
Vol.:(0123456789)

Journal of Real-Time Image Processing (2024) 21:25
https://doi.org/10.1007/s11554-023-01402-8

RESEARCH

An efficient versatile video coding motion estimation hardware

Waqar Ahmad1,2 · Hossein Mahdavi1 · Ilker Hamzaoglu1,3

Received: 11 November 2023 / Accepted: 14 December 2023
© The Author(s) 2024

Abstract
Versatile Video Coding (VVC) is the latest video coding standard. It provides higher compression efficiency than the previ-
ous video coding standards at the cost of significant increase in computational complexity. Motion estimation (ME) is the
most time consuming and memory intensive module in VVC encoder. Therefore, in this paper, we propose an efficient VVC
ME hardware. It is the first VVC ME hardware in the literature. It has real time performance with small hardware area. This
efficiency is achieved by using a 64 × 64 systolic processing element array to support maximum coding tree unit (CTU)
size of 128 × 128 and by using a novel memory-based sum of absolute differences (SAD) adder tree to calculate SADs of
128 × 128 CTUs. The proposed VVC ME hardware reduces memory accesses significantly by using an efficient data reuse
method. It can process up to 30 4 K (3840 × 2160) video frames per second.

Keywords Video compression · VVC · Motion estimation · Hardware

1 Introduction

As the amount of video data is increasing significantly, more
efficient video compression is needed to transmit and store
this video data with limited available bandwidth and stor-
age space [1]. Therefore, Joint Video Experts Team (JVET)
of ITU-T and ISO standardization organizations developed
Versatile Video Coding (VVC) standard in 2020 [2]. VVC
provides 50% higher compression efficiency than its pre-
decessor High Efficiency Video Coding (HEVC) standard
developed in 2013 [3, 4]. VVC is designed to encode diverse
video content such as high dynamic range, 360º video and
virtual reality [5].

VVC uses several new encoding tools to achieve better
compression than HEVC such as new block partitioning
structure called quadtree plus multi-type tree (QTMT), affine

motion estimation and multiple transforms [6]. VVC divides
a video frame into blocks called coding tree units (CTUs)
and encodes each CTU separately. Each CTU can be further
divided into coding units (CUs) using QTMT. QTMT allows
more partitions than simple quadtree (QT) partitioning used
in HEVC. The maximum CTU size in VVC is 128 × 128.
The maximum CTU size in HEVC is 64 × 64.

VVC achieves higher compression efficiency than HEVC
at the cost of significant increase in computational complex-
ity. VVC encoder is 5 times and 31 times more complex than
HEVC encoder under Low-Delay and All-Intra configura-
tions, respectively [7]. The encoding time of VVC reference
software encoder (VTM) is about 10 times more than the
encoding time of HEVC reference software encoder (HM)
[8]. Therefore, dedicated hardware implementations are
needed for processing high resolution videos in real-time [9].

Successive frames in a video sequence have temporal
redundancy. Video coding standards remove this temporal
redundancy by performing motion estimation (ME). ME is
the most time consuming and memory intensive module in
video encoding [10]. More than 50% of the encoding time of
VVC encoder is spent for ME [7]. Up to 60% of the memory
accesses of VVC encoder comes from ME module [11].

There are several HEVC ME hardware in the literature
[12–20]. Several sum of absolute differences (SAD) hard-
ware that can be used for ME are proposed in the literature
[21, 22]. There are several VVC intra prediction, fractional

 * Ilker Hamzaoglu
 ilker.hamzaoglu@ozyegin.edu.tr

 Waqar Ahmad
 waqar.ahmad@giki.edu.pk

 Hossein Mahdavi
 hmahdavi@sabanciuniv.edu

1 Sabanci University, Tuzla, 34956 Istanbul, Turkey
2 Ghulam Ishaq Khan Institute of Engineering Sciences

and Technology, Topi 23460, Pakistan
3 Ozyegin University, Çekmeköy, 34794 Istanbul, Turkey

http://crossmark.crossref.org/dialog/?doi=10.1007/s11554-023-01402-8&domain=pdf

 Journal of Real-Time Image Processing (2024) 21:25 25 Page 2 of 12

interpolation and transform hardware in the literature
[23–26]. However, to the best of our knowledge, there is no
VVC ME hardware in the literature.

VVC ME has higher computational complexity than
HEVC ME because of using a larger maximum CTU size
and a more complex block partitioning structure called
QTMT. Two types of SAD adder trees are proposed in
the literature for HEVC ME hardware. Fully parallel SAD
adder tree processes all the pixels in the largest CU in par-
allel. Sequential SAD adder tree divides the largest CU
into smaller blocks and processes each block in successive
clock cycles. Using a fully parallel SAD adder tree in VVC
ME hardware results in very large hardware area. Using a
sequential SAD adder tree in VVC ME hardware results in
low data reuse and low throughput. Therefore, the methods
proposed in the literature for designing HEVC ME hardware
are inefficient for designing VVC ME hardware.

In this paper, we propose the first VVC ME hardware in
the literature. The proposed hardware uses the Full Search
ME algorithm with the SAD metric to find the best motion
vector for a wide range of QTMT partition sizes, ranging
from 8 × 4 (4 × 8) to 128 × 128, within a CTU. The proposed
hardware calculates SADs of 128 × 128 CTU using a 64 × 64
systolic processing element array and a novel memory-based
SAD adder tree to achieve real-time performance with small
hardware area. It reduces memory accesses significantly by
using an efficient data reuse method.

The proposed novel memory-based SAD adder tree com-
bines the features of fully parallel and sequential SAD adder
trees. It is highly efficient as it achieves high data reuse and
high throughput, and it uses smaller hardware area than a
fully parallel 128 × 128 SAD adder tree.

The proposed VVC ME hardware is implemented using
Verilog HDL. It works at 253 MHz on a Xilinx Virtex 7
FPGA, and it can process up to 30 4K (3840 × 2160) video
frames per second (fps).

The rest of the paper is organized as follows. In Sect. 2,
VVC ME is explained. Section 3 describes the proposed
VVC ME hardware. Its implementation results and compari-
son with HEVC ME hardware in the literature are given in
Sect. 4. Finally, Section 5 concludes the paper.

2 VVC motion estimation

VVC uses block matching for translational ME. In block
matching, current video frame is divided into blocks. As
shown in Fig. 1, for each block in the current frame, the best
matching block in a search window (SW) in the reference
frame and the corresponding motion vector (MV) are deter-
mined. SAD metric is typically used to determine the best
matching block. SAD between blocks A and B is calculated
as shown in Eq. (1), where W × H is the block size, A(i, j)

and B(i, j) are pixels in ith row and jth column of A and B,
respectively.

