1.47

Table 14: (Part 2 of 2) Comparison of the performance of the code we generate to
the output of icc. Vectorization is enabled.
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CHAPTER III

INTEGRATION OF THE OPTIMIZATIONS INTO THE

COMPILER

We have presented various methods for generating unfolded code that impact the

performance. Although these methods are designed with the unfolded spMV in mind,

they are not dependent strictly on this context. The ideas we have presented may

be applied in other contexts where long, straightline unfolded code is seen. It is,

therefore, feasible to define the transformations in the form of compiler passes so that

they can be reused. Currently, the transformations are implemented as part of our

purpose-built compiler; hence they are not reusable in other contexts.

As a proof-of-concept that the transformations can be defined independent of the

spMV context, we have defined the offset-reduction optimization (Section 2.2) as an

LLVM [11, 12] pass. In this chapter we explain how this pass is implemented. We

argue that the other optimizations can also be defined as compiler passes.

LLVM is a compiler infrastructure that features a three-phase design with (1) a

frontend, (2) an optimizer, (3) a backend. There may be many different frontends

for different programming languages. The responsibility of the frontend is to parse a

program, written in some high-level programming language, to LLVM’s intermediate

representation (IR), which is much closer to the machine-level code and is independent

of the source program’s language. For a sample LLVM IR code, see Figure 14 where

we give a snippet from the unfolded spMV code. The second phase of the compiler

operates at the IR level. Here, many analyses and transformations optimize the

IR-level code. This way, optimizations are reused for programs written in different

programming languages. Once the IR-level optimizations are complete, the IR is given
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define double @multByM(double* %v, double* %w, i64* %rows, i64* %cols, double* %vals) {

entry:

store i64* %rows, i64** @rows1

store i64* %cols, i64** @cols1

store double* %vals, double** @vals1

%0 = load double** @vals1

%1 = getelementptr double* %0, i64 0

%2 = load double* %1

%3 = getelementptr double* %v, i64 0

%4 = load double* %3

%5 = fmul double %2, %4

%6 = getelementptr double* %0, i64 1

%7 = load double* %6

%8 = getelementptr double* %v, i64 1

%9 = load double* %8

%10 = fmul double %7, %9

%11 = getelementptr double* %0, i64 2

%12 = load double* %11

%13 = getelementptr double* %v, i64 30

%14 = load double* %13

%15 = fmul double %12, %14

%16 = fadd double %5, %10

%17 = fadd double %16, %15

%18 = getelementptr double* %w, i64 0

%19 = load double* %18

%20 = fadd double %19, %17

%21 = getelementptr double* %w, i64 0

%store double %20, double* %21

...

Figure 14: The LLVM IR representation of naive unfolding of the spMV code.

to the backend of LLVM. The backend translates the IR to a target-specific format,

such as ARM, X86, etc. Hence, for each target, there is a dedicated backend. Target-

dependent analyses and optimizations are run in the backend. LLVM is specifically

architected to have clear and well-defined application programming interfaces (API)

between the three phases so that any of the phases can be used independently of the

others in third-party projects.

LLVM provides compiler developers with a mechanism to write custom transfor-

mations. A transformation is called a pass in the LLVM terminology, because it

makes a pass over the code to perform analyses/modifications. A custom pass needs

to derive from the Pass class in the LLVM code base. There are several Pass classes

defined for various needs. Each is defined as a Visitor [18]; they internally define
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%RAX <def> = MOV64rm %RIP, 1, %noreg, <ga:@vals1>, %noreg; mem:LD8[@vals1]

%XMM0 <def> = VMOVSDrm %RAX, 1, %noreg, 0, %noreg; mem:LD8[%1]

%XMM1 <def> = VMOVSDrm %RAX, 1, %noreg, 8, %noreg; mem:LD8[%6]

%XMM0 <def> = VMULSDrm %XMM0 <kill>, %RDI, 1, %noreg, 0, %noreg; mem:LD8[%3]

