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Abstract
Versatile Video Coding (VVC) is the latest video coding standard. It provides higher compression efficiency than the previ-
ous video coding standards at the cost of significant increase in computational complexity. Motion estimation (ME) is the 
most time consuming and memory intensive module in VVC encoder. Therefore, in this paper, we propose an efficient VVC 
ME hardware. It is the first VVC ME hardware in the literature. It has real time performance with small hardware area. This 
efficiency is achieved by using a 64 × 64 systolic processing element array to support maximum coding tree unit (CTU) 
size of 128 × 128 and by using a novel memory-based sum of absolute differences (SAD) adder tree to calculate SADs of 
128 × 128 CTUs. The proposed VVC ME hardware reduces memory accesses significantly by using an efficient data reuse 
method. It can process up to 30 4 K (3840 × 2160) video frames per second.

Keywords Video compression · VVC · Motion estimation · Hardware

1 Introduction

As the amount of video data is increasing significantly, more 
efficient video compression is needed to transmit and store 
this video data with limited available bandwidth and stor-
age space [1]. Therefore, Joint Video Experts Team (JVET) 
of ITU-T and ISO standardization organizations developed 
Versatile Video Coding (VVC) standard in 2020 [2]. VVC 
provides 50% higher compression efficiency than its pre-
decessor High Efficiency Video Coding (HEVC) standard 
developed in 2013 [3, 4]. VVC is designed to encode diverse 
video content such as high dynamic range, 360º video and 
virtual reality [5].

VVC uses several new encoding tools to achieve better 
compression than HEVC such as new block partitioning 
structure called quadtree plus multi-type tree (QTMT), affine 

motion estimation and multiple transforms [6]. VVC divides 
a video frame into blocks called coding tree units (CTUs) 
and encodes each CTU separately. Each CTU can be further 
divided into coding units (CUs) using QTMT. QTMT allows 
more partitions than simple quadtree (QT) partitioning used 
in HEVC. The maximum CTU size in VVC is 128 × 128. 
The maximum CTU size in HEVC is 64 × 64.

VVC achieves higher compression efficiency than HEVC 
at the cost of significant increase in computational complex-
ity. VVC encoder is 5 times and 31 times more complex than 
HEVC encoder under Low-Delay and All-Intra configura-
tions, respectively [7]. The encoding time of VVC reference 
software encoder (VTM) is about 10 times more than the 
encoding time of HEVC reference software encoder (HM) 
[8]. Therefore, dedicated hardware implementations are 
needed for processing high resolution videos in real-time [9].

Successive frames in a video sequence have temporal 
redundancy. Video coding standards remove this temporal 
redundancy by performing motion estimation (ME). ME is 
the most time consuming and memory intensive module in 
video encoding [10]. More than 50% of the encoding time of 
VVC encoder is spent for ME [7]. Up to 60% of the memory 
accesses of VVC encoder comes from ME module [11].

There are several HEVC ME hardware in the literature 
[12–20]. Several sum of absolute differences (SAD) hard-
ware that can be used for ME are proposed in the literature 
[21, 22]. There are several VVC intra prediction, fractional 
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interpolation and transform hardware in the literature 
[23–26]. However, to the best of our knowledge, there is no 
VVC ME hardware in the literature.

VVC ME has higher computational complexity than 
HEVC ME because of using a larger maximum CTU size 
and a more complex block partitioning structure called 
QTMT. Two types of SAD adder trees are proposed in 
the literature for HEVC ME hardware. Fully parallel SAD 
adder tree processes all the pixels in the largest CU in par-
allel. Sequential SAD adder tree divides the largest CU 
into smaller blocks and processes each block in successive 
clock cycles. Using a fully parallel SAD adder tree in VVC 
ME hardware results in very large hardware area. Using a 
sequential SAD adder tree in VVC ME hardware results in 
low data reuse and low throughput. Therefore, the methods 
proposed in the literature for designing HEVC ME hardware 
are inefficient for designing VVC ME hardware.

In this paper, we propose the first VVC ME hardware in 
the literature. The proposed hardware uses the Full Search 
ME algorithm with the SAD metric to find the best motion 
vector for a wide range of QTMT partition sizes, ranging 
from 8 × 4 (4 × 8) to 128 × 128, within a CTU. The proposed 
hardware calculates SADs of 128 × 128 CTU using a 64 × 64 
systolic processing element array and a novel memory-based 
SAD adder tree to achieve real-time performance with small 
hardware area. It reduces memory accesses significantly by 
using an efficient data reuse method.