Video coding standards perform variable block size ME.
Large block sizes achieve higher compression for the smooth
areas in video frames, whereas small block sizes achieve
higher compression for the areas with more details. Because
large block sizes can find good matches for the smooth areas
using less MVs than small block sizes. However, for the
areas with more details, using large block sizes results in
large residue. For such areas, small block sizes find better
matches resulting in small residue and better compression
despite using more MVs than large block sizes.

In variable block size ME, for each block in the cur-
rent frame, all sub-block sizes are used to determine the
best match in its search window in the previous frame, and
the sub-block size achieving the best compression is used
for that block. Therefore, variable block size ME achieves
higher compression than fixed block size ME.

Both HEVC and VVC divide a video frame into blocks
called CTU. In HEVC, the maximum CTU size is 64 × 64. A
CTU can be recursively partitioned into square-shaped CUs
using QT. The size of a CU can be from 8 × 8 to 64 × 64. A
CU can be partitioned only once into square, rectangular
and asymmetric partitions called prediction unit (PU). The
PU size can be from 4 × 8 or 8 × 4 to the CU size for motion
estimation.

In VVC, the maximum CTU size is 128 × 128. A CTU
can be recursively partitioned into CUs using QTMT [27].
QTMT achieves higher compression than QT used in HEVC
by allowing more partitions than QT.

QTMT is a tree in which a node can be split using QT,
binary tree (BT) or ternary tree (TT). A BT splits a node into

(1)SAD =

W−1∑

i=0

H−1∑

j=0

|A(i, j) − B(i, j)|

Search Window

Best Match

Current Block

Reference Frame Current Frame

Fig. 1 Block matching motion estimation

Journal of Real-Time Image Processing (2024) 21:25 Page 3 of 12 25

two rectangular blocks. A TT splits a node into three rectangu-
lar blocks, two of which have the same size. BT and TT splits
can be applied in horizontal or vertical direction. In Fig. 2, five
possible QTMT partitions are shown; binary horizontal (BH),
binary vertical (BV), ternary horizontal (TH), ternary vertical
(TV), quad (Q).

There are some restrictions in QTMT partitioning [28]. If a
node is split with QT, it can be further split with any of the five
QTMT partitions. However, if a node is split with either BT
or TT, it can no longer be further split with QT. An example
of QTMT partitioning of 128 × 128 CTU is shown in Fig. 3.

As shown in Fig. 4, the same partitions can be achieved
with different splitting patterns. If the central partition of a TT
split is further split with BT in the same direction, it achieves
the same partitions with BT split followed by BT split in the
same direction. Similarly, QT split achieves the same partitions
with BT split in one direction followed by BT split in the other
direction. VVC does not allow these redundant partitions [28].

In addition to translational ME, VVC uses affine motion
estimation (AME) to predict more complex motion such as
rotation or scaling. Turning off AME in VVC video encoding
causes 3% loss in compression efficiency but provides 20%
encoding time reduction [29]. It is reported in [30] that trans-
lational motion estimation is used for more than 90% cases in
VVC video encoding. Therefore, in this paper, we propose an
efficient ME hardware for VVC translational ME.

3 Proposed VVC motion estimation
hardware

VVC defines the following control parameters to adjust the
computational complexity of ME by restricting the number of
partitions. MaxCUWidth and MaxCUHeight define the maxi-
mum allowed width and height of a CU, respectively. MinQT-
Size defines the minimum node size that can be reached with
QT split. MaxBtSize and MaxTtSize define the maximum node
size to which BT and TT split can be applied, respectively.
MaxMttDepth defines the maximum allowed depth of multi-
type tree splitting after QT split.

In the proposed VVC ME hardware, MaxCUWidth and
MaxCUHeight are set to 128. Therefore, the largest CU
size is 128 × 128. MinQTSize is set to 8. Therefore, an
8 × 8 CU can only be further split with BT. MaxBtSize and
MaxTtSize are set to 32. MaxMttDepth is set to 2. There-
fore, multi-type tree split is not applied to CU sizes larger
than 32 × 32. The maximum depth of multi-type tree split
is 2, i.e., multi-type tree split can be applied at most twice.

The number of possible partitions in a 64 × 64 CU with
these parameter values are shown in Table 1. Let X and Y
represent one of the four possible multi-tree type partitions
shown in Fig. 2, then the partition type X_Y in Table 1
represents the case where first X type split then Y type
split are applied after QT split. For example, BH_BH par-
tition type represents the case where first binary horizontal
split is applied after QT split, then binary horizontal split
is applied to the 2 new partitions resulting in 4 partitions.

The number of unique MVs is less than the number of
partitions for some split types. For example, a TH split of
a QT node results in 3 partitions. The top and bottom parti-
tions of TH split are the same as top and bottom partitions
of BH_BH split. Therefore, there is no need to calculate
MVs for top and bottom partitions of TH split and only
1 of the 3 TH partitions require a unique motion vector.

Redundant partitions, which are not allowed in VVC,
are not shown in Table 1. For example, BH_BV split
achieves the same partitions with QT split. Therefore, it
is not allowed in VVC. In addition, some partitions are not
allowed since they result in a partition size with height or
width smaller than the minimum allowed CU size. These
partitions are also not shown in Table 1. For example,
when a 16 × 16 block is split with ternary tree, its further
split with ternary tree will result in a partition size of 8 × 2
or smaller. This is smaller than the minimum allowed CU
size. Therefore, this is not allowed.

The proposed VVC ME hardware is shown in Fig. 5.
For a 64 × 64 CU, it only processes the partitions shown
in Table 1. It does not process the partitions which are not
allowed by VVC. It consists of on-chip memory to store
search window pixels and next block of current frame, a

BH BV TH TV Q

Fig. 2 Allowed partitions in VVC

Quad Tree

Binary Tree

Ternary Tree

Fig. 3 An example QTMT partitioning of 128 × 128 CTU and its
decision tree

Fig. 4 Examples of redundant partitions in VVC

 Journal of Real-Time Image Processing (2024) 21:25 25 Page 4 of 12

systolic array of processing elements (PEs) to store cur-
rent and reference block pixels and calculate their absolute
differences, an SAD adder tree to calculate SADs for all
the supported CU sizes, a comparator unit to determine
the minimum SAD and its corresponding MV for each
CU size, and a control unit to perform control operations.

To achieve real-time performance with small hardware
area, the proposed VVC ME hardware divides 128 × 128
CTU into four 64 × 64 CUs. It uses a 64 × 64 systolic PE
array and 64 × 64 SAD adder tree to determine the best 821
unique MVs for each of these 64 × 64 CUs sequentially.
First, the best 821 unique MVs for the first 64 × 64 CU are
determined. Then, the remaining three 64 × 64 CUs are pro-
cessed one by one.

The proposed VVC ME hardware uses an efficient data
reuse method to significantly reduce the memory accesses
required for processing each 64 × 64 CU and its partitions. It
uses a novel memory-based SAD adder tree to determine the
best MV for 128 × 128 CU. The best MV for 128 × 128 CU
is determined together with the best MVs of last 64 × 64 CU.