%XMM1 <def> = VMULSDrm %XMM1 <kill>, %RDI, 1, %noreg, 8, %noreg; mem:LD8[%8]

%XMM2 <def> = VMOVSDrm %RAX, 1, %noreg, 16, %noreg; mem:LD8[%11]

%XMM2 <def> = VMULSDrm %XMM2 <kill>, %RDI, 1, %noreg, 72, %noreg; mem:LD8[%13]

%XMM3 <def> = VMOVSDrm %RAX, 1, %noreg, 24, %noreg; mem:LD8[%16]

%XMM3 <def> = VMULSDrm %XMM3 <kill>, %RDI, 1, %noreg, 80, %noreg; mem:LD8[%18]

%XMM4 <def> = VMOVSDrm %RAX, 1, %noreg, 32, %noreg; mem:LD8[%21]

%XMM4 <def> = VMULSDrm %XMM4 <kill>, %RDI, 1, %noreg, 144, %noreg; mem:LD8[%23]

%XMM5 <def> = VMOVSDrm %RAX, 1, %noreg, 40, %noreg; mem:LD8[%26]

%XMM5 <def> = VMULSDrm %XMM5 <kill>, %RDI, 1, %noreg, 152, %noreg; mem:LD8[%28]

%XMM0 <def> = VADDSDrr %XMM0 <kill>, %XMM1 <kill>

%XMM0 <def> = VADDSDrr %XMM0 <kill>, %XMM2 <kill>

%XMM0 <def> = VADDSDrr %XMM0 <kill>, %XMM3 <kill>

%XMM0 <def> = VADDSDrr %XMM0 <kill>, %XMM4 <kill>

%XMM0 <def> = VADDSDrr %XMM0 <kill>, %XMM5 <kill>

%XMM0 <def> = VADDSDrm %XMM0 <kill>, %RSI, 1, %noreg, 0, %noreg; mem:LD8[%36]

VMOVSDmr %RSI, 1, %noreg, 0, %noreg, %XMM0 <kill>; mem:ST8[%39]

Figure 15: A snippet from LLVM’s machine-dependent representation for the naive
unfolding of the spMV code, where the target machine is X86 64.

the mechanism to traverse the code components. For instance, there is a Pass class

that traverses the functions in a module, there is one that traverses basic blocks in a

function, and yet another that goes over the instructions in a basic block. To write a

custom pass, one needs to subclass a Pass class chosen according to the purposes of

the custom pass. Then, the visit method1 should be overridden to define the specific

behavior of the pass.

In LLVM, custom passes can be written and plugged into the compiler both in

the second phase (i.e. the IR optimizer) and the third phase (i.e. the backend). In

our case, the offset-reduction optimization is dependent on the assembly-level code.

Hence, we wrote a pass as part of the third phase2. This way, we were able to operate

on the machine-dependent representation of the code. Figure 15 shows a snippet of

LLVM’s machine-dependent representation of the unfolded spMV code.

Our offset-reduction optimization pass operates in three phases. In the first phase,

1For a FunctionPass, this method is called runOnFunction.
2In LLVM terminology, we wrote a MachineFunctionPass.
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we do the following:

• All the basic blocks in the machine-level representation of functions of the source

code are traversed.

• The traversal happens in post-order according to the Strongly-Connected Com-

ponent (SCC) ordering of the basic blocks. In the case of unfolding, because

there are no loops, there is one big basic block. But our pass would still work

if there were cycles in the control flow graph of the code.

• Our pass goes over the instructions. When we come across a memory access

instruction whose memory address operand is a register with an immediate

constant, we record the instruction in a hashtable where the key is the register.

After all the instructions are traversed, the second phase of our pass takes place.

At this phase we analyze the hashtable that comes from the first phase as follows:

• For each register in the hashtable, the recorded instructions are analyzed.

• We look at instruction intervals where the register is alive. Within these in-

tervals, we look for patterns where the memory offsets monotonically increase

with 8-byte increments.

Finally, in the third phase, we operate on each pattern detected in the second

phase. We insert LEAQ instruction in appropriate places to increment the value of

the base register, and we adjust the memory offsets accordingly.