The proposed novel memory-based SAD adder tree com-
bines the features of fully parallel and sequential SAD adder 
trees. It is highly efficient as it achieves high data reuse and 
high throughput, and it uses smaller hardware area than a 
fully parallel 128 × 128 SAD adder tree.

The proposed VVC ME hardware is implemented using 
Verilog HDL. It works at 253 MHz on a Xilinx Virtex 7 
FPGA, and it can process up to 30 4K (3840 × 2160) video 
frames per second (fps).

The rest of the paper is organized as follows. In Sect. 2, 
VVC ME is explained. Section 3 describes the proposed 
VVC ME hardware. Its implementation results and compari-
son with HEVC ME hardware in the literature are given in 
Sect. 4. Finally, Section 5 concludes the paper.

2  VVC motion estimation

VVC uses block matching for translational ME. In block 
matching, current video frame is divided into blocks. As 
shown in Fig. 1, for each block in the current frame, the best 
matching block in a search window (SW) in the reference 
frame and the corresponding motion vector (MV) are deter-
mined. SAD metric is typically used to determine the best 
matching block. SAD between blocks A and B is calculated 
as shown in Eq. (1), where W × H is the block size, A(i, j) 

and B(i, j) are pixels in ith row and jth column of A and B, 
respectively.

Video coding standards perform variable block size ME. 
Large block sizes achieve higher compression for the smooth 
areas in video frames, whereas small block sizes achieve 
higher compression for the areas with more details. Because 
large block sizes can find good matches for the smooth areas 
using less MVs than small block sizes. However, for the 
areas with more details, using large block sizes results in 
large residue. For such areas, small block sizes find better 
matches resulting in small residue and better compression 
despite using more MVs than large block sizes.

In variable block size ME, for each block in the cur-
rent frame, all sub-block sizes are used to determine the 
best match in its search window in the previous frame, and 
the sub-block size achieving the best compression is used 
for that block. Therefore, variable block size ME achieves 
higher compression than fixed block size ME.

Both HEVC and VVC divide a video frame into blocks 
called CTU. In HEVC, the maximum CTU size is 64 × 64. A 
CTU can be recursively partitioned into square-shaped CUs 
using QT. The size of a CU can be from 8 × 8 to 64 × 64. A 
CU can be partitioned only once into square, rectangular 
and asymmetric partitions called prediction unit (PU). The 
PU size can be from 4 × 8 or 8 × 4 to the CU size for motion 
estimation.

In VVC, the maximum CTU size is 128 × 128. A CTU 
can be recursively partitioned into CUs using QTMT [27]. 
QTMT achieves higher compression than QT used in HEVC 
by allowing more partitions than QT.

QTMT is a tree in which a node can be split using QT, 
binary tree (BT) or ternary tree (TT). A BT splits a node into 

(1)SAD =

W−1∑

i=0

H−1∑

j=0

|A(i, j) − B(i, j)|

Search Window

Best Match

Current Block

Reference Frame Current Frame

Fig. 1  Block matching motion estimation
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two rectangular blocks. A TT splits a node into three rectangu-
lar blocks, two of which have the same size. BT and TT splits 
can be applied in horizontal or vertical direction. In Fig. 2, five 
possible QTMT partitions are shown; binary horizontal (BH), 
binary vertical (BV), ternary horizontal (TH), ternary vertical 
(TV), quad (Q).

There are some restrictions in QTMT partitioning [28]. If a 
node is split with QT, it can be further split with any of the five 
QTMT partitions. However, if a node is split with either BT 
or TT, it can no longer be further split with QT. An example 
of QTMT partitioning of 128 × 128 CTU is shown in Fig. 3.

As shown in Fig. 4, the same partitions can be achieved 
with different splitting patterns. If the central partition of a TT 
split is further split with BT in the same direction, it achieves 
the same partitions with BT split followed by BT split in the 
same direction. Similarly, QT split achieves the same partitions 
with BT split in one direction followed by BT split in the other 
direction. VVC does not allow these redundant partitions [28].

In addition to translational ME, VVC uses affine motion 
estimation (AME) to predict more complex motion such as 
rotation or scaling. Turning off AME in VVC video encoding 
causes 3% loss in compression efficiency but provides 20% 
encoding time reduction [29]. It is reported in [30] that trans-
lational motion estimation is used for more than 90% cases in 
VVC video encoding. Therefore, in this paper, we propose an 
efficient ME hardware for VVC translational ME.