Since the proposed VVC ME hardware divides 128 × 128
CTU into four 64 × 64 CUs, it uses a 64 × 64 systolic PE
array which is 4 times smaller than a 128 × 128 systolic PE
array. Since it stores search window pixels of 64 × 64 CU
in on-chip memory instead of storing search window pixels
of 128 × 128 CTU in on-chip memory, it uses less on-chip
memory as well. Although this significantly reduces area
of the proposed VVC ME hardware, it has real time per-
formance. This efficiency is achieved by using the efficient
data reuse method based on vertical snake scan of the search
window and the novel memory-based SAD adder tree.

3.1 On‑chip memory and systolic array

FPGAs have fast dedicated on-chip memories called Block
RAMs (BRAMs). In the proposed hardware, the current
64 × 64 CU and its corresponding search window are read
from off-chip memories and stored in the on-chip BRAMs.
A ± 64 search range centered around the current 64 × 64 CU
defines a 128 × 128 search window. This requires storing
192 × 192 reference frame pixels in the BRAMs. In the pro-
posed hardware, the first and last 64 columns are stored in
8 BRAMs of size 384 × 64 bits each. The middle 64 col-
umns are stored in 8 BRAMs of size 192 × 64 bits each. The
64 × 64 pixels of current frame are stored in 8 BRAMs.

The proposed hardware has a 64 × 64 systolic PE array as
shown in Fig. 6. The systolic array also contains 64 regis-
ters to store an additional column of the search window. As
shown in Fig. 7, a PE consists of two registers which store a
current block pixel and a reference block pixel, an absolute
difference (AD) hardware, and an output register. AD hard-
ware subtracts the reference pixel from the current pixel.

Table 1 Number of possible partitions and unique MVs in a 64 × 64
CU

Block size Partition type Partitions Unique MVs

64 × 64 No Partition 1 1
Q 4 4

32 × 32 Q 16 16
BH 8 8
BV 8 8
TH 12 4
TV 12 4
BH_BH 16 16
BH_TH 24 24
BH_TV 24 8
BV_BV 16 16
BV_TH 24 8
BV_TV 24 24
TH_BH 24 16
TH_TH 20 20
TV_BV 24 16
TV_TV 20 20

16 × 16 Q 64 64
BH 32 32
BV 32 32
TH 48 16
TV 48 16
BH_BH 64 64
BH_TV 96 32
BV_BV 64 64
BV_TH 96 32

8 × 8 BH 128 128
BV 128 128

Total 1077 821

Reference
Frame Current Frame

BRAM
(Search Window)

Systolic Array
(Registers and AD Computation)

SAD Adde r T re e

Control Unit

Comparator

Minimum SAD
& Best MV

Re
f.

Bl
oc

k

BRAM

Cu
rre

nt
 B

loc
k

Fig. 5 Proposed VVC motion estimation hardware

Journal of Real-Time Image Processing (2024) 21:25 Page 5 of 12 25

If the subtraction result is negative, i.e., its sign bit is 1, it
takes its 2’s complement to calculate the absolute difference.

The systolic array receives a new row of 64 reference
block pixels from BRAMs in every clock cycle. It takes 64
clock cycles to fill the systolic array with the 64 × 64 refer-
ence block of the first search location. At the same time, the
64 × 64 current block pixels are also received from BRAMs
and stored in the systolic array row by row. After that sys-
tolic array calculates 64 × 64 absolute differences in one
clock cycle and sends them to SAD adder tree which calcu-
lates the SADs for all the partitions of 64 × 64 CU.

The systolic array stores the same 64 × 64 current block
until all the search locations in the search window are
searched for that current block. It can search a new search

location in the search window in every clock cycle, i.e., it
can process 64 × 64 reference block of each search location
in one clock cycle.

To achieve high data reuse, the proposed hardware uses
the vertical snake scan order shown in Fig. 8a. The search
starts from the top-left corner of the search window and
moves downward until all the search locations in the first
column are searched. Then, the search locations in the
second column are searched in the upward direction. Then,
the search locations in the third column are searched in the
downward direction. This continues until all the search
locations in the search window are searched for the cur-
rent block.

To achieve high data reuse, each PE can shift its refer-
ence pixel up, down, or left. After a search location in
a column, which is searched in the downward direction,
is searched, all the PEs shift their reference pixels up,
and a new row of 64 reference block pixels is read from
search window memory and stored in the last row of sys-
tolic array as shown in Fig. 8b. This continues until all the
search locations in that column are searched.

In Fig. 8b, green area represents the reused reference
block pixels in the systolic array, white area represents
the new row of 64 reference block pixels, and grey area
represents the discarded row of 64 reference block pixels
in the previous reference block.

After searching a location in a column, which is
searched in the upward direction, all the PEs shift their ref-
erence pixels down. Then, a new row of 64 reference block
pixels is read from search window memory and stored in
the first row of systolic array as shown in Fig. 8b. This
continues until all the search locations in that column are
searched.

Once all the search locations in a column are searched, all
the PEs shift their reference pixels left, and a new column of
64 reference block pixels should be stored in the last column
of systolic array. Since row aligned BRAMs are used in the
proposed hardware, it would take 64 clock cycles to read
a new column of 64 reference block pixels from BRAMs.

Therefore, an extra column of 64 registers is used in the
systolic array. In every clock cycle, instead of 64, a new row

PE
63,0

PE
63,1

PE
62,0

PE
62,1

PE
0,0

PE
0,1

PE
62,63

PE
63,63

PE
0,63

64x64
PE Array

Reference Block Pixels Current Block Pixels Ext ra Column

Fig. 6 Systolic processing element (PE) array and registers

PE Above PE Below PE RightCurrent Block

Direction

Current Pixel
Register

Reference Pixel
Register

|C – R |

C – R

+

8-bit
1

8
8

8

Register

88

Fig. 7 Processing element (PE)

Search

CU

D U

R

R

D

Fig. 8 a Vertical snake scan order, b Data reuse in downward,
upward, and right directions

 Journal of Real-Time Image Processing (2024) 21:25 25 Page 6 of 12

of 65 reference block pixels is read from search window
memory and stored in the systolic array. Therefore, after
all the search locations in a column are searched, all the
PEs shift their reference pixels left, and the PEs in the last
column of systolic array receive their new reference pixels
from the extra column of 64 registers. This takes only one
clock cycle.

The 192 × 192 search window pixels are divided into
three blocks of 192 × 64 pixels. The first and third blocks
are stored together in 8 BRAMs. The middle block is stored
in other 8 BRAMs. To access 65 reference block pixels, 128
pixels (64 pixels each from the first and second block, or 64
pixels each from the second and third block) are read from
these 16 BRAMs.