In Table 15 we show the performance and code size with respect to naive unfolding

after applying the offset-reduction pass.
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Matrix Performance Code size Matrix Performance Code size
dwt 419 (p) 1.18 0.87 tols4000 1.08 0.91
str 600 1.11 0.89 pores 2 1.18 0.87
minnesota (p) 1.08 0.91 spiral 1.08 0.91
bcspwr06 (p) 1.09 0.90 M80PI n1 1.11 0.89
west0989 1.10 0.88 dw2048 1.12 0.88
bfw398a 1.14 0.88 watt 1 1.11 0.88
bcsstk19 1.12 0.89 watt 2 1.13 0.88
bcspwr08 (p) 1.09 0.89 bayer09 1.11 0.89
ck656 1.14 0.87 Pd 1.07 0.91
can 634 (p) 1.15 0.88 add20 1.14 0.89
tub1000 1.12 0.88 lshp3466 (p) 1.13 0.88
G33 1.09 0.90 dwt 2680 (p) 1.12 0.88
bcsstk06 1.13 0.88 as-735 (p) 1.08 0.90
hor 131 1.12 0.88 orsreg 1 1.12 0.87
gr 30 30 1.13 0.88 ca-GrQc (p) 1.08 0.89
pde900 1.11 0.88 adder trans 02 1.10 0.89
cdde3 1.13 0.88 bcsstk26 1.10 0.88
bp 1600 1.11 0.89 plat1919 1.09 0.87
email (p) 1.13 0.88 wang2 1.10 0.88
steam2 1.14 0.87 coater1 1.08 0.90
gre 1107 1.13 0.88 add32 1.17 0.88
fs 760 1 1.14 0.88 olm5000 1.10 0.88
dwt 1242 (p) 1.14 0.88 rw5151 1.08 0.88
e05r0000 1.12 0.90 sherman5 1.10 0.88
fpga dcop 51 1.13 0.89 saylr4 1.10 0.88
jpwh 991 1.20 0.88 Oregon-1 (p) 1.07 0.90
EVA (p) 1.08 0.91 mcfe 1.07 0.91
can 1072 (p) 1.16 0.87 lnsp3937 1.12 0.88
rdb1250 1.15 0.88 fidap002 1.08 0.92
west2021 1.15 0.89 bcsstk14 1.10 0.89
mahindas 1.15 0.90 cavity05 1.07 0.90
GD06 Java (p) 1.20 0.89 p2p-Gnutella04 (p) 1.08 0.88
nos3 1.19 0.87 mbeause 1.05 0.93
blckhole (p) 1.14 0.89 cry10000 1.10 0.88
c-18 1.12 0.89 mbeaflw 1.06 0.94

Table 15: Performance and code size with respect to naive unfolding after applying
our offset-reduction pass.
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CHAPTER IV

CONCLUSION

Specialization of sparse matrix-vector multiplication code according to the matrix may

bring significant performance improvements. A method of specialization is to fully

unfold the code. In this work, we have experimentally investigated the performance

of unfolded spMV code using real-world matrices. We have shown that

• substantial speedup can be obtained by unfolding;

• the quality of an industry-strength compiler can be achieved by manual gener-

ation of assembly-level code together with low-level optimizations. This way,

code generation can take place much more rapidly as compared to using a

general-purpose compiler.

We have discussed five possible low-level optimizations; four of these speed up

the code significantly under certain conditions. Finally, we have defined one of the

optimizations as a code-transforming pass. This is a proof-of-concept that the opti-

mizations can be defined modularly. to allow applying them in contexts other than

fully unfolding the spMV code.

50



Bibliography

[1] W. D. Gropp, D. K. Kaushik, D. E. Keyes, and B. F. Smith, “Towards realistic
performance bounds for implicit CFD codes,” in Proceedings of Parallel CFD’99,
pp. 241–248, 1999.

