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A B S T R A C T

Stochastic captive jump processes are explicitly constructed in continuous time, whose non-
linear dynamics are strictly confined by bounded domains that can be time-dependent. By
introducing non-anticipative path-dependency, the framework offers the possibility of generat-
ing multiple inner tunnels within a master domain, such that a captive jump process is allowed
to proceed either within a single inner tunnel or jump in between tunnels without ever pene-
trating the outermost shell. If a captive jump process is a continuous martingale or a pure-jump
process, the uppermost confining boundary is non-decreasing, and the lowermost confining
boundary is non-increasing. Under certain conditions, it can be shown that captive jump
processes are invariant under monotonic transformations, enabling one to construct and study
systems of increasing complexity using simpler building blocks. Amongst many applications,
captive jump processes may be considered to model phenomena such as electrons transitioning
from one orbit (valence shell) to another, quantum tunnelling where stochastic wave-functions
can ‘‘penetrate’’ inner boundaries (i.e., walls) of potential energy, non-linear dynamical systems
involving multiple attractors, and sticky concentration behaviour of pathogens in epidemics. We
provide concrete, worked-out examples, and numerical simulations for the dynamics of captive
jump processes within different geometries as demonstrations.

. Introduction

In this paper we aim at establishing a mathematical framework for what we refer to as captive jump processes (CJPs). These
re stochastic processes restricted within time-dependent, confined path spaces. CJPs extensively generalize the captive diffusion
rocesses in [1] by including a class of pure-jump processes, jump-diffusions and path-dependent processes that can evolve across
isparate segments of a complex geometry. This in turn paves the way to a wide array of potential applications in nonlinear systems
hat consist of a single master domain and/or multiple sub-domains (e.g., inner tunnels or corridors) within that master domain. It
s this master domain (with outermost boundaries) from whence the CJP can never escape, even though the same CJP is free (under
ertain conditions) to move through, and jump across, multiple fractures that fall in between.

In many physical and social systems, one encounters random processes that are restricted in their dynamics, where the stochastic
henomenon stays within a given topological subspace. As a most closely related stream of literature (which excludes jumps), we
efer to [2–4] for examples in quadratic optimization for generating risk-bounded, efficient frontiers, fully stochastic order-preserving
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systems, and randomly tunnelled particle systems. We shall also emphasize several other constructions, such as Skorokhod-
type stochastic differential equations [5–8], diffusion processes on submanifolds [9–11], reflected diffusions [12–15], Brownian
excursions [16–18], non-colliding diffusions [19–22], and Bessel processes [23–26].

The aforementioned stochastic processes share the common property of having continuous paths. However, there are many
bserved nonlinear systems which display discontinuities (at random times), possibly due to shocks producing substantial impact
n the evolution of the system. Here we mention transitions of quantum systems across excitation levels (e.g., electrons jumping
o a different energy level, sudden price reactions to news in financial markets, policy interventions regulating traffic in networks,
nd circuit-breakers). Thus, studying processes that embed pure-jump or jump–diffusion dynamics justifies a great deal of interest
n numerous applications and mathematical modelling purposes—if not just for their own sake.

Our approach considerably enlarges the variety of dynamics that captive processes can display, and addresses new fields
f applications in natural, life and social sciences that demand an accurate representation of discontinuities in multi-regime
nvironments, which would not be captured in the purely continuous setting, see [1,3,4]. The proposed generalized family of
rocesses retains the core features of the continuous case in [1] (that relies on the particular ordering of right-derivatives at
oundaries), and additionally permits random jumps that occur discretely and endogenously within the strict boundaries of a master
omain (almost-surely or path-by-path). This extension also brings the flexibility of creating more advanced topological designs
ompared to [4] when studying path-dependent jumps that move across internal corridors (e.g., self-contained subspaces or regimes)
n a given master system. We emphasize that adding jumps into the framework is hence non-trivial. Since we can consider highly
omplex geometries within our framework, the architecture of discontinuities requires an intricate mathematical design which we
chieve through a path-dependent monitoring process that dynamically records the tunnel entry points and random jump times.
JPs can display numerous properties (pure-jump, continuous or jump-continuous) over non-overlapping time intervals throughout
heir lifetime, and are controlled by coefficients of stochastic differential equations (SDEs) that satisfy certain regularity conditions
ith respect to exogenous boundaries. Such processes are now governed by jump-times and the corresponding spatial positions—all
eing measurable at any given time. As such, we shall see that this flexibility is desirable, and offers fundamental advancement in
everal directions in the developing literature on domain-bounded processes.

There are, of course, other ways to generate bounded stochastic processes; one can apply bounded functions to a stochastic
rocess, or directly truncate its law via transforming its probability distribution. Such approaches, however, might not always
apture the complex properties of an ecosystem, in which boundedness may not be the only characteristic feature that underlies the
volution of the processes involved. For example, an ecosystem may consist of multiple subspaces that host time-inhomogeneous
opological fragmentation, such that the underlying stochastic processes are expected to adopt this geometry in an order-preserving
nd path-dependent manner. In this sense, these processes may proceed across non-overlapping regime changes, while demonstrating
‘absorption’’ or ‘‘reflection’’ behaviour at the boundaries. Such an environment could (i) require the dynamics to be explicitly
ependent on confining boundaries and the induced geometry, and (ii) represent a dynamic interaction between all agents in a
ultivariate setting. Not only do we propose a mathematical recipe that unifies all these aspects in a single framework, but also

im at developing this framework in a flexible and tractable fashion through parametric SDEs that admit numerical calibration and
imulation for practical applications. We shall see that conducting numerical simulations requires careful examination given the ex-
ended flexibility of the possible systems our framework can model. In order to give evidence for the applicability of our construction,
e numerically simulate various path spaces by increasing their degree of complexity (in terms of the level of fragmentation and
on-linearity of boundaries), and discuss the performance of the obtained numerical models in light of potential boundary breaches.

The structure of this paper is as follows. Section 2 introduces captive jump–diffusion processes and studies some of their
athematical properties. In Section 3, we apply the framework to various physical phenomena along with numerical simulations

nd their sensitivity analysis. Additional remarks and conclusions are found in Sections 4 and 5 respectively.

. Construction and properties of captive jump processes

We consider a filtered probability space (𝛺, , (𝑡)𝑡≤∞,P), ∞ =  , where all filtrations are right-continuous and complete. We
work over a compact time interval T = [0, 𝑇 ] with some fixed horizon 𝑇 < ∞. Following the presentation of random processes
as random functions in [27], Section 5.2, we introduce for each 𝜔 ∈ 𝛺 the function 𝑡 ↦ 𝑋(𝑡, 𝜔) ∈ R, for 𝑡 ∈ T. This function is
commonly referred to as an 𝜔-trajectory or 𝜔-sample path of the stochastic process (𝑋𝑡)𝑡∈T. If for all 𝜔 ∈ 𝛺 the 𝜔-sample path is
càdlàg (right-continuous with left limits), then (𝑋𝑡)𝑡∈T is said to be a càdlàg stochastic process. If for all 𝜔 ∈ 𝛺, except for a P-nullset,
the 𝜔-sample path is càdlàg , then (𝑋𝑡)𝑡∈T is said to be a P-almost sure càdlàg stochastic process. Other 𝜔-sample path properties
are defined in a similar way, see [27]. By (𝑋

𝑡 )𝑡∈T we denote the natural filtration of (𝑋𝑡)𝑡∈T where 𝑋
𝑡 ⊂ 𝑡 is a sub-algebra for

any 𝑡 ∈ T. We choose to introduce the process (𝑋𝑡)𝑡∈T as a random function because the ensuing construction of the captive jump
processes will rely on constraining the path space of the process’s 𝜔-trajectories by employing time-dependent boundary functions.
We shall begin with captive jump processes that evolve within two master boundaries. Thereafter, we generalize the setting so to
allow for internal corridors to emerge.