The sequence in which search window pixels are read
from the BRAMs remains constant. However, the arrange-
ment of pixels needed by the PE array and temporary reg-
isters changes based on the location of the column being
processed. Therefore, a horizontal data rotator hardware is
used to reorder the 128 pixels such that the required 65 pix-
els are always in the MSB positions. These 65 pixels are
sent to systolic PE array and the extra column of registers.

In the proposed hardware, BRAMs are configured as true
dual port memories. After the current 64 × 64 CU is stored in
the systolic array, the next 64 × 64 CU of the current frame
is read into the BRAMs from off-chip memory. Similarly,
the search window BRAMs are also updated dynamically
with the search window of the next 64 × 64 CU of the current
frame from off-chip memory.

3.2 SAD adder tree

In HEVC, the maximum CTU size is 64 × 64, and 593
unique MVs should be calculated for a 64 × 64 CU [15]. In
VVC, the maximum CTU size is 128 × 128, and 821 unique
MVs should be calculated for a 64 × 64 CU.

In addition, in VVC, there are more complex asymmet-
ric partitions which are not used in HEVC. Therefore, SAD
adder tree in VVC ME hardware is more complex than SAD
adder tree in HEVC ME hardware.

In the proposed hardware, the SAD adder tree calculates
the SADs of all the 821 unique partitions of a 64 × 64 CU
by reusing the SADs of smaller partitions to calculate the
SADs of larger partitions.

After the SAD adder tree receives 64 × 64 ADs for the
first search location from the systolic array, it receives and
processes 64 × 64 ADs of a new search location in every
clock cycle. For each 64 × 64 ADs, the corresponding 256
4 × 4 SADs are calculated in four clock cycles. One 4 × 4
SAD calculation including the AD calculation in PEs is
shown in Fig. 9. The red dotted lines in the figure indicate
the pipeline registers.

These 4 × 4 SADs are then used to calculate SADs of
larger partitions in a hierarchical manner. For example, 4 × 4
SADs are used to calculate SADs of binary partitions (BV,
BH) of 8 × 8 CUs. Then, the SADs of BV partitions of 8 × 8
CUs are used to calculate 64 SADs of 8 × 8 CUs. SADs of
binary and quad partitions of 16 × 16, 32 × 32, and 64 × 64
CUs are calculated similarly as shown in Fig. 10a.

Similarly, the SADs of BV and BH partitions of 8 × 8 CUs
are used to calculate SADs of BH_BH, BV_BV, BV_TH
and BH_TV partitions of 16 × 16 CUs. Then, the SADs of
BH_BH and BV_BV partitions are used to calculate SADs
of TH and TV partitions of 16 × 16 CUs. SADs of the same
shaped partitions of 32 × 32 CUs are calculated similarly
using BV and BH partitions of 16 × 16 CUs as shown in
Fig. 10b.

SADs of TH_TH, TV_TV, TH_BH, TV_BV, BH_TH
and BV_TV partitions of 32 × 32 CUs are calculated using
BH_BH and BV_BV partitions of 16 × 16 CUs as shown in
Fig. 10c.

The proposed hardware calculates the SADs of all the 821
unique partitions of a 64 × 64 CU for the first search location
in the search window in 13 clock cycles and sends them to
the comparator. After that, 821 new SADs are calculated in
every clock cycle and sent to the comparator.

To achieve real-time performance with small hardware
area, the proposed hardware divides 128 × 128 CU into four
64 × 64 CUs, processes them one by one and calculates SAD
of 128 × 128 CU using the novel memory-based accumulator
hardware shown in Fig. 11. In the BRAM, 4096 SAD values,
each 22 bits, are stored.

AD

C0

R1

R0

+
AD

AD

+
AD

AD

+
AD

+

+

+

+

8

C1

C2

R3

R2

C3

C14

R15

R14

C15

9

9

9

Reg

+

Reg Reg RegReg

12

8

8

8

8

8

8

8

8

8

8

8

Fig. 9 4 × 4 SAD calculation

Journal of Real-Time Image Processing (2024) 21:25 Page 7 of 12 25

The top left 64 × 64 CU is processed first. For every i th
search location in the search window, the SAD calculated
for this 64 × 64 CU is sent to both the comparator and the
memory-based accumulator where it is added to the content
of i th location of BRAM and the result is written back to i th
location of BRAM. The contents of the BRAM are initially
set to 0. Therefore, the SADs of the top left 64 × 64 CU are
stored in the BRAM.

Then, the top right 64 × 64 CU is processed. Therefore,
the i th SAD of the top right 64 × 64 CU is added to the i th

SAD of the top left 64 × 64 CU, and the result is written back
to i th location of BRAM. Then, the bottom left 64 × 64 CU
is processed similarly. Finally, the bottom right 64 × 64 CU
is processed similarly.

When the first SAD of the bottom right 64 × 64 CU
is added to the content of the first location of BRAM,
the adder output is the first SAD of the 128 × 128 CU.
Therefore, the output register in Fig. 11 is enabled, and the
first SAD of the 128 × 128 CU is sent to the comparator.
After that, a new SAD of the 128 × 128 CU is calculated
in every clock cycle and sent to the comparator. When the
last SAD of the bottom right 64 × 64 CU is calculated, the
last SAD of the 128 × 128 CU is also calculated after one
clock cycle and sent to the comparator.

3.3 Comparator

The comparator unit determines the minimum SAD and its
corresponding best MV for each CU size. It consists of one
comparator for each of the 821 unique partitions of 64 × 64
CU and one additional comparator for the 128 × 128 CU.
The sizes of these comparators vary from 13-bits for the

Reg Reg Reg

N

N/4

2N

2N

N/2

N/4

N

N/4

2N

N/2 N/4
Reg Reg Reg

N

N

N/2

N/2

2N 2N

N

N/2

2N

N

N/2

N

N/2

N/2

N

N
2N

2N

Reg Reg Reg

N

2N

N

Fig. 10 SAD adder tree a SADs of BH, BV, Q partitions N = 4, 8, 16, 32 b SADs of BH_BH, BV_TH, BH_TV, BV_BV, TH, TV partitions
N = 8, 16 c SADs of TH_TH, TH_BH, BH_TH, BV_TV, TV_BV, TV_TV partitions N = 16

BRAM

Current
64x64 SADi

Intermediate
128x128 SADi

R
eg

Enable

128x128
SADi

+

Control
S

To Comparator

ignals

Fig. 11 128 × 128 SAD calculation

 Journal of Real-Time Image Processing (2024) 21:25 25 Page 8 of 12

smallest CU to 22-bits for the 128 × 128 CU. The latency
of the comparator unit is one clock cycle. In every clock
cycle, it compares all the SADs it receives from the SAD
adder tree with the previous minimum SADs of the cor-
responding partitions and determines the minimum SAD
and its corresponding best MV for each partition. The cost
of MV bits is not considered in determining the best MV.