[2] G. Goumas, K. Kourtis, N. Anastopoulos, V. Karakasis, and N. Koziris, “Per-
formance evaluation of the sparse matrix-vector multiplication on modern archi-
tectures,” The Journal of Supercomputing, vol. 50, no. 1, pp. 36–77, 2009.

[3] J. Hennessy and D. Patterson, Computer Architecture: A Quantitative Approach.
Morgan Kaufmann, 2011.

[4] V. Karakasis, G. Goumas, and N. Koziris, “A comparative study of blocking stor-
age methods for sparse matrices on multicore architectures,” in Computational
Science and Engineering, 2009. CSE ’09. International Conference on, vol. 1,
pp. 247–256, Aug 2009.

[5] N. Bell and M. Garland, “Implementing sparse matrix-vector multiplication on
throughput-oriented processors,” in Proceedings of the Conference on High Per-
formance Computing Networking, Storage and Analysis, SC ’09, (New York, NY,
USA), pp. 18:1–18:11, ACM, 2009.

[6] K. Kourtis, V. Karakasis, G. Goumas, and N. Koziris, “Csx: An extended com-
pression format for spmv on shared memory systems,” in Proceedings of the 16th
ACM Symposium on Principles and Practice of Parallel Programming, PPoPP
’11, (New York, NY, USA), pp. 247–256, ACM, 2011.

[7] D. Guo and W. Gropp, “Optimizing sparse data structures for matrix-vector
multiply,” Int. J. High Perform. Comput. Appl., vol. 25, pp. 115–131, Feb. 2011.

[8] S. Kamin, M. J. Garzarán, B. Aktemur, D. Xu, B. Yılmaz, and Z. Chen, “Op-
timization by runtime specialization for sparse matrix-vector multiplication,” in
Proceedings of the 2014 International Conference on Generative Programming:
Concepts and Experiences, GPCE 2014, (New York, NY, USA), pp. 93–102,
ACM, 2014.

[9] A. H. Sameh and V. Sarin, “Hybrid parallel linear system solvers,” International
Journal of Computational Fluid Dynamics, vol. 12, no. 3-4, pp. 213–223, 1999.

[10] B. Aktemur, Y. Kameyama, O. Kiselyov, and C.-c. Shan, “Shonan challenge for
generative programming: short position paper,” in Proceedings of the ACM SIG-
PLAN 2013 workshop on Partial evaluation and program manipulation, PEPM
’13, (New York, NY, USA), pp. 147–154, ACM, 2013.

51



[11] C. Lattner and V. Adve, “Llvm: A compilation framework for lifelong program
analysis & transformation,” in CGO ’04: Proceedings of the international sym-
posium on Code generation and optimization, (Washington, DC, USA), IEEE
Computer Society, 2004.

[12] “The llvm compiler infrastructure.” http://llvm.org.

[13] N. Johnson, “Code size optimization for embedded processors,” Tech. Rep.
UCAM-CL-TR-607, University of Cambridge, 2004.

[14] A. Cohen, S. Donadio, M.-J. Garzaran, C. Herrmann, O. Kiselyov, and D. Padua,
“In search of a program generator to implement generic transformations for
high-performance computing,” Science of Computer Programming, vol. 62, no. 1,
pp. 25 – 46, 2006. Special Issue on the First MetaOCaml Workshop 2004.

[15] R. Davies and F. Pfenning, “A modal analysis of staged computation,” in POPL
’96: Proceedings of the 23rd ACM SIGPLAN-SIGACT symposium on Principles
of programming languages, (New York, NY, USA), pp. 258–270, ACM, 1996.

[16] “Matrix Market.” http://math.nist.gov/MatrixMarket/.

[17] “The University of Florida Sparse Matrix Collection.”
http://www.cise.ufl.edu/research/sparse/matrices/.

[18] E. Gamma, R. Helm, R. Johnson, and J. Vlissides, Design patterns: elements of
reusable object-oriented software. Addison-Wesley Longman Publishing, 1995.

52



VITA

I obtained my BSc degree from Ege University, Department of Computer Engineering.

I’m currently working as a software engineer at ING Bank.

53