2.1. Captive jump–diffusion processes

We introduce the space (R) of P-almost sure continuous {(𝑡),P}-martingales taking values in R. Let  (R) be the space of
P-almost sure càdlàg jump processes (𝐽𝑡)𝑡∈T with finite activity (i.e., finite number of jumps in a finite time interval) and jump-size
one. We write 𝛥𝐽𝑡 = 𝐽𝑡 − 𝐽𝑡− for 𝑡 > 𝑡−, for all 𝑡 ∈ T. So, if 𝛥𝐽𝑡 = 0, then the process (𝐽𝑡) is continuous at 𝑡. If 𝛥𝐽𝑡 = 1, then there is
discontinuity at 𝑡. For any 𝑓 ∶ T → R we shall use 𝑓𝑡 and 𝑓 (𝑡) interchangeably, depending on notational convenience. The following
2

function space models the boundaries that determine the restricted domains.
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Definition 2.1. Let (R) be the space of continuous and deterministic functions taking values in R, where for any 𝑔 ∈ (R),
𝑔 ∶ T → R is a locally bounded map with a locally bounded right-derivative d𝑔+(𝑡)∕d𝑡.

We now introduce a family of processes that generalizes [1] and forms the main focus of this paper. Thereafter, we study the
ain properties of this class of processes and provide some examples.

efinition 2.2. Let 𝑔𝑙 ∈ (R) and 𝑔𝑢 ∈ (R) such that 𝑔𝑙(𝑡) < 𝑔𝑢(𝑡) for all 𝑡 ∈ T. Then, a captive jump–diffusion process (𝑋𝑡)𝑡∈T is a
olution to the SDE

𝑋𝑡 = 𝑥0 + ∫

𝑡

0
𝜇
(

𝑠,𝑋𝑠; 𝑔𝑙(𝑠), 𝑔𝑢(𝑠)
)

d𝑠 + ∫

𝑡

0
𝜎
(

𝑠,𝑋𝑠; 𝑔𝑙(𝑠), 𝑔𝑢(𝑠)
)

d𝑀𝑠

+
∑

0≤𝑠≤𝑡
𝛾
(

𝑠−, 𝑋𝑠−; 𝑔𝑙(𝑠−), 𝑔𝑢(𝑠−)
)

𝛥𝐽𝑠, (1)

here 𝑋0 = 𝑥0 ∈ [𝑔𝑙(0), 𝑔𝑢(0)]. The maps 𝜇 and 𝜎 are continuous (possibly except at points where 𝛥𝐽 ≠ 0 with bounded jumps), and
is a locally bounded càdlàg map such that

1. 𝜇
(

𝑡, 𝑔𝑙(𝑡); 𝑔𝑙(𝑡), 𝑔𝑢(𝑡)
)

≥ d𝑔𝑙+(𝑡)∕d𝑡 and 𝜇
(

𝑡, 𝑔𝑢(𝑡); 𝑔𝑙(𝑡), 𝑔𝑢(𝑡)
)

≤ d𝑔𝑢+(𝑡)∕d𝑡,
2. 𝜎

(

𝑡, 𝑔𝑙(𝑡); 𝑔𝑙(𝑡), 𝑔𝑢(𝑡)
)

= 0 and 𝜎
(

𝑡, 𝑔𝑢(𝑡); 𝑔𝑙(𝑡), 𝑔𝑢(𝑡)
)

= 0,
where 1. and 2. above holds for any 𝑡 ∈ T where 𝑋𝑡 = 𝑔𝑙(𝑡) or 𝑋𝑡 = 𝑔𝑢(𝑡), and

3. 𝑔𝑙(𝑡−) −𝑋𝑡− ≤ 𝛾
(

𝑡−, 𝑋𝑡−; 𝑔𝑙(𝑡−), 𝑔𝑢(𝑡−)
)

≤ 𝑔𝑢(𝑡−) −𝑋𝑡−,

holds for all 𝑡 ∈ T, P-a.s., given that (𝑀𝑡)𝑡∈T ∈ (R) and (𝐽𝑡)𝑡∈T ∈  (R) are mutually independent.

To maintain a flexible level of generality, we define captive jump–diffusion processes as solutions governed by Eq. (1) without
imposing specific conditions on the coefficients of the SDE for existence and uniqueness. In order to guarantee a unique (strong)
solution, one can further require the coefficients to satisfy Lipschitz continuity and linear growth, but these are not necessary
conditions.

Proposition 2.3. For any 𝑡 ∈ T, 𝑔𝑙(𝑡) ≤ 𝑋𝑡 ≤ 𝑔𝑢(𝑡) holds P-almost-surely.

Proof. The continuous case is recovered if 𝛾
(

𝑡, 𝑋𝑡; 𝑔𝑙(𝑡), 𝑔𝑢(𝑡)
)

= 0 for all 𝑡 ∈ T, which is proven in [1]. We have 𝛥𝑋𝑡 ≠ 0 only when
𝛥𝐽𝑡 ≠ 0, where the magnitude of 𝛥𝑋𝑡 is conditionally restricted for all 𝑡 ∈ T by the third property in Definition 2.2. Hence, jumps can
at most take (𝑋𝑡)𝑡∈T onto a boundary, where the condition on 𝜎(⋅) ensures that 𝑋𝑡 at the boundary (𝑋𝑡 = 𝑔𝑙(𝑡)) is right-differentiable
given that 𝛥𝐽𝑡 = 0 at that 𝑡 ∈ T), so that we have

𝜇
(

𝑡, 𝑔𝑙(𝑡); 𝑔𝑙(𝑡), 𝑔𝑢(𝑡)
)

= lim
𝜖→0+

𝑋𝑡+𝜖 − 𝑔𝑙(𝑡)
𝜖

≥ lim
𝜖→0+

𝑔𝑙(𝑡 + 𝜖) − 𝑔𝑙(𝑡)
𝜖

. (2)

Since (𝐽𝑡)𝑡∈T has finite activity, if there is no jump at the boundary-hitting time 𝑡 ∈ T where 𝑋𝑡 = 𝑔𝑙(𝑡), there exists an 𝜖-band for
which Eq. (2) holds. If there is jump at the boundary, then the process jumps back into the domain (or remains on the boundary)
P-a.s. by virtue of Property 3 in Definition 2.2. Hence, these imply 𝑋𝑡 ≥ 𝑔𝑙(𝑡) for any 𝑡 ∈ T, P-a.s. Similarly, using the condition on
𝜎(⋅), the opposite side follows the same logic, where at 𝑋𝑡 = 𝑔𝑢(𝑡), we have

𝜇
(

𝑡, 𝑔𝑢(𝑡); 𝑔𝑙(𝑡), 𝑔𝑢(𝑡)
)

= lim
𝜖→0+

𝑋𝑡+𝜖 − 𝑔𝑢(𝑡)
𝜖

≤ lim
𝜖→0+

𝑔𝑢(𝑡 + 𝜖) − 𝑔𝑢(𝑡)
𝜖

,

f there is no jump during the 𝜖-band over which the limit above is taken. If there is a jump at the boundary, Property 3 in
efinition 2.2 dictates (𝑋𝑡)𝑡∈T to jump back into the domain. Hence, 𝑋𝑡 ≤ 𝑔𝑢(𝑡) must hold for any 𝑡 ∈ T, P-a.s. □

emark 2.4. The reason for calling these processes ‘‘captive’’ stems from Proposition 2.3: The process cannot break free from the
estricted domain controlled by 𝑔𝑙(𝑡)𝑡∈T and 𝑔𝑢(𝑡)𝑡∈T.