3  Proposed VVC motion estimation 
hardware

VVC defines the following control parameters to adjust the 
computational complexity of ME by restricting the number of 
partitions. MaxCUWidth and MaxCUHeight define the maxi-
mum allowed width and height of a CU, respectively. MinQT-
Size defines the minimum node size that can be reached with 
QT split. MaxBtSize and MaxTtSize define the maximum node 
size to which BT and TT split can be applied, respectively. 
MaxMttDepth defines the maximum allowed depth of multi-
type tree splitting after QT split.

In the proposed VVC ME hardware, MaxCUWidth and 
MaxCUHeight are set to 128. Therefore, the largest CU 
size is 128 × 128. MinQTSize is set to 8. Therefore, an 
8 × 8 CU can only be further split with BT. MaxBtSize and 
MaxTtSize are set to 32. MaxMttDepth is set to 2. There-
fore, multi-type tree split is not applied to CU sizes larger 
than 32 × 32. The maximum depth of multi-type tree split 
is 2, i.e., multi-type tree split can be applied at most twice.

The number of possible partitions in a 64 × 64 CU with 
these parameter values are shown in Table 1. Let X and Y 
represent one of the four possible multi-tree type partitions 
shown in Fig. 2, then the partition type X_Y in Table 1 
represents the case where first X type split then Y type 
split are applied after QT split. For example, BH_BH par-
tition type represents the case where first binary horizontal 
split is applied after QT split, then binary horizontal split 
is applied to the 2 new partitions resulting in 4 partitions.

The number of unique MVs is less than the number of 
partitions for some split types. For example, a TH split of 
a QT node results in 3 partitions. The top and bottom parti-
tions of TH split are the same as top and bottom partitions 
of BH_BH split. Therefore, there is no need to calculate 
MVs for top and bottom partitions of TH split and only 
1 of the 3 TH partitions require a unique motion vector.

Redundant partitions, which are not allowed in VVC, 
are not shown in Table  1. For example, BH_BV split 
achieves the same partitions with QT split. Therefore, it 
is not allowed in VVC. In addition, some partitions are not 
allowed since they result in a partition size with height or 
width smaller than the minimum allowed CU size. These 
partitions are also not shown in Table 1. For example, 
when a 16 × 16 block is split with ternary tree, its further 
split with ternary tree will result in a partition size of 8 × 2 
or smaller. This is smaller than the minimum allowed CU 
size. Therefore, this is not allowed.

The proposed VVC ME hardware is shown in Fig. 5. 
For a 64 × 64 CU, it only processes the partitions shown 
in Table 1. It does not process the partitions which are not 
allowed by VVC. It consists of on-chip memory to store 
search window pixels and next block of current frame, a 

BH BV TH TV Q

Fig. 2  Allowed partitions in VVC

Quad Tree

Binary Tree

Ternary Tree

Fig. 3  An example QTMT partitioning of 128 × 128 CTU and its 
decision tree

Fig. 4  Examples of redundant partitions in VVC
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systolic array of processing elements (PEs) to store cur-
rent and reference block pixels and calculate their absolute 
differences, an SAD adder tree to calculate SADs for all 
the supported CU sizes, a comparator unit to determine 
the minimum SAD and its corresponding MV for each 
CU size, and a control unit to perform control operations.

To achieve real-time performance with small hardware 
area, the proposed VVC ME hardware divides 128 × 128 
CTU into four 64 × 64 CUs. It uses a 64 × 64 systolic PE 
array and 64 × 64 SAD adder tree to determine the best 821 
unique MVs for each of these 64 × 64 CUs sequentially. 
First, the best 821 unique MVs for the first 64 × 64 CU are 
determined. Then, the remaining three 64 × 64 CUs are pro-
cessed one by one.

The proposed VVC ME hardware uses an efficient data 
reuse method to significantly reduce the memory accesses 
required for processing each 64 × 64 CU and its partitions. It 
uses a novel memory-based SAD adder tree to determine the 
best MV for 128 × 128 CU. The best MV for 128 × 128 CU 
is determined together with the best MVs of last 64 × 64 CU.