4 Implementation results

The proposed VVC ME hardware is implemented using
Verilog HDL. The Verilog RTL codes are implemented
on a Xilinx Virtex 7 FPGA using Xilinx Vivado 2017.4
with the area-optimized_high synthesis strategy and the
performance_explore implementation strategy. The FPGA
implementation is verified with post-implementation tim-
ing simulations.

The proposed hardware has 14 stages pipeline from AD
calculation to comparator output. The latency for process-
ing a 128 × 128 CTU can be calculated as (64 + 14 + Search
Locations) × 4. The systolic array is filled in 64 clock
cycles. It takes 14 clock cycles to calculate the SADs of all
the CUs for the first search location in the search window
and compare them. After that, all the CUs for a new search
location are processed in every clock cycle. Multiplication
by 4 is necessary since a 64 × 64 SAD adder tree is used
and a 128 × 128 CTU has four 64 × 64 CUs.

We implemented and verified the proposed VVC ME
hardware in two different configurations for three differ-
ent search ranges. One configuration supports 128 × 128
largest CTU size using a 64 × 64 systolic array and 64 × 64
SAD adder tree. The other configuration supports 64 × 64
largest CTU size using a 32 × 32 systolic array and 32 × 32
SAD adder tree. In each configuration, the size of the
search range is set to the largest CTU size, 75% of the
largest CTU size, and half of the largest CTU size.

The search range is centered around the top left pixel of
current CTU. A search range of 128 × 128 means that the
first pixel of first reference CTU is located at position (-64,
-64) left of the first pixel of current CTU in the search
window. Similarly, the first pixel of last reference CTU is
located at position (+ 64, + 64) right of the first pixel of
current CTU in the search window.

Performance of the proposed VVC ME hardware for
different configurations are shown in Table 2. The clock
frequency (MHz), the number of clock cycles required to
process a current CTU, and the throughput in frames per
second (fps) for three different video resolutions (full HD
(FHD), 2K, 4K) are shown in the table. The throughput in
fps is calculated as shown in Eq. (2).

Ta
bl

e
2

 P
er

fo
rm

an
ce

 o
f t

he
 p

ro
po

se
d

V
V

C
 M

E
ha

rd
w

ar
e

fo
r d

iff
er

en
t c

on
fig

ur
at

io
ns

C
TU

 si
ze

12
8 ×

 12
8

64
 ×

 64

Se
ar

ch
 R

an
ge

12
8 ×

 12
8

96
 ×

 96
64

 ×
 64

64
 ×

 64
48

 ×
 48

32
 ×

 32

Fr
eq

ue
nc

y
(M

H
z)

25
3

25
3

25
3

30
6

30
6

30
6

C
TU

 L
at

en
cy

65
,8

48
37

,1
76

16
,6

96
16

,5
60

9,
39

2
4,

27
2

FP
S

at
 1

08
0p

30
53

12
0

36
64

14
1

FP
S

at
 2

 K
28

50
11

2
34

60
13

2
FP

S
at

 4
 K

7
13

30
9

16
35

Journal of Real-Time Image Processing (2024) 21:25 Page 9 of 12 25

For 128 × 128 largest CTU size with 128 × 128 search
range, 30 fps throughput is achieved for full HD video
resolution. If the search range is reduced to 64 × 64, 30
fps throughput is achieved for 4K video resolution. For
64 × 64 largest CTU size with 32 × 32 search range, 35 fps
throughput is achieved for 4K video resolution.

The proposed VVC ME hardware does not implement
multi-type tree splitting for CU sizes larger than 32 × 32.
The default configuration of VVC reference software (VTM)
allows several multi-type tree splits larger than 32 × 32. The
proposed hardware implements multi-type tree depth of 2.
The default multi-type tree depth in VTM is 3.

We assessed the impact of the proposed hardware on
VVC coding efficiency. Table 3 presents the rate-distortion
performance for six different configurations of the proposed
hardware with varying CTU sizes and search ranges for four
full HD (1920 × 1080) videos using VTM v22.1. VTM is
used in default configuration except the search algorithm,
which is changed to Full Search. The VTM evaluations do
not consider the impact of merge modes. It is assumed that
they are checked in the mode decision module.

The FPGA resource usages of the proposed VVC ME
hardware for 128 × 128 largest CTU size configuration
with 128 × 128 search range and for 64 × 64 largest CTU
size configuration with 64 × 64 search range are shown in
Tables 4 and 5, respectively. The resource usage of 64 × 64
largest CTU size configuration is almost 4 times less than the
resource usage of 128 × 128 largest CTU size configuration.

The systolic array uses the most FPGA resources. It uses
54% of the total flip-flops and 38% of the total LUTs used
by the 128 × 128 largest CTU size configuration. The current
pixel registers, reference pixel registers, and output registers
in the systolic array justify the amount of flip-flop usage.

The SAD adder tree uses the second most FPGA
resources. It uses 31% of the total flip-flops and 28% of the
total LUTs used by the 128 × 128 largest CTU size configu-
ration. Since the comparator unit uses registers to store the
minimum SADs and corresponding best MVs, its flip-flop
usage is higher than its LUT usage.

The proposed VVC ME hardware is the first VVC ME
hardware in the literature [31]. The proposed VVC ME hard-
ware implementation is compared with the HEVC ME hard-
ware implementations in the literature in Table 6. Although
VVC ME has larger maximum CTU size and it is more com-
putationally complex than HEVC ME, the proposed VVC
ME hardware has smaller area and higher throughput than
some of these HEVC ME hardware.

The HEVC ME hardware proposed in [13] and [14] use
full search ME algorithm. The hardware proposed in [13]
does not support the asymmetric partitions in HEVC ME.

(2)fps =
1

CTUlatency × CTUsperframe × Clockperiod

Ta
bl

e
3

 Im
pa

ct
 o

f t
he

 p
ro

po
se

d
ha

rd
w

ar
e

on
 V

V
C

 c
od

in
g

effi
ci

en
cy

C
TU

 si
ze

12
8 ×

 12
8

64
 ×

 64

Se
ar

ch
 ra

ng
e

12
8 ×

 12
8

96
 ×

 96
64

 ×
 64

64
 ×

 64
48

 ×
 48

32
 ×

 32

B
D

-R
at

e
(%

)
B

D
-P

SN
R

(d

B
)

B
D

-R
at

e
(%

)
B

D
-P

SN
R

(d

B
)

B
D

-R
at

e
(%

)
B

D
-P

SN
R

(d

B
)

B
D

-R
at

e
(%

)
B

D
-P

SN
R

(d

B
)

B
D

-R
at

e
(%

)
B

D
-P

SN
R

(d

B
)

B
D

-R
at

e
(%

)
B

D
-P

SN
R

(d

B
)

K
im

on
o

1.
60

9
–

0.
05

6
1.

50
3

–
0.

05
3

1.
51

7
–

0.
05

3
1.

51
7

–
0.