At this point, we shall mention the literature on comparison theorems. These theorems give necessary and sufficient conditions for
airs of SDEs that maintain an initial order, see [28–31]. Although the conditions on drift and diffusion coefficients discussed in this
aper (and in [1,3]) show some similarities with the conditions in the comparison theorems, we shall highlight several fundamental
ifferences between the two approaches. First, captive jump processes are driven by multivariate drift and diffusion coefficients
hich are in one-to-one relations with the boundaries, whereby comparison theorems work with one-dimensional functions on

he underlying processes without any reference to boundary paths. Second, comparison theorems require the drift coefficients
o abide to a pairwise-order at every point in space–time and require the diffusion coefficients to be the same function at every
oint in space–time (to ensure order-preservation due to the one-dimensional nature of the employed functions), whereby our
ramework does not expect the conditions imposed on the coefficients to be satisfied everywhere. Instead, conditions are to be
atisfied dynamically only at collision events in space–time on multivariate surfaces. The latter feature grants to our framework
he flexibility to choose from a considerably large family of coefficient functions. Third, captive jump processes form a class of
ynamically (and randomly) degenerate SDEs which are, in general, only right-differentiable at boundaries (and in general non-
ifferentiable anywhere else in their domain); a feature that does not appear in the comparison theorems. Finally, comparison
3
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Fig. 1. Here, 𝐿(𝑡)𝑡∈T = 2 and 𝑈 (𝑡)𝑡∈T = 3, and 𝛽(𝑡)𝑡∈T = 2.5, 𝛼 = 1.0.

theorems ask for a single stochastic driver associated to every diffusion coefficient in the system, disallowing the manifestation
of multiple cases of idiosyncratic randomness associated individually to every diffusion coefficient (as shown in [3]). It is due to
these reasons that comparison theorems and captive (jump) processes (see also [1,3]) diverge, aside from the very specific case,
where every diffusion coefficient function is fixed to constant zero and every drift coefficient satisfies a fixed order at every point
in space–time, while diffusion and drift functions are one-dimensional. The very limiting special case boils down to essentially a
purely deterministic system that loses all possible stochastic dynamics. Accordingly, our framework deviates considerably, leading
to different proofs, results and extensions, when compared to comparison theorems.

Remark 2.5. Since in general neither (𝑀𝑡)𝑡∈T nor (𝐽𝑡)𝑡∈T are necessarily Markovian, captive jump–diffusion processes are not
necessarily Markov processes, either. The term ‘‘diffusion’’ in this paper is to highlight continuity of paths rather than Markovianity.
When (𝑋𝑡)𝑡∈T is Markovian, we replace (𝑀𝑡)𝑡∈T in Eq. (1) with an {(𝑡),P}-Brownian motion (𝑊𝑡)𝑡∈T for a canonical representation,
and choose for (𝐽𝑡)𝑡∈T an independent Markov jump process.

Remark 2.6. One can further augment (R) from the space of continuous martingales to that of continuous semimartingales. That
is, Proposition 2.3 would still hold if (𝑀𝑡)𝑡∈T is a continuous semimartingale. In this paper, we keep (𝑀𝑡)𝑡∈T a continuous martingale
since (𝑀𝑡)𝑡∈T will be chosen as a Brownian motion in all our examples.

For demonstration purposes, we shall next provide an example for a Markovian captive jump–diffusion process.

Example 2.7. Let (𝐽𝑡)𝑡∈T be a Poisson process. The following process is a mean-reverting captive jump–diffusion with reflective
boundaries:

𝑋𝑡 = 𝑥0 + ∫

𝑡

0
𝜅(𝑠)(𝛽(𝑠) −𝑋𝑠)d𝑠 + ∫

𝑡

0
𝛼(𝑠)

(

𝑋𝑠 − 𝐿(𝑠)
) (

𝑈 (𝑠) −𝑋𝑠
)

d𝑊𝑠

+
∑

0≤𝑠≤𝑡
𝜃𝑠− min

(

𝑋𝑠− − 𝐿(𝑠−), 𝑈 (𝑠−) −𝑋𝑠−
)

𝛥𝐽𝑠, (3)

for 𝑥0 ∈ [𝐿0, 𝑈0], where (𝛼(𝑡))𝑡∈T and 0 < (𝜅(𝑡))𝑡∈T < ∞ are adapted continuous maps, and the following relationship holds:

𝐿(𝑡) < 𝛽(𝑡) < 𝑈 (𝑡),

for all 𝑡 ∈ T, so that

𝜅(𝑡)(𝛽(𝑡) − 𝐿(𝑡)) > d𝐿+(𝑡)∕d𝑡

𝜅(𝑡)(𝛽(𝑡) − 𝑈 (𝑡)) < d𝑈+(𝑡)∕d𝑡,

for all 𝑡 ∈ T. Also, (𝜃𝑡)𝑡∈T is a (possibly stochastic) càdlàg map where 𝜃𝑡 ∈ [−1, 1]∕{0}, for all 𝑡 ∈ T. In Fig. 1, we plot sample paths
generated by a simplified version of the SDE (3), where we consider constant boundaries 𝐿(𝑡)𝑡∈T = 𝐿 and 𝑈 (𝑡)𝑡∈T = 𝑈 , and constant
𝛽(𝑡)𝑡∈T = 𝛽.

Remark 2.8. We note that all the coefficients in (3) satisfy local Lipschitz continuity. It follows that the SDE is well-posed and a
solution exists, which is bounded according to Proposition 2.3.