Since the proposed VVC ME hardware divides 128 × 128 
CTU into four 64 × 64 CUs, it uses a 64 × 64 systolic PE 
array which is 4 times smaller than a 128 × 128 systolic PE 
array. Since it stores search window pixels of 64 × 64 CU 
in on-chip memory instead of storing search window pixels 
of 128 × 128 CTU in on-chip memory, it uses less on-chip 
memory as well. Although this significantly reduces area 
of the proposed VVC ME hardware, it has real time per-
formance. This efficiency is achieved by using the efficient 
data reuse method based on vertical snake scan of the search 
window and the novel memory-based SAD adder tree.

3.1  On‑chip memory and systolic array

FPGAs have fast dedicated on-chip memories called Block 
RAMs (BRAMs). In the proposed hardware, the current 
64 × 64 CU and its corresponding search window are read 
from off-chip memories and stored in the on-chip BRAMs. 
A ± 64 search range centered around the current 64 × 64 CU 
defines a 128 × 128 search window. This requires storing 
192 × 192 reference frame pixels in the BRAMs. In the pro-
posed hardware, the first and last 64 columns are stored in 
8 BRAMs of size 384 × 64 bits each. The middle 64 col-
umns are stored in 8 BRAMs of size 192 × 64 bits each. The 
64 × 64 pixels of current frame are stored in 8 BRAMs.

The proposed hardware has a 64 × 64 systolic PE array as 
shown in Fig. 6. The systolic array also contains 64 regis-
ters to store an additional column of the search window. As 
shown in Fig. 7, a PE consists of two registers which store a 
current block pixel and a reference block pixel, an absolute 
difference (AD) hardware, and an output register. AD hard-
ware subtracts the reference pixel from the current pixel. 

Table 1  Number of possible partitions and unique MVs in a 64 × 64 
CU

Block size Partition type Partitions Unique MVs

64 × 64 No Partition 1 1
Q 4 4

32 × 32 Q 16 16
BH 8 8
BV 8 8
TH 12 4
TV 12 4
BH_BH 16 16
BH_TH 24 24
BH_TV 24 8
BV_BV 16 16
BV_TH 24 8
BV_TV 24 24
TH_BH 24 16
TH_TH 20 20
TV_BV 24 16
TV_TV 20 20

16 × 16 Q 64 64
BH 32 32
BV 32 32
TH 48 16
TV 48 16
BH_BH 64 64
BH_TV 96 32
BV_BV 64 64
BV_TH 96 32

8 × 8 BH 128 128
BV 128 128

Total 1077 821

Reference 
Frame Current Frame

BRAM 
(Search Window)

Systolic Array
(Registers and AD Computation)

SAD Adde r T re e

Control Unit

Comparator

Minimum SAD 
& Best MV
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Fig. 5  Proposed VVC motion estimation hardware
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If the subtraction result is negative, i.e., its sign bit is 1, it 
takes its 2’s complement to calculate the absolute difference.

The systolic array receives a new row of 64 reference 
block pixels from BRAMs in every clock cycle. It takes 64 
clock cycles to fill the systolic array with the 64 × 64 refer-
ence block of the first search location. At the same time, the 
64 × 64 current block pixels are also received from BRAMs 
and stored in the systolic array row by row. After that sys-
tolic array calculates 64 × 64 absolute differences in one 
clock cycle and sends them to SAD adder tree which calcu-
lates the SADs for all the partitions of 64 × 64 CU.

The systolic array stores the same 64 × 64 current block 
until all the search locations in the search window are 
searched for that current block. It can search a new search 

location in the search window in every clock cycle, i.e., it 
can process 64 × 64 reference block of each search location 
in one clock cycle.

To achieve high data reuse, the proposed hardware uses 
the vertical snake scan order shown in Fig. 8a. The search 
starts from the top-left corner of the search window and 
moves downward until all the search locations in the first 
column are searched. Then, the search locations in the 
second column are searched in the upward direction. Then, 
the search locations in the third column are searched in the 
downward direction. This continues until all the search 
locations in the search window are searched for the cur-
rent block.

To achieve high data reuse, each PE can shift its refer-
ence pixel up, down, or left. After a search location in 
a column, which is searched in the downward direction, 
is searched, all the PEs shift their reference pixels up, 
and a new row of 64 reference block pixels is read from 
search window memory and stored in the last row of sys-
tolic array as shown in Fig. 8b. This continues until all the 
search locations in that column are searched.

In Fig. 8b, green area represents the reused reference 
block pixels in the systolic array, white area represents 
the new row of 64 reference block pixels, and grey area 
represents the discarded row of 64 reference block pixels 
in the previous reference block.