05
3

1.
71

4
–

0.
06

0
1.

46
7

–
0.

05
2

Te
nn

is
3.

47
6

–
0.

10
2

3.
61

2
–

0.
10

5
3.

55
0

–
0.

10
5

3.
55

0
–

0.
10

5
3.

65
3

–
0.

10
7

3.
36

1
–

0.
09

8
C

ac
tu

s
0.

64
4

–
0.

01
6

0.
61

0
–

0.
01

6
0.

47
6

–
0.

01
2

0.
47

6
–

0.
01

2
0.

54
9

–
0.

01
3

0.
75

5
–

0.
01

7
Pa

rk
 S

ce
ne

0.
56

1
–

0.
01

9
0.

52
7

–
0.

01
8

0.
46

7
–

0.
01

6
0.

46
7

–
0.

01
6

0.
53

6
–

0.
01

8
0.

63
1

–
0.

02
1

 Journal of Real-Time Image Processing (2024) 21:25 25 Page 10 of 12

These HEVC ME hardware use more LUTs and have lower
throughput than our VVC ME hardware.

A sequential and a parallel HEVC ME hardware imple-
menting diamond search algorithm are proposed in [17].
Since the parallel hardware has higher performance than
the sequential hardware, we compare our VVC ME hard-
ware with the parallel HEVC ME hardware. The HEVC ME
hardware has smaller area and lower throughput than our
VVC ME hardware.

The HEVC ME hardware proposed in [18] uses full
search ME algorithm. It uses more LUTs, less FFs, and has
the same throughput as our VVC ME hardware. VVC sup-
ports a larger number of partitions compared to HEVC. For
a 64 × 64 CU size, our VVC ME hardware finds 821 unique

MVs for 1077 potential partitions, whereas the HEVC ME
hardware in [18] finds 593 unique MVs for 677 potential
partitions. Since our VVC ME hardware finds more MVs
and highly pipelined, it uses more FFs than the HEVC ME
hardware in [18]. Since we used area optimized synthesis
strategy, our VVC ME hardware uses less LUTs than the
HEVC ME hardware in [18].

The HEVC ME hardware proposed in [19] uses a fast
hybrid pattern search algorithm. It has higher throughput
and a much larger area than our VVC ME hardware.

In summary, the proposed VVC ME hardware is more
efficient than HEVC ME hardware in the literature. The pro-
posed VVC ME hardware and the HEVC ME hardware pro-
posed in [13, 14, 18] use full search algorithm. The proposed
VVC ME hardware can process larger (128 × 128 CTU size
as opposed to 64 × 64 CTU size) and more complex coding
block structure of VVC while achieving higher throughput
and using smaller area than them. Since the HEVC ME hard-
ware proposed in [17] and [19] use fast search algorithms,
they may not find the best MVs. The proposed VVC ME
hardware has higher throughput than the HEVC ME hard-
ware proposed in [17]. Although the proposed VVC ME
hardware processes much larger CTU size of 128 × 128 as
opposed to CTU size of 32 × 32 processed by the HEVC ME
hardware proposed in [19], it has much smaller area.

5 Conclusions

In this paper, we proposed the first VVC ME hardware in the
literature. It supports up to 4309 CU partitions and computes
3285 unique motion vectors for a 128 × 128 CTU. It uses a
novel memory-based SAD adder tree, and an efficient data
reuse method. It is implemented on a Xilinx Virtex 7 FPGA.
It can process up to 30 4K (3840 × 2160) video frames per
second.

Table 4 Resource usage for 128 × 128 CTU size

LUTs Flip-Flops BRAMs

Systolic Array 56,321 98,816 –
SAD Adder Tree 40,970 57,312 4
Control Unit 36,582 2806 –
Comparator 11,308 21,343 –
Memory 425 2050 24
Total 145,606 182,327 28

Table 5 Resource usage for 64 × 64 CTU size

LUTs Flip-Flops BRAMs

Systolic Array 16,390 24,832 –
SAD Adder Tree 11,022 14,474 1
Control Unit 9954 1,348 –
Comparator 2818 4,948 –
Memory 210 1,026 12
Total 40,394 46,628 13

Table 6 Comparison with HEVC ME hardware

[13] [14] [17] [18] [19] Proposed

Standard HEVC HEVC HEVC HEVC HEVC VVC
FPGA Xilinx Virtex 5 Xilinx Virtex 5 Xilinx Virtex 7 Xilinx Virtex 7 Xilinx Virtex 7 Xilinx Virtex 7
CTU Size 64 × 64 64 × 64 64 × 64 64 × 64 32 × 32 128 × 128
Search Range 64 × 64 64 × 64 144 × 144 64 × 64 64 × 64 64 × 64
Frequency (MHz) 125 84.96 198.73 247 162 253
Throughput 4 K @ 13 fps 4 K @ 9 fps FHD @ 30 fps 4 K @ 30 fps 8 K @ 78 fps 4 K @ 30 fps
LUTs 209,434 153,314 49,258 188,664 485,760 145,606
Flip-Flops 199,066 36,368 13,351 144,302 607,200 182,327

Journal of Real-Time Image Processing (2024) 21:25 Page 11 of 12 25

Acknowledgements This research was supported in part by the Scien-
tific and Technological Research Council of Turkey (TUBITAK) under
the contract 118E134.

Author contributions WA: Conceptualization, investigation, hard-
ware, validation, writing-original draft. HM: software, validation,
writing-review & editing. IH: methodology, writing-review & editing,
supervision.

Funding Open access funding provided by the Scientific and Techno-
logical Research Council of Türkiye (TÜBİTAK).

Declarations

Conflict of interest The authors declare no competing interests.

Open Access This article is licensed under a Creative Commons Attri-
bution 4.0 International License, which permits use, sharing, adapta-
tion, distribution and reproduction in any medium or format, as long
as you give appropriate credit to the original author(s) and the source,
provide a link to the Creative Commons licence, and indicate if changes
were made. The images or other third party material in this article are
included in the article’s Creative Commons licence, unless indicated
otherwise in a credit line to the material. If material is not included in
the article’s Creative Commons licence and your intended use is not
permitted by statutory regulation or exceeds the permitted use, you will
need to obtain permission directly from the copyright holder. To view a
copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.