Since sums of semimartingales are semimartingales, if (𝐽𝑡)𝑡∈T is a {(𝑡),P}- semimartingale, then (𝑋𝑡)𝑡∈T is a {(𝑡),P}-
semimartingale given that 𝜇 has locally bounded variation. For our next result, we define the time-segments  (𝑙) ⊆ T and  (𝑢) ⊆ T
where (𝑋𝑡)𝑡∈T may hit the boundaries. We have,

 (𝑙) = {𝑡 ∶ P(𝑋 ∈ 𝛿𝑔𝑙(𝑡)) > 0; for 𝑡 ∈ T},
4
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 (𝑢) = {𝑡 ∶ P(𝑋𝑡 ∈ 𝛿𝑔𝑢(𝑡)) > 0; for 𝑡 ∈ T},

here 𝛿𝑔𝑙(𝑡) and 𝛿𝑔𝑢(𝑡) are the spatial differentials for a fixed time 𝑡 ∈ T. That is, if 𝑔(𝑡) ∶ 𝑡 ↦ 𝑥 then 𝛿𝑔(𝑡) = d𝑥.

roposition 2.9. Let 𝑔𝑙 , 𝑔𝑢 ∈ . Then (𝑔𝑙(𝑡))𝑡∈ (𝑙) must be non-increasing and (𝑔𝑢(𝑡))𝑡∈ (𝑢) must be non-decreasing if either of the following
olds:

1. (𝑋𝑡)𝑡∈T is a continuous {(𝑡),P}-martingale,
2. (𝑋𝑡)𝑡∈T is a pure-jump process.

roof. Since 𝑔𝑙 , 𝑔𝑢 ∈ , we have 𝛥𝑔𝑙(𝑡) = 𝛥𝑔𝑢(𝑡) = 0 for any 𝑡 ∈ T. For the first part, if (𝑋𝑡)𝑡∈T is a continuous {(𝑡),P}-martingale
hen 𝜇 = 𝛾 = 0. Since

𝜇
(

𝑡, 𝑔𝑙(𝑡); 𝑔𝑙(𝑡), 𝑔𝑢(𝑡)
)

= 0 ≥ d𝑔𝑙+(𝑡)∕d𝑡

ust hold for all 𝑡 ∈  (𝑙) and

𝜇
(

𝑡, 𝑔𝑢(𝑡); 𝑔𝑙(𝑡), 𝑔𝑢(𝑡)
)

= 0 ≤ d𝑔𝑢+(𝑡)∕d𝑡

ust hold for all 𝑡 ∈  (𝑢), it follows that (𝑔𝑙(𝑡))𝑡∈ (𝑙) must be non-increasing and (𝑔𝑢(𝑡))𝑡∈ (𝑢) must be non-decreasing. For the second
art, if (𝑋𝑡)𝑡∈T is a pure-jump process, then 𝜇 = 𝜎 = 0. Since the jump-times of (𝐽𝑡)𝑡∈T neither depend on (𝑔𝑙(𝑡))𝑡∈T nor on (𝑔𝑢(𝑡))𝑡∈T,
nd since 𝛾 cannot act on (𝑋𝑡)𝑡∈T over time intervals where (𝐽𝑡)𝑡∈T does not jump, hence where (𝑋𝑡)𝑡∈T is constant, we have the
ollowing:

P(𝑋𝑡 > 𝑔
𝑢(𝑡)) > 0 if d𝑔𝑢+(𝑡)∕d𝑡 < 0,

P(𝑋𝑡 < 𝑔
𝑙(𝑡)) > 0 if d𝑔𝑙+(𝑡)∕d𝑡 > 0,

or 𝑡 ∈ T. However, the captivity property is preserved if d𝑔𝑢+(𝑡)∕d𝑡 ≥ 0 and d𝑔𝑙+(𝑡)∕d𝑡 ≤ 0, since the boundaries cannot evolve in
way that cut the paths of (𝑋𝑡)𝑡∈T over time intervals where no jumps occur, and hence over periods during which (𝑋𝑡)𝑡∈T stays

onstant. □

roposition 2.10. Let (𝑔𝑙(𝑡))𝑡∈T and (𝑔𝑢(𝑡))𝑡∈T be constant and EP[𝛥𝐽𝑡 ∣ 𝑡−] > 0 for all 𝑡 ∈ T. Then the boundaries must be absorbing if

1. (𝑋𝑡)𝑡∈T is a continuous {(𝑡),P}-martingale,
2. (𝑋𝑡)𝑡∈T is a pure-jump {(𝑡),P}-martingale.

roof. Denote 𝑔𝑙(𝑡) = 𝐿𝑡, 𝑔𝑢(𝑡) = 𝑈𝑡 for all 𝑡 ∈ T and let

𝜏 = inf(𝑡 ≥ 0 ∶ 𝑋𝑡 = 𝐿𝑡 = 𝐿 ∪ 𝑋𝑡 = 𝑈𝑡 = 𝑈 )

e the first-hitting time to either of the (constant) boundaries where inf ∅ = ∞.
Next, define (𝑌𝑡)𝑡∈T such that

𝑌𝑡 = 𝑋𝑡∧𝜏 for all 𝑡 ∈ T.

Since (𝐿𝑡)𝑡∈T and (𝑈𝑡)𝑡∈T are constant, we have d𝐿+(𝑡)∕d𝑡 = d𝑈+(𝑡)∕d𝑡 = 0. If (𝑋𝑡)𝑡∈T is an {(𝑡),P}-martingale, then we have
EP[|𝑋𝑡|] < ∞ and the following:

EP[𝑋𝑡 ∣ 𝑢] = 𝑥0 + ∫

𝑢

0
𝜇
(

𝑠,𝑋𝑠;𝐿𝑠, 𝑈𝑠
)

d𝑠 + ∫

𝑢

0
𝜎
(

𝑠,𝑋𝑠;𝐿𝑠, 𝑈𝑠
)

d𝑀𝑠 +
∑

0≤𝑠≤𝑢
𝛾
(

𝑠−, 𝑋𝑠−;𝐿𝑠−, 𝑈𝑠−
)

𝛥𝐽𝑠

+ EP
[

∫

𝑡

𝑢
𝜇
(

𝑠,𝑋𝑠;𝐿𝑠, 𝑈𝑠
)

∣ 𝑢
]

d𝑠 + EP
[

∫

𝑡

𝑢
𝜎
(

𝑠,𝑋𝑠;𝐿𝑠, 𝑈𝑠
)

d𝑀𝑠 ∣ 𝑢
]

+ EP

[

∑

𝑢<𝑠≤𝑡
𝛾
(

𝑠−, 𝑋𝑠−;𝐿𝑠−, 𝑈𝑠−
)

𝛥𝐽𝑠 ∣ 𝑢

]

= 𝑋𝑢 + ∫

𝑡

𝑢
EP[𝜇

(

𝑠,𝑋𝑠;𝐿𝑠, 𝑈𝑠
)

∣ 𝑢]d𝑠 +
∑

𝑢<𝑠≤𝑡
EP[𝛾

(

𝑠−, 𝑋𝑠−;𝐿𝑠−, 𝑈𝑠−
)

𝛥𝐽𝑠 ∣ 𝑢]

= 𝑋𝑢, (4)

or all 𝑢 ≤ 𝑡 ∈ T. If (𝑋𝑡)𝑡∈T is continuous, then 𝛾 = 0 and 𝜇 = 0 must hold, and since 𝜎(𝜏) = 0 by Definition 2.2, we must have
𝑋𝑡)𝑡∈T = (𝑌𝑡)𝑡∈T. If (𝑋𝑡)𝑡∈T is a pure-jump process, then 𝜇 = 𝜎 = 0, and by using the independence of (𝐽𝑡)𝑡∈T, the following must

hold:
∑

𝑢<𝑠≤𝑡
EP[𝛾

(

𝑠−, 𝑋𝑠−;𝐿𝑠−, 𝑈𝑠−
)