After searching a location in a column, which is 
searched in the upward direction, all the PEs shift their ref-
erence pixels down. Then, a new row of 64 reference block 
pixels is read from search window memory and stored in 
the first row of systolic array as shown in Fig. 8b. This 
continues until all the search locations in that column are 
searched.

Once all the search locations in a column are searched, all 
the PEs shift their reference pixels left, and a new column of 
64 reference block pixels should be stored in the last column 
of systolic array. Since row aligned BRAMs are used in the 
proposed hardware, it would take 64 clock cycles to read 
a new column of 64 reference block pixels from BRAMs.

Therefore, an extra column of 64 registers is used in the 
systolic array. In every clock cycle, instead of 64, a new row 

PE 
63,0

PE 
63,1

PE 
62,0

PE 
62,1

PE 
0,0

PE 
0,1

PE 
62,63

PE 
63,63

PE 
0,63

64x64
PE Array

Reference Block Pixels Current Block Pixels Ext ra Column

Fig. 6  Systolic processing element (PE) array and registers
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of 65 reference block pixels is read from search window 
memory and stored in the systolic array. Therefore, after 
all the search locations in a column are searched, all the 
PEs shift their reference pixels left, and the PEs in the last 
column of systolic array receive their new reference pixels 
from the extra column of 64 registers. This takes only one 
clock cycle.

The 192 × 192 search window pixels are divided into 
three blocks of 192 × 64 pixels. The first and third blocks 
are stored together in 8 BRAMs. The middle block is stored 
in other 8 BRAMs. To access 65 reference block pixels, 128 
pixels (64 pixels each from the first and second block, or 64 
pixels each from the second and third block) are read from 
these 16 BRAMs.

The sequence in which search window pixels are read 
from the BRAMs remains constant. However, the arrange-
ment of pixels needed by the PE array and temporary reg-
isters changes based on the location of the column being 
processed. Therefore, a horizontal data rotator hardware is 
used to reorder the 128 pixels such that the required 65 pix-
els are always in the MSB positions. These 65 pixels are 
sent to systolic PE array and the extra column of registers.

In the proposed hardware, BRAMs are configured as true 
dual port memories. After the current 64 × 64 CU is stored in 
the systolic array, the next 64 × 64 CU of the current frame 
is read into the BRAMs from off-chip memory. Similarly, 
the search window BRAMs are also updated dynamically 
with the search window of the next 64 × 64 CU of the current 
frame from off-chip memory.

3.2  SAD adder tree

In HEVC, the maximum CTU size is 64 × 64, and 593 
unique MVs should be calculated for a 64 × 64 CU [15]. In 
VVC, the maximum CTU size is 128 × 128, and 821 unique 
MVs should be calculated for a 64 × 64 CU.

In addition, in VVC, there are more complex asymmet-
ric partitions which are not used in HEVC. Therefore, SAD 
adder tree in VVC ME hardware is more complex than SAD 
adder tree in HEVC ME hardware.

In the proposed hardware, the SAD adder tree calculates 
the SADs of all the 821 unique partitions of a 64 × 64 CU 
by reusing the SADs of smaller partitions to calculate the 
SADs of larger partitions.

After the SAD adder tree receives 64 × 64 ADs for the 
first search location from the systolic array, it receives and 
processes 64 × 64 ADs of a new search location in every 
clock cycle. For each 64 × 64 ADs, the corresponding 256 
4 × 4 SADs are calculated in four clock cycles. One 4 × 4 
SAD calculation including the AD calculation in PEs is 
shown in Fig. 9. The red dotted lines in the figure indicate 
the pipeline registers.

These 4 × 4 SADs are then used to calculate SADs of 
larger partitions in a hierarchical manner. For example, 4 × 4 
SADs are used to calculate SADs of binary partitions (BV, 
BH) of 8 × 8 CUs. Then, the SADs of BV partitions of 8 × 8 
CUs are used to calculate 64 SADs of 8 × 8 CUs. SADs of 
binary and quad partitions of 16 × 16, 32 × 32, and 64 × 64 
CUs are calculated similarly as shown in Fig. 10a.

Similarly, the SADs of BV and BH partitions of 8 × 8 CUs 
are used to calculate SADs of BH_BH, BV_BV, BV_TH 
and BH_TV partitions of 16 × 16 CUs. Then, the SADs of 
BH_BH and BV_BV partitions are used to calculate SADs 
of TH and TV partitions of 16 × 16 CUs. SADs of the same 
shaped partitions of 32 × 32 CUs are calculated similarly 
using BV and BH partitions of 16 × 16 CUs as shown in 
Fig. 10b.