References

 1. Cisco, V.: Cisco visual networking index: Forecast and trends,
2017–2022. In: Cisco Systems White Paper. 1(1), (2018)

 2. ITU-T and ISO/IEC JTC: Versatile video coding. Recommenda-
tion ITU-T H.266 and ISO/IEC 23090–3 (2020)

 3. Bross, B., Wang, Y., Ye, Y., Liu, S., Chen, J., Sullivan, G.J.,
Ohm, J.: Overview of the Versatile Video Coding (VVC) Stand-
ard and its Applications. IEEE Trans. Circ. Syst. Video Tech.
31(10), 3736–3764 (2021). https:// doi. org/ 10. 1109/ TCSVT.
2021. 31019 53

 4. Menasri, W., Skoudarli, A.: Performance comparison of
throughput between AVC, HEVC and VVC hardware CABAC
decoder. Journal of Real-Time Image Proc. 20(2), 26 (2023).
https:// doi. org/ 10. 1007/ s11554- 023- 01266-y

 5. Bross, B., Chen, J., Ohm, J.R., Sullivan, G.J., Wang, Y.K:
Developments in international video coding standardization
after AVC, with an overview of versatile video coding (VVC).
In: Proceedings of the IEEE 109(9), 1463–1493 (2021). https://
doi. org/ 10. 1109/ JPROC. 2020. 30433 99

 6. Park, S.H., Kang, J.W.: Fast affine motion estimation for ver-
satile video coding (VVC) encoding. IEEE Access 7, 158075–
158084 (2019). https:// doi. org/ 10. 1109/ ACCESS. 2019. 29503 88

 7. Pakdaman, F., Adelimanesh, M.A., Gabbouj, M., Hashemi,
M.R.: Complexity Analysis of Next-Generation VVC Encoding
And Decoding. In Proc. IEEE Int. Conf. on Image Proc. (ICIP),
Abu Dhabi, UAE, (2020). https:// doi. org/ 10. 1109/ ICIP4 0778.
2020. 91909 83

 8. Brandenburg, J., Wieckowski, A., Hinz, T., Henkel, A., George,
V., Zupancic, I., Stoffers, C., Bross, B., Schwarz, H., Marpe,
D.: Towards fast and efficient VVC encoding. In Proc. IEEE
Int. Workshop on Multimedia Signal Proc. (MMSP), Tampere,

Finland, (2020). https:// doi. org/ 10. 1109/ MMSP4 8831. 2020.
92870 93

 9. Saldanha, M., Corrêa, M.C., Palomino, D., Porto, M., Zatt, B.,
Agostini, L.: An overview of dedicated hardware designs for state-
of-the-art AV1 and H.266/VVC video codecs. In Proc. IEEE Int.
Conf. on Electronics, Circuits and Systems (ICECS), Glasgow,
UK, (2020). https:// doi. org/ 10. 1109/ ICECS 49266. 2020. 92948 62

 10. Aksehir, Y., Erdayandi, K., Ozcan, T.Z., Hamzaoglu, I.: A low
energy adaptive motion estimation hardware for H.264 multiview
video coding. J. Real-Time Image Proc. 15, 3–12 (2018). https://
doi. org/ 10. 1007/ s11554- 013- 0383-9

 11. Cerveira, A., Agostini, L., Zatt, B., Sampaio, F.: Memory profil-
ing of H.266 versatile video coding standard. In Proc. IEEE Int.
Conf. on Electronics, Circuits and Systems (ICECS), Glasgow,
UK, (2020). https:// doi. org/ 10. 1109/ ICECS 49266. 2020. 92949 52

 12. Kalaycioglu, C., Ulusel, O.C., Hamzaoglu, I.: Low power tech-
niques for Motion Estimation hardware. In Proc. Int. Conf. on
Field Programmable Logic and Applications, Prague (2009).
https:// doi. org/ 10. 1109/ FPL. 2009. 52725 08

 13. D'huys, T., Momcilovic, S., Pratas, F., Sousa, L.: Reconfigurable
data flow engine for HEVC motion estimation. In Proc. IEEE Int.
Conf. on Image Processing (ICIP), Paris, France, (2014). https://
doi. org/ 10. 1109/ ICIP. 2014. 70252 44

 14. Vayalil, N.C., Kong, Y.: VLSI architecture of full search variable
block size motion estimation for HEVC video. IET Circ. Devices
Syst. 11(6), 543–548 (2017). https:// doi. org/ 10. 1049/ iet- cds. 2016.
0267

 15. Ahmad, W., Ayrancioglu, B., Hamzaoglu, I.: Comparison of
approximate circuits for H.264 and HEVC motion estimation. In
Proc. Euromicro Conf. on Digital System Design (DSD), Kranj,
Slovenia (2020), https:// doi. org/ 10. 1109/ DSD51 259. 2020. 00036

 16. Pastuszak, G., Trochimiuk, M.: Algorithm and architecture design
of the motion estimation for the H265/HEVC 4K-UHD encoder.
J. Real-Time Image Proc. 12, 517–529 (2016). https:// doi. org/ 10.
1007/ s11554- 015- 0516-4

 17. Khemiri, R., Kibeya, H., Loukil, H., Sayadi, F.E., Atri, M., Mas-
moudi, N.: Real-time motion estimation diamond search algo-
rithm for the new high efficiency video coding on FPGA. Analog
Integr. Circ. Sig. Proc. 94, 259–276 (2018). https:// doi. org/ 10.
1007/ s10470- 017- 1072-6

 18. Alcocer, E., Gutierrez, R., Lopez-Granado, O., Malumbres,
M.P.: Design and implementation of an efficient hardware
integer motion estimator for an HEVC video encoder. J. Real-
Time Image Proc. 16, 547–557 (2019). https:// doi. org/ 10. 1007/
s11554- 016- 0572-4

 19. Gogoi, S., Peesapati, R.: A hybrid hardware oriented motion esti-
mation algorithm for HEVC/H.265. J. Real-Time Image Proc. 18,
953–966 (2021). https:// doi. org/ 10. 1007/ s11554- 020- 01056-w

 20. Fan, Y., Huang, L., Hao, B., Zeng, X.: A Hardware-Oriented IME
Algorithm for HEVC and Its Hardware Implementation. IEEE
Trans. Circ. Syst. Video Technol. 28(8), 2048–2057 (2018).
https:// doi. org/ 10. 1109/ TCSVT. 2017. 27021 94

 21. Silveira, B., Paim, G., Abreu, B., Grellert, M., Diniz, C.M., Costa,
E.A.C., Bampi, S.: Power-efficient sum of absolute differences
hardware architecture using adder compressors for integer motion
estimation design. IEEE Trans Circ. Syst. I Regul. Papers 64(12),
3126–3137 (2017). https:// doi. org/ 10. 1109/ TCSI. 2017. 27288 02

 22. Ahmad W., Hamzaoglu, I.: An efficient approximate sum of abso-
lute differences hardware for FPGAs. In Proc. IEEE Int. Conf. on
Consumer Electronics (ICCE), Las Vegas, (2021), https:// doi. org/
10. 1109/ ICCE5 0685. 2021. 94277 56

 23. Azgin, H., Kalali, E., Hamzaoglu, I.: An efficient FPGA imple-
mentation of versatile video coding intra prediction. In Proc.