𝛥𝐽𝑠 ∣ 𝑢] =
∑

𝑢<𝑠≤𝑡
EP[𝛾

(

𝑠−, 𝑋𝑠−;𝐿𝑠−, 𝑈𝑠−
)

∣ 𝑢]EP[𝛥𝐽𝑠 ∣ 𝑢] = 0.

ince this holds for every 𝑢 < 𝑠 ≤ 𝑡 ∈ T,
P P ( )
5

E [𝛥𝐽𝑠 ∣ 𝑢] > 0 ⇒ E [𝛾 𝑠−, 𝑋𝑠−;𝐿𝑠−, 𝑈𝑠− ∣ 𝑢] = 0
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must hold for every 𝑢 < 𝑠 ≤ 𝑡 ∈ T. If 𝜏 ∈ T, that is, the captive process jumped onto a boundary during T, and if 𝜌 ∈ T is any time
strictly after 𝜏 at which (𝐽𝑡)𝑡∈T jumps (this always holds due to the finite-activity property), we have:

EP[𝛾
(

𝜌−, 𝑋𝜌−;𝐿𝜌−, 𝑈𝜌−
)

∣ 𝜏 ] = 0 ⇒

⎧

⎪

⎨

⎪

⎩

EP[𝛾
(

𝜌−, 𝐿𝜌−;𝐿𝜌−, 𝑈𝜌−
)

∣ 𝜏 ] = 0 if 𝑋𝜏 = 𝐿𝜏 ,

EP[𝛾
(

𝜌−, 𝑈𝜌−;𝐿𝜌−, 𝑈𝜌−
)

∣ 𝜏 ] = 0 if 𝑋𝜏 = 𝑈𝜏

(5)

for 𝜏 < 𝜌 ∈ T. Using Property 3 in Definition 2.2, we have one of the following cases:

𝛾
(

𝜌−, 𝐿𝜌−;𝐿𝜌−, 𝑈𝜌−
)

≥ 0,

𝛾
(

𝜌−, 𝑈𝜌−;𝐿𝜌−, 𝑈𝜌−
)

≤ 0.

In any of these two cases, Eq. (5) holds only if 𝛾
(

𝜌−, 𝑋𝜌−;𝐿𝜌−, 𝑈𝜌−
)

= 0 for any 𝜌 > 𝜏. Thus, (𝑋𝑡)𝑡∈T = (𝑌𝑡)𝑡∈T must hold and the
statement follows. □

We now ask: Is there a family of transformations under which a captive jump–diffusion is mapped to another captive jump–
diffusion? The answer is yes. This answer carries value since it allows one to construct more advanced captive jump processes
starting from simpler models. In order to formalize this answer, first let 2

𝑏 (R) be the subspace of continuous locally bounded
functions that are twice-differentiable with continuous locally bounded derivatives. From this point onwards, (𝑋𝑡)𝑡∈T is a Markovian
captive jump–diffusion process as described in Remark 2.5. We shall recall that the jump-times of (𝐽𝑡)𝑡∈T are mutually independent
f (𝑋𝑡)𝑡∈T.

roposition 2.11. Let 𝑔𝑙 , 𝑔𝑢 ∈ (R), 𝜇 and 𝜎 be continuous, 𝑓 ∈ 2
𝑏 (R) and 𝑌𝑡 = 𝑓 (𝑋𝑡) for all 𝑡 ∈ T. If 𝑓 is strictly monotonic over the

omain of (𝑋𝑡)𝑡∈T, then (𝑌𝑡)𝑡∈T is a captive jump process.

roof. Denote 𝑔𝑙(𝑡) = 𝐿𝑡, 𝑔𝑢(𝑡) = 𝑈𝑡 for all 𝑡 ∈ T. Since 𝑓 is monotonic, either 𝑓 (𝐿𝑡) ≤ 𝑌𝑡 ≤ 𝑓 (𝑈𝑡) if 𝑓 is increasing, or
(𝑈𝑡) ≤ 𝑌𝑡 ≤ 𝑓 (𝐿𝑡) if 𝑓 is decreasing, for all 𝑡 ∈ T, P-a.s. We write 𝑓 (𝐿𝑡) = 𝛼𝑡 and 𝑓 (𝑈𝑡) = 𝛽𝑡 for 𝑡 ∈ T. Note that 𝛼, 𝛽 ∈ (R).
ext, we derive the SDE for (𝑌𝑡)𝑡∈T, and check the conditions in Definition 2.2 at these boundaries. Using Itô’s integration by parts

ormula, we have the following:

𝑌𝑡 = 𝑌0 + ∫

𝑡

0

𝜕𝑓
𝜕𝑥

d𝑋𝑐
𝑠 +

1
2 ∫

𝑡

0

𝜕2𝑓
𝜕𝑥2

d
⟨

𝑋𝑐
𝑠 , 𝑋

𝑐
𝑠
⟩

+
∑

0≤𝑠≤𝑡

[

𝑓 (𝑋𝑠) − 𝑓 (𝑋𝑠−)
]

= 𝑌0 + ∫

𝑡

0

(

𝜕𝑓
𝜕𝑥
𝜇
(

𝑠,𝑋𝑠;𝐿𝑠, 𝑈𝑠
)

+ 1
2
𝜕2𝑓
𝜕𝑥2

𝜎2
(

𝑠,𝑋𝑠;𝐿𝑠, 𝑈𝑠
)

)

d𝑠 + ∫

𝑡

0

𝜕𝑓
𝜕𝑥
𝜎
(

𝑠,𝑋𝑠;𝐿𝑠, 𝑈𝑠
)

d𝑊𝑠 (6)

+
∑

0≤𝑠≤𝑡

[

𝑓 (𝑋𝑠) − 𝑓 (𝑋𝑠−)
]

𝛥𝐽𝑠

≜ 𝑌0 + ∫

𝑡

0
�̂�
(

𝑠, 𝑌𝑠; 𝛼𝑠, 𝛽𝑠
)

d𝑠 + ∫

𝑡

0
�̂�
(

𝑠, 𝑌𝑠; 𝛼𝑠, 𝛽𝑠
)

d𝑊𝑠 (7)

+
∑

0≤𝑠≤𝑡
𝛥𝑌𝑠,

or all 𝑡 ∈ T. We may write �̂� and �̂� in (7) in terms of 𝑌 , 𝛼 and 𝛽, since 𝑓 is strictly monotonic and thus has an inverse (bijective),
o that we can find some �̂� and �̂� that can provide Eq. (6). Also, since 𝑓 ∈ 2

𝑏 (R) and 𝜇 and 𝜎 are continuous, �̂� and �̂� are also
continuous (and hence locally bounded). It follows that 𝛥𝑌𝑡 ≠ 0 if and only if 𝛥𝐽𝑡 = 1 for all 𝑡 ∈ T. Since the jump-times of (𝐽𝑡)𝑡∈T
are mutually independent of (𝑋𝑡)𝑡∈T, 𝑓 does not change the distribution of the jump-times of (𝑌𝑡)𝑡∈T; it only acts on the jump-sizes.
Hence, there exists some function �̂� such that