SADs of TH_TH, TV_TV, TH_BH, TV_BV, BH_TH 
and BV_TV partitions of 32 × 32 CUs are calculated using 
BH_BH and BV_BV partitions of 16 × 16 CUs as shown in 
Fig. 10c.

The proposed hardware calculates the SADs of all the 821 
unique partitions of a 64 × 64 CU for the first search location 
in the search window in 13 clock cycles and sends them to 
the comparator. After that, 821 new SADs are calculated in 
every clock cycle and sent to the comparator.

To achieve real-time performance with small hardware 
area, the proposed hardware divides 128 × 128 CU into four 
64 × 64 CUs, processes them one by one and calculates SAD 
of 128 × 128 CU using the novel memory-based accumulator 
hardware shown in Fig. 11. In the BRAM, 4096 SAD values, 
each 22 bits, are stored.
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The top left 64 × 64 CU is processed first. For every i th 
search location in the search window, the SAD calculated 
for this 64 × 64 CU is sent to both the comparator and the 
memory-based accumulator where it is added to the content 
of i th location of BRAM and the result is written back to i th 
location of BRAM. The contents of the BRAM are initially 
set to 0. Therefore, the SADs of the top left 64 × 64 CU are 
stored in the BRAM.

Then, the top right 64 × 64 CU is processed. Therefore, 
the i th SAD of the top right 64 × 64 CU is added to the i th 

SAD of the top left 64 × 64 CU, and the result is written back 
to i th location of BRAM. Then, the bottom left 64 × 64 CU 
is processed similarly. Finally, the bottom right 64 × 64 CU 
is processed similarly.

When the first SAD of the bottom right 64 × 64 CU 
is added to the content of the first location of BRAM, 
the adder output is the first SAD of the 128 × 128 CU. 
Therefore, the output register in Fig. 11 is enabled, and the 
first SAD of the 128 × 128 CU is sent to the comparator. 
After that, a new SAD of the 128 × 128 CU is calculated 
in every clock cycle and sent to the comparator. When the 
last SAD of the bottom right 64 × 64 CU is calculated, the 
last SAD of the 128 × 128 CU is also calculated after one 
clock cycle and sent to the comparator.

3.3  Comparator

The comparator unit determines the minimum SAD and its 
corresponding best MV for each CU size. It consists of one 
comparator for each of the 821 unique partitions of 64 × 64 
CU and one additional comparator for the 128 × 128 CU. 
The sizes of these comparators vary from 13-bits for the 
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smallest CU to 22-bits for the 128 × 128 CU. The latency 
of the comparator unit is one clock cycle. In every clock 
cycle, it compares all the SADs it receives from the SAD 
adder tree with the previous minimum SADs of the cor-
responding partitions and determines the minimum SAD 
and its corresponding best MV for each partition. The cost 
of MV bits is not considered in determining the best MV.

4  Implementation results

The proposed VVC ME hardware is implemented using 
Verilog HDL. The Verilog RTL codes are implemented 
on a Xilinx Virtex 7 FPGA using Xilinx Vivado 2017.4 
with the area-optimized_high synthesis strategy and the 
performance_explore implementation strategy. The FPGA 
implementation is verified with post-implementation tim-
ing simulations.

The proposed hardware has 14 stages pipeline from AD 
calculation to comparator output. The latency for process-
ing a 128 × 128 CTU can be calculated as (64 + 14 + Search 
Locations) × 4. The systolic array is filled in 64 clock 
cycles. It takes 14 clock cycles to calculate the SADs of all 
the CUs for the first search location in the search window 
and compare them. After that, all the CUs for a new search 
location are processed in every clock cycle. Multiplication 
by 4 is necessary since a 64 × 64 SAD adder tree is used 
and a 128 × 128 CTU has four 64 × 64 CUs.

We implemented and verified the proposed VVC ME 
hardware in two different configurations for three differ-
ent search ranges. One configuration supports 128 × 128 
largest CTU size using a 64 × 64 systolic array and 64 × 64 
SAD adder tree. The other configuration supports 64 × 64 
largest CTU size using a 32 × 32 systolic array and 32 × 32 
SAD adder tree. In each configuration, the size of the 
search range is set to the largest CTU size, 75% of the 
largest CTU size, and half of the largest CTU size.