http://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1109/TCSVT.2021.3101953
https://doi.org/10.1109/TCSVT.2021.3101953
https://doi.org/10.1007/s11554-023-01266-y
https://doi.org/10.1109/JPROC.2020.3043399
https://doi.org/10.1109/JPROC.2020.3043399
https://doi.org/10.1109/ACCESS.2019.2950388
https://doi.org/10.1109/ICIP40778.2020.9190983
https://doi.org/10.1109/ICIP40778.2020.9190983
https://doi.org/10.1109/MMSP48831.2020.9287093
https://doi.org/10.1109/MMSP48831.2020.9287093
https://doi.org/10.1109/ICECS49266.2020.9294862
https://doi.org/10.1007/s11554-013-0383-9
https://doi.org/10.1007/s11554-013-0383-9
https://doi.org/10.1109/ICECS49266.2020.9294952
https://doi.org/10.1109/FPL.2009.5272508
https://doi.org/10.1109/ICIP.2014.7025244
https://doi.org/10.1109/ICIP.2014.7025244
https://doi.org/10.1049/iet-cds.2016.0267
https://doi.org/10.1049/iet-cds.2016.0267
https://doi.org/10.1109/DSD51259.2020.00036
https://doi.org/10.1007/s11554-015-0516-4
https://doi.org/10.1007/s11554-015-0516-4
https://doi.org/10.1007/s10470-017-1072-6
https://doi.org/10.1007/s10470-017-1072-6
https://doi.org/10.1007/s11554-016-0572-4
https://doi.org/10.1007/s11554-016-0572-4
https://doi.org/10.1007/s11554-020-01056-w
https://doi.org/10.1109/TCSVT.2017.2702194
https://doi.org/10.1109/TCSI.2017.2728802
https://doi.org/10.1109/ICCE50685.2021.9427756
https://doi.org/10.1109/ICCE50685.2021.9427756

 Journal of Real-Time Image Processing (2024) 21:25 25 Page 12 of 12

Euromicro Conf. on Digital System Design (DSD), Kallithea,
Greece, (2019) https:// doi. org/ 10. 1109/ DSD. 2019. 00037

 24. Azgin, H., Mert, A.C., Kalali, E., Hamzaoglu, I.: A reconfigur-
able fractional interpolation hardware for VVC motion compensa-
tion. In Proc. Euromicro Conf. on Digital System Design (DSD),
Prague, Czech Republic, (2018) https:// doi. org/ 10. 1109/ DSD.
2018. 00030

 25. Mahdavi, H., Azgin, H., Hamzaoglu, I.: Approximate versatile
video coding fractional interpolation filters and their hardware
implementations. IEEE Trans. Consum. Electron. 67(3), 186–194
(2021). https:// doi. org/ 10. 1109/ TCE. 2021. 31074 60

 26. Ben Jdidia, S., Belghith, F., Masmoudi, N.: A high-performance
two-dimensional transform architecture of variable block sizes
for the VVC standard. J. Real-Time Image Proc. 19, 1081–1090
(2022). https:// doi. org/ 10. 1007/ s11554- 022- 01250-y

 27. Fan, Y., Chen, J., Sun, H., Katto, J., Jing, M.: A fast QTMT parti-
tion decision strategy for VVC intra prediction. IEEE Access 8,
107900–107911 (2020). https:// doi. org/ 10. 1109/ ACCESS. 2020.
30005 65

 28. Huang, Y.W., An, J., Huang, H., Li, X., Hsiang, S.T., Zhang, K.,
Gao, H., Ma, J., Chubach, O.: Block partitioning structure in the
VVC standard. IEEE Trans. Circ. Syst. Video Technol. 31(10),
3818–3833 (2021). https:// doi. org/ 10. 1109/ TCSVT. 2021. 30881
34

 29. Chien, W.J., Boyce, J., Chen, W., Chernyak, R., Choi, K., Hashi-
moto, R., Huang, Y.W., Jang, H., Liu, S., Luo, D.: JVET AHG
report: Tool reporting procedure (AHG13). Document JVET-
S0013, (2020)

 30. Jung, S., Jun, D.: Context-based inter mode decision method for
fast affine prediction in versatile video coding. Electronics 10(11),
1243 (2021). https:// doi. org/ 10. 3390/ elect ronic s1011 1243

 31. Ahmad, W.: Efficient HEVC and VVC motion estimation hard-
ware. Ph.D. Dissertation, Faculty of Engineering and Natural Sci-
ences, Sabanci University, Istanbul, Turkey, (2021)

Publisher's Note Springer Nature remains neutral with regard to
jurisdictional claims in published maps and institutional affiliations.

Waqar Ahmad received PhD
degree in Electronics Engineer-
ing from Sabanci University,
Istanbul, Turkey in 2021. He is
currently an Assistant Professor
at Ghulam Ishaq Khan Institute
of Engineering Sciences and
Technology, Pakistan. His
research interests include
energy-efficient digital hardware
design for video coding and
approximate computing.

Hossein Mahdavi received B.S.
degree in Electrical and Elec-
tronics Engineering from Azad
University, Iran, in 2006, and
M.S. degree in Digital Electron-
ics Engineering from Shahid
Beheshti University, Tehran,
Iran, in 2017. He is currently a
Ph.D. student in Electronics
Engineering at Sabanci Univer-
sity, Istanbul, Turkey. His
research interests include digital
VLSI design for video process-
ing and coding.

Ilker Hamzaoglu received B.S.
and M.S. degrees in Computer
Engineering from Bogazici Uni-
versity, Istanbul, Turkey in 1991
and 1993, respectively. He
received Ph.D. degree in Com-
puter Science from University of
Illinois at Urbana-Champaign,
IL, USA in 1999. He worked as
Senior and Principle Staff Engi-
neer at Motorola Inc., IL, USA
between August 1999 and
August 2003. He worked as
Assistant and Associate Profes-
sor at Sabanci University, Istan-
bul, Turkey between September

2003 and January 2023. He is working as Professor at Ozyegin Univer-
sity, Istanbul, Turkey since February 2023. His research interests
include digital hardware design for video processing and
compression.

https://doi.org/10.1109/DSD.2019.00037
https://doi.org/10.1109/DSD.2018.00030
https://doi.org/10.1109/DSD.2018.00030
https://doi.org/10.1109/TCE.2021.3107460
https://doi.org/10.1007/s11554-022-01250-y
https://doi.org/10.1109/ACCESS.2020.3000565
https://doi.org/10.1109/ACCESS.2020.3000565
https://doi.org/10.1109/TCSVT.2021.3088134
https://doi.org/10.1109/TCSVT.2021.3088134
https://doi.org/10.3390/electronics10111243

	An efficient versatile video coding motion estimation hardware
	Abstract
	1 Introduction
	2 VVC motion estimation
	3 Proposed VVC motion estimation hardware
	3.1 On-chip memory and systolic array
	3.2 SAD adder tree
	3.3 Comparator

	4 Implementation results
	5 Conclusions
	Acknowledgements
	References