𝛥𝑌𝑡 = �̂�
(

𝑡−, 𝑌𝑡−; 𝛼𝑡−, 𝛽𝑡−
)

𝛥𝐽𝑡,

for all 𝑡 ∈ T. Therefore, we recover the expression in Eq. (1):

𝑌𝑡 = 𝑌0 + ∫

𝑡

0
�̂�
(

𝑠, 𝑌𝑠; 𝛼𝑠, 𝛽𝑠
)

d𝑠 + ∫

𝑡

0
�̂�
(

𝑠, 𝑌𝑠; 𝛼𝑠, 𝛽𝑠
)

d𝑊𝑠 +
∑

0≤𝑠≤𝑡
�̂�
(

𝑠−, 𝑌𝑠−; 𝛼𝑠−, 𝛽𝑠−
)

𝛥𝐽𝑠,

for all 𝑡 ∈ T. We now need to check whether �̂� and �̂� satisfy Property 1 and Property 2 in Definition 2.2, respectively, and whether
�̂� satisfies Property 3 in Definition 2.2 at the boundaries. We begin with the case where 𝑓 is increasing. Then 𝛼 < 𝛽, and (𝑌𝑡)𝑡∈T
attains its minimum at 𝛼𝑡 when 𝑋𝑡 = 𝐿𝑡. Since 𝜕𝑓∕𝜕𝑥 > 0 for any 𝑥, we have

�̂�
(

𝑡, 𝛼𝑡; 𝛼𝑡, 𝛽𝑡
)

=
𝜕𝑓
𝜕𝐿

𝜇
(

𝑡, 𝐿𝑡;𝐿𝑡, 𝑈𝑡
)

≥ 𝜕𝑓
𝜕𝐿

d𝐿+(𝑡)∕d𝑡 = d𝛼+(𝑡)∕d𝑡

iven that (𝜕2𝑓∕𝜕𝐿2)𝜎2
(

𝑠, 𝐿𝑠;𝐿𝑠, 𝑈𝑠
)

= 0, since 𝜎
(

𝑠, 𝐿𝑠;𝐿𝑠, 𝑈𝑠
)

= 0 by Property 2 in Definition 2.2. On the other hand, (𝑌𝑡)𝑡∈T attains
its maximum at 𝛽𝑡 when 𝑋𝑡 = 𝑈𝑡, and hence,

�̂�
(

𝑡, 𝛽 ; 𝛼 , 𝛽
)

=
𝜕𝑓

𝜇
(

𝑡, 𝑈 ;𝐿 ,𝑈
)

≤ 𝜕𝑓
d𝑈 (𝑡)∕d𝑡 = d𝛽 (𝑡)∕d𝑡.
6

𝑡 𝑡 𝑡 𝜕𝑈 𝑡 𝑡 𝑡 𝜕𝑈 + +
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Therefore, �̂� satisfies Property 1 in Definition 2.2. As for �̂� it satisfies Property 2 in Definition 2.2, since

�̂�
(

𝑠, 𝛼𝑠; 𝛼𝑠, 𝛽𝑠
)

=
𝜕𝑓
𝜕𝐿

𝜎
(

𝑠, 𝐿𝑠;𝐿𝑠, 𝑈𝑠
)

= 0 and �̂�
(

𝑠, 𝛽𝑠; 𝛼𝑠, 𝛽𝑠
)

=
𝜕𝑓
𝜕𝑈

𝜎
(

𝑠, 𝑈𝑠;𝐿𝑠, 𝑈𝑠
)

= 0.

inally, 𝛼𝑡− − 𝑌𝑡− ≤ �̂�
(

𝑡−, 𝑌𝑡−; 𝛼𝑡−, 𝛽𝑡−
)

≤ 𝛽𝑡− − 𝑌𝑡− must hold P-a.s., since 𝛼𝑡 ≤ 𝑌𝑡 ≤ 𝛽𝑡 holds and 𝛥𝐽𝑡 ∈ {0, 1} for all 𝑡 ∈ T, P-a.s.
The case when 𝑓 is decreasing follows similarly. Here, 𝛽 < 𝛼, and (𝑌𝑡)𝑡∈T attains its minimum at 𝛽𝑡 when 𝑋𝑡 = 𝑈𝑡. Hence, having
𝜕𝑓∕𝜕𝑥 < 0 for any 𝑥,

�̂�
(

𝑡, 𝛽𝑡; 𝛼𝑡, 𝛽𝑡
)

=
𝜕𝑓
𝜕𝑈

𝜇
(

𝑡, 𝑈𝑡;𝐿𝑡, 𝑈𝑡
)

≥ 𝜕𝑓
𝜕𝑈

d𝑈+(𝑡)∕d𝑡 = d𝛽+(𝑡)∕d𝑡

Also, since(𝑌𝑡)𝑡∈T attains its maximum at 𝛼𝑡 when 𝑋𝑡 = 𝐿𝑡, we have

�̂�
(

𝑡, 𝛼𝑡; 𝛼𝑡, 𝛽𝑡
)

=
𝜕𝑓
𝜕𝐿

𝜇
(

𝑡, 𝐿𝑡;𝐿𝑡, 𝑈𝑡
)

≤ 𝜕𝑓
𝜕𝐿

d𝐿+(𝑡)∕d𝑡 = d𝛼+(𝑡)∕d𝑡.

s before, �̂� satisfies Property 1 in Definition 2.2. We already know �̂� satisfies Property 2 in Definition 2.2. Finally, since 𝛽𝑡 ≤ 𝑌𝑡 ≤ 𝛼𝑡
for all 𝑡 ∈ T, P-a.s., we must have 𝛽𝑡− − 𝑌𝑡− ≤ �̂�

(

𝑡−, 𝑌𝑡−; 𝛼𝑡−, 𝛽𝑡−
)

≤ 𝛼𝑡− − 𝑌𝑡− for all 𝑡 ∈ T, P-a.s., which is Property 3 in
Definition 2.2. □

Example 2.12. Let 𝑌𝑡 = 𝑒𝑋𝑡 for all 𝑡 ∈ T. Then, (𝑌𝑡)𝑡∈T is a captive jump process, where

𝑒𝑔
𝑙 (𝑡) ≤ 𝑌𝑡 ≤ 𝑒𝑔

𝑢(𝑡) for all 𝑡 ∈ T, P-a.s.

Example 2.13. Let 𝑌𝑡 = (𝑋𝑡 + 𝑐)𝑛 be a polynomial for some 0 ≤ 𝑐 <∞ and 1 ≤ 𝑛 <∞, for all 𝑡 ∈ T. Set 0 < 𝑔𝑙(𝑡) for all 𝑡 ∈ T. Then,
(𝑌𝑡)𝑡∈T is a captive jump process, where

(𝑔𝑙(𝑡) + 𝑐)𝑛 ≤ 𝑌𝑡 ≤ (𝑔𝑢(𝑡) + 𝑐)𝑛 for all 𝑡 ∈ T, P-a.s.

Example 2.14. Let 0 < 𝑔𝑙(𝑡) for all 𝑡 ∈ T and 𝑌𝑡 = 𝑋−1
𝑡 for all 𝑡 ∈ T. Then, (𝑌𝑡)𝑡∈T is a captive jump process, where

𝑔𝑢(𝑡)−1 ≤ 𝑌𝑡 ≤ 𝑔𝑙(𝑡)−1 for all 𝑡 ∈ T, P-a.s.