The search range is centered around the top left pixel of 
current CTU. A search range of 128 × 128 means that the 
first pixel of first reference CTU is located at position (-64, 
-64) left of the first pixel of current CTU in the search 
window. Similarly, the first pixel of last reference CTU is 
located at position (+ 64, + 64) right of the first pixel of 
current CTU in the search window.

Performance of the proposed VVC ME hardware for 
different configurations are shown in Table 2. The clock 
frequency (MHz), the number of clock cycles required to 
process a current CTU, and the throughput in frames per 
second (fps) for three different video resolutions (full HD 
(FHD), 2K, 4K) are shown in the table. The throughput in 
fps is calculated as shown in Eq. (2).

Ta
bl

e 
2 

 P
er

fo
rm

an
ce

 o
f t

he
 p

ro
po

se
d 

V
V

C
 M

E 
ha

rd
w

ar
e 

fo
r d

iff
er

en
t c

on
fig

ur
at

io
ns

C
TU

 si
ze

12
8 ×

 12
8

64
 ×

 64

Se
ar

ch
 R

an
ge

12
8 ×

 12
8

96
 ×

 96
64

 ×
 64

64
 ×

 64
48

 ×
 48

32
 ×

 32

Fr
eq

ue
nc

y 
(M

H
z)

25
3

25
3

25
3

30
6

30
6

30
6

C
TU

 L
at

en
cy

65
,8

48
37

,1
76

16
,6

96
16

,5
60

9,
39

2
4,

27
2

FP
S 

at
 1

08
0p

30
53

12
0

36
64

14
1

FP
S 

at
 2

 K
28

50
11

2
34

60
13

2
FP

S 
at

 4
 K

7
13

30
9

16
35



Journal of Real-Time Image Processing           (2024) 21:25  Page 9 of 12    25 

For 128 × 128 largest CTU size with 128 × 128 search 
range, 30 fps throughput is achieved for full HD video 
resolution. If the search range is reduced to 64 × 64, 30 
fps throughput is achieved for 4K video resolution. For 
64 × 64 largest CTU size with 32 × 32 search range, 35 fps 
throughput is achieved for 4K video resolution.

The proposed VVC ME hardware does not implement 
multi-type tree splitting for CU sizes larger than 32 × 32. 
The default configuration of VVC reference software (VTM) 
allows several multi-type tree splits larger than 32 × 32. The 
proposed hardware implements multi-type tree depth of 2. 
The default multi-type tree depth in VTM is 3.

We assessed the impact of the proposed hardware on 
VVC coding efficiency. Table 3 presents the rate-distortion 
performance for six different configurations of the proposed 
hardware with varying CTU sizes and search ranges for four 
full HD (1920 × 1080) videos using VTM v22.1. VTM is 
used in default configuration except the search algorithm, 
which is changed to Full Search. The VTM evaluations do 
not consider the impact of merge modes. It is assumed that 
they are checked in the mode decision module.

The FPGA resource usages of the proposed VVC ME 
hardware for 128 × 128 largest CTU size configuration 
with 128 × 128 search range and for 64 × 64 largest CTU 
size configuration with 64 × 64 search range are shown in 
Tables 4 and 5, respectively. The resource usage of 64 × 64 
largest CTU size configuration is almost 4 times less than the 
resource usage of 128 × 128 largest CTU size configuration.

The systolic array uses the most FPGA resources. It uses 
54% of the total flip-flops and 38% of the total LUTs used 
by the 128 × 128 largest CTU size configuration. The current 
pixel registers, reference pixel registers, and output registers 
in the systolic array justify the amount of flip-flop usage.

The SAD adder tree uses the second most FPGA 
resources. It uses 31% of the total flip-flops and 28% of the 
total LUTs used by the 128 × 128 largest CTU size configu-
ration. Since the comparator unit uses registers to store the 
minimum SADs and corresponding best MVs, its flip-flop 
usage is higher than its LUT usage.

The proposed VVC ME hardware is the first VVC ME 
hardware in the literature [31]. The proposed VVC ME hard-
ware implementation is compared with the HEVC ME hard-
ware implementations in the literature in Table 6. Although 
VVC ME has larger maximum CTU size and it is more com-
putationally complex than HEVC ME, the proposed VVC 
ME hardware has smaller area and higher throughput than 
some of these HEVC ME hardware.