Since continuous bijective functions are strictly monotonic, we have the following corollary.

Corollary 2.15. Let  and  be compact sets in R, where  is the domain of (𝑋𝑡)𝑡∈T. Let the map 𝑓 ∶  →  be bijective, where
𝑓 ∈ 2

𝑏 (R) and 𝑌𝑡 = 𝑓 (𝑋𝑡) for all 𝑡 ∈ T. Then (𝑌𝑡)𝑡∈T is a captive jump process.

Example 2.16. Let  = [−𝜋∕2, 𝜋∕2] and  = [−1, 1], where 𝑓 ∶  →  is 𝑓 (𝑥) = sin(𝑥). Let (𝑋𝑡)𝑡∈T be a continuous captive
artingale governed by

𝑋𝑡 = 𝑥0 + ∫

𝑡

0
sin

(

𝑋𝑠 −
𝜋
2

)

sin
(

𝑋𝑠 +
𝜋
2

)

d𝑊𝑠,

where 𝑥0 ∈ (−𝜋∕2, 𝜋∕2). Using Itô’s integration by parts formula, we have

𝑌𝑡 = 𝑦0 + ∫

𝑡

0
cos(𝑋𝑠) sin

(

𝑋𝑠 −
𝜋
2

)

sin
(

𝑋𝑠 +
𝜋
2

)

d𝑊𝑠 −
1
2
sin(𝑋𝑠) sin

(

𝑋𝑠 −
𝜋
2

)2
sin

(

𝑋𝑠 +
𝜋
2

)2
d𝑠

= 𝑦0 − ∫

𝑡

0
cos3(𝑋𝑠) d𝑊𝑠 −

1
2
sin(𝑋𝑠) cos4(𝑋𝑠) d𝑠

= 𝑦0 − ∫

𝑡

0
cos3(sin−1(𝑌𝑠)) d𝑊𝑠 −

1
2
𝑌𝑠 cos4(sin

−1(𝑌𝑠)) d𝑠

= 𝑦0 − ∫

𝑡

0

(

1 − 𝑌 2
𝑠
)

3
2 d𝑊𝑠 −

1
2
𝑌𝑠

(

1 − 𝑌 2
𝑠
)2 d𝑠

which shows that (𝑌𝑡)𝑡∈T is a continuous captive diffusion process with absorbing boundaries at levels −1 and 1.

Before we introduce path-dependency and internal corridors into the framework, we shall briefly look at captive jump processes
from the perspective of partial differential equations.

Proposition 2.17. Let (𝜆𝑡)𝑡∈T be the intensity process of (𝐽𝑡)𝑡∈T, 𝜓 ∶ R → R and 𝜙 ∶ R → R be continuous bounded functions, and

𝑣(𝑥, 𝑡) ∶= E
[

𝑒− ∫ 𝑇𝑡 𝜓(𝑠)d𝑠𝜙(𝑋𝑇 )
|

|

|

|

𝑋𝑡 = 𝑥
]

.

If 𝑣 ∈ 2(R), then
𝜕𝑣(𝑔𝑙(𝑡), 𝑡)

𝜕𝑡
+ 𝜇(𝑡, 𝑔𝑙(𝑡); 𝑔𝑙(𝑡), 𝑔𝑢(𝑡))

𝜕𝑣(𝑔𝑙(𝑡), 𝑡)
𝜕𝑔𝑙(𝑡)

+ (𝑣(𝑔𝑙(𝑡), 𝑡) − 𝑣(𝑔𝑙(𝑡−), 𝑡−))𝜆𝑡 = 𝜓(𝑡)𝑣(𝑔𝑙(𝑡), 𝑡)

𝜕𝑣(𝑔𝑢(𝑡), 𝑡)
𝜕𝑡

+ 𝜇(𝑡, 𝑔𝑢(𝑡); 𝑔𝑙(𝑡), 𝑔𝑢(𝑡))
𝜕𝑣(𝑔𝑢(𝑡), 𝑡)
𝜕𝑔𝑢(𝑡)

+ (𝑣(𝑔𝑢(𝑡), 𝑡) − 𝑣(𝑔𝑢(𝑡−), 𝑡−))𝜆𝑡 = 𝜓(𝑡)𝑣(𝑔𝑢(𝑡), 𝑡),

here 𝑣(𝑥, 𝑇 ) = 𝜙(𝑥) for all 𝑥 ∈ [𝑔𝑙(𝑇 ), 𝑔𝑢(𝑇 )].
7
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Proof. Using the Doob–Meyer decomposition, we have 𝐽𝑡 = 𝐽𝑡 + 𝛬𝑡 for all 𝑡 ∈ T, where (𝐽𝑡)𝑡∈T is a martingale and 𝛬𝑡 = ∫ 𝑡0 𝜆𝑠d𝑠 is
he compensator. In addition,

�̂�(𝑋𝑡, 𝑡) = 𝑒− ∫ 𝑡0 𝜓(𝑠)d𝑠 𝑣(𝑋𝑡, 𝑡)

efines a martingale process (�̂�(𝑋𝑡, 𝑡))𝑡∈T. Applying Itô’s integration by parts formula to �̂�(𝑋𝑡, 𝑡), we have
𝜕�̂�(𝑥, 𝑡)
𝜕𝑡

d𝑡 +
𝜕�̂�(𝑥, 𝑡)
𝜕𝑥

(

𝜎(𝑡, 𝑥; 𝑔𝑙(𝑡), 𝑔𝑢(𝑡))d𝑊𝑡 + 𝜇(𝑡, 𝑥; 𝑔𝑙(𝑡), 𝑔𝑢(𝑡))d𝑡
)

+ 1
2
𝜕2�̂�(𝑥, 𝑡)
𝜕𝑥2

𝜎2(𝑡, 𝑥; 𝑔𝑙(𝑡), 𝑔𝑢(𝑡))d𝑡 + (�̂�(𝑥, 𝑡) − �̂�(𝑥−, 𝑡−)) (d𝐽𝑡 + d𝛬𝑡).

Since (�̂�(𝑋𝑡, 𝑡))𝑡∈T is a martingale, we must thus have

𝑒− ∫ 𝑡0 𝜓(𝑠)d𝑠
(

𝜕𝑣(𝑥, 𝑡)
𝜕𝑡

− 𝜓(𝑡)𝑣(𝑥, 𝑡) +
𝜕𝑣(𝑥, 𝑡)
𝜕𝑥

𝜇(𝑡, 𝑥; 𝑔𝑙(𝑡), 𝑔𝑢(𝑡)) + 1
2
𝜕2�̂�(𝑥, 𝑡)
𝜕𝑥2

𝜎2(𝑡, 𝑥; 𝑔𝑙(𝑡), 𝑔𝑢(𝑡))
)

d𝑡

+ 𝑒− ∫ 𝑡0 𝜓(𝑠)d𝑠(𝑣(𝑥, 𝑡) − 𝑒− ∫ 𝑡−0 𝜓(𝑠)d𝑠𝑣(𝑥−, 𝑡−))𝜆𝑡d𝑡 = 0,

ividing both sides by 𝑒− ∫ 𝑡0 𝜓(𝑠)d𝑠d𝑡, one obtains
(

𝑣(𝑥, 𝑡) − 𝑒∫
𝑡
𝑡− 𝜓(𝑠)d𝑠𝑣(𝑥−, 𝑡−)

)

𝜆𝑡 = (𝑣(𝑥, 𝑡) − 𝑣(𝑥−, 𝑡−)) 𝜆𝑡,

since ∫ 𝑡𝑡− 𝜓(𝑠)d𝑠 = 0 due to the continuity property of 𝜓 . Therefore, we have

𝜕𝑣(𝑥, 𝑡)
𝜕𝑡

− 𝜓(𝑡)𝑣(𝑥, 𝑡) +
𝜕𝑣(𝑥, 𝑡)
𝜕𝑥

𝜇(𝑡, 𝑥; 𝑔𝑙(𝑡), 𝑔𝑢(𝑡)) + 1
2
𝜕2�̂�(𝑥, 𝑡)
𝜕𝑥2

𝜎2(𝑡, 𝑥; 𝑔𝑙(𝑡), 𝑔𝑢(𝑡))

+(𝑣(𝑥, 𝑡) − 𝑣(𝑥−, 𝑡−))𝜆𝑡 = 0

sing Property 2 in Definition 2.2, we have 𝜎2(𝑡, 𝑔𝑙(𝑡); 𝑔𝑙(𝑡), 𝑔𝑢(𝑡)) = 𝜎2(𝑡, 𝑔𝑢(𝑡); 𝑔𝑙(𝑡), 𝑔𝑢(𝑡)) = 0, and the statement is proven. □

orollary 2.18. Given the setup in Proposition 2.17, where 𝜓(𝑡) = 0 for all 𝑡 ∈ T, (𝑋𝑡)𝑡∈T is continuous. Then,

𝜇(𝑡, 𝑔𝑙(𝑡); 𝑔𝑙(𝑡), 𝑔𝑢(𝑡))
𝜕𝑣(𝑔𝑙(𝑡), 𝑡)
𝜕𝑔𝑙(𝑡)

= 𝜇(𝑡, 𝑔𝑢(𝑡); 𝑔𝑙(𝑡), 𝑔𝑢(𝑡))
𝜕𝑣(𝑔𝑢(𝑡), 𝑡)
𝜕𝑔𝑢(𝑡)

= 0.

.2. Path-dependent captive jump processes

So far, the generated jump processes have been restricted to never leave a single confined space. In [4] the so-called tunnelled
aptive diffusions are introduced, which are confined to stay within a finite space (or an internal corridor) for some time before
eing allowed to diffuse into another internal confined subspace in a following period of time; while always remaining within their
aster boundaries. This behaviour makes of a captive diffusion a path-dependent process, because of the implicit monitoring that

s required in order to control the shift of the diffusion from one internal corridor to another. In what follows, we show how CJPs
an be constructed such that for part of the time they stay confined in a bounded subspace before they jump to another restricted
rea for some time. This behaviour requires the modelling of controlled jumps (arrival times and sizes) and historic monitoring of
he process, which in turn makes the CJP path-dependent. As Section 3 will illustrate, the restricted areas (corridors) captive jump
rocesses may jump to are not required to be adjacent, in the sense that the process may skip neighbouring corridors. Such features
ender CJPs flexible and useful in a variety of applications, see Section 3.

Next, we extend Definition 2.2 to allow for internal boundaries to appear. In doing so, we proceed in the spirit of [4], and
ntroduce multiple time-segments denoted by T(𝑗) ⊆ T for 𝑗 = 0,… , 𝑚 ∈ N+, for a fixed 1 ≤ 𝑚 <∞. Here,

T(𝑗) = [𝜏(𝑗)start, 𝜏
(𝑗)
end] such that 0 ≤ 𝜏(𝑗)start < 𝜏

(𝑗)
end ≤ 𝑇 ,

for 𝑗 = 0,… , 𝑚. We choose T(0) = T(𝑚) = T, that is, 𝜏(0)start = 𝜏(𝑚)start = 0 and 𝜏(0)end = 𝜏(𝑚)end = 𝑇 . Each of these time-segments govern a
oundary process (𝑔(𝑗)𝑡 )𝑡∈T(𝑗) , where we have 𝑔(𝑗) ∈ (R) for 𝑗 = 0,… , 𝑚. We emphasize that (𝑔(0)𝑡 )𝑡∈T(0) and (𝑔(𝑚)𝑡 )𝑡∈T(𝑚) are the master,
r outermost, boundaries. In addition, we collect all the boundaries in the set-valued process (𝐠𝑡)𝑡∈T given by

𝐠𝑡 = {𝑔(0)𝑡 ,… , 𝑔(𝑚)𝑡 }.

n the situation where there is a 𝑔(𝑗)𝑡 , for 0 < 𝑗 < 𝑚, that is not defined over some 𝑡 ∈ T, then 𝐠𝑡 does not include such a 𝑔(𝑗)𝑡 at
ime 𝑡 ∈ T. Finally, for any 𝑗 < 𝑘 at any 𝑡 ∈ T(𝑗) ∩ T(𝑘) ≠ ∅, we require the ordering 𝑔(𝑗)𝑡 < 𝑔(𝑘)𝑡 , and for any pair {𝑔(𝑗)𝑡 , 𝑔

(𝑘)
𝑡 } where

(𝑗) ∩ T(𝑘) = ∅, their order does not matter amongst each other.

emark 2.19. The master boundaries 𝑔(0) and 𝑔(𝑚) define the largest bounded domain on which captive jump processes may evolve,
nd each 𝑔(𝑗) is called an internal boundary, for 𝑗 ≠ 0, 𝑗 ≠ 𝑚 given that 𝑚 > 1. Clearly, T(𝑗) ⊆ T for every 𝑗 = 0,… , 𝑚.

Next, we introduce progressively-measurable and increasing processes (𝜏(𝑗)𝑡 )𝑡∈T(𝑗) given by
(𝑗) (𝑗) (𝑗) (𝑗)
8

𝜏𝑡 = 𝜏start ∨ sup(𝑠 ∶ 𝛥𝑋𝑠 ≠ 0 for 𝜏start ≤ 𝑠 ≤ 𝑡 ∈ T ), (8)



Communications in Nonlinear Science and Numerical Simulation 128 (2024) 107646A. Macrina et al.

f
e

R
P
i

(

f
r
p
R

F
(

i
P

D

w
i

f

a
s
i
n
(
T
𝑥
c
c
(

P

for 𝑗 = 0,… , 𝑚−1, where we adopt the convention sup ∅ = −∞. Hence, if there is no jump in a given time period T(𝑗), then 𝜏(𝑗)𝑡 = 𝜏(𝑗)start
or all 𝑡 in the period T(𝑗). Note that since T(0) = T(𝑚) = T, we have 𝜏(0)𝑡 = 𝜏(𝑚)𝑡 for every 𝑡 ∈ T, which is the reason why we can
xclude 𝑚 from the definition of 𝜏(𝑗)𝑡 in (8).

emark 2.20. We shall highlight the importance of the progressively