The HEVC ME hardware proposed in [13] and [14] use 
full search ME algorithm. The hardware proposed in [13] 
does not support the asymmetric partitions in HEVC ME. 

(2)fps =
1

CTUlatency × CTUsperframe × Clockperiod
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These HEVC ME hardware use more LUTs and have lower 
throughput than our VVC ME hardware.

A sequential and a parallel HEVC ME hardware imple-
menting diamond search algorithm are proposed in [17]. 
Since the parallel hardware has higher performance than 
the sequential hardware, we compare our VVC ME hard-
ware with the parallel HEVC ME hardware. The HEVC ME 
hardware has smaller area and lower throughput than our 
VVC ME hardware.

The HEVC ME hardware proposed in [18] uses full 
search ME algorithm. It uses more LUTs, less FFs, and has 
the same throughput as our VVC ME hardware. VVC sup-
ports a larger number of partitions compared to HEVC. For 
a 64 × 64 CU size, our VVC ME hardware finds 821 unique 

MVs for 1077 potential partitions, whereas the HEVC ME 
hardware in [18] finds 593 unique MVs for 677 potential 
partitions. Since our VVC ME hardware finds more MVs 
and highly pipelined, it uses more FFs than the HEVC ME 
hardware in [18]. Since we used area optimized synthesis 
strategy, our VVC ME hardware uses less LUTs than the 
HEVC ME hardware in [18].

The HEVC ME hardware proposed in [19] uses a fast 
hybrid pattern search algorithm. It has higher throughput 
and a much larger area than our VVC ME hardware.

In summary, the proposed VVC ME hardware is more 
efficient than HEVC ME hardware in the literature. The pro-
posed VVC ME hardware and the HEVC ME hardware pro-
posed in [13, 14, 18] use full search algorithm. The proposed 
VVC ME hardware can process larger (128 × 128 CTU size 
as opposed to 64 × 64 CTU size) and more complex coding 
block structure of VVC while achieving higher throughput 
and using smaller area than them. Since the HEVC ME hard-
ware proposed in [17] and [19] use fast search algorithms, 
they may not find the best MVs. The proposed VVC ME 
hardware has higher throughput than the HEVC ME hard-
ware proposed in [17]. Although the proposed VVC ME 
hardware processes much larger CTU size of 128 × 128 as 
opposed to CTU size of 32 × 32 processed by the HEVC ME 
hardware proposed in [19], it has much smaller area.

5  Conclusions

In this paper, we proposed the first VVC ME hardware in the 
literature. It supports up to 4309 CU partitions and computes 
3285 unique motion vectors for a 128 × 128 CTU. It uses a 
novel memory-based SAD adder tree, and an efficient data 
reuse method. It is implemented on a Xilinx Virtex 7 FPGA. 
It can process up to 30 4K (3840 × 2160) video frames per 
second.

Table 4  Resource usage for 128 × 128 CTU size

LUTs Flip-Flops BRAMs

Systolic Array 56,321 98,816 –
SAD Adder Tree 40,970 57,312 4
Control Unit 36,582 2806 –
Comparator 11,308 21,343 –
Memory 425 2050 24
Total 145,606 182,327 28

Table 5  Resource usage for 64 × 64 CTU size

LUTs Flip-Flops BRAMs

Systolic Array 16,390 24,832 –
SAD Adder Tree 11,022 14,474 1
Control Unit 9954 1,348 –
Comparator 2818 4,948 –
Memory 210 1,026 12
Total 40,394 46,628 13

Table 6  Comparison with HEVC ME hardware

[13] [14] [17] [18] [19] Proposed

Standard HEVC HEVC HEVC HEVC HEVC VVC
FPGA Xilinx Virtex 5 Xilinx Virtex 5 Xilinx Virtex 7 Xilinx Virtex 7 Xilinx Virtex 7 Xilinx Virtex 7
CTU Size 64 × 64 64 × 64 64 × 64 64 × 64 32 × 32 128 × 128
Search Range 64 × 64 64 × 64 144 × 144 64 × 64 64 × 64 64 × 64
Frequency (MHz) 125 84.96 198.73 247 162 253
Throughput 4 K @ 13 fps 4 K @ 9 fps FHD @ 30 fps 4 K @ 30 fps 8 K @ 78 fps 4 K @ 30 fps
LUTs 209,434 153,314 49,258 188,664 485,760 145,606
Flip-Flops 199,066 36,368 13,351 144,302 607,200 182,327
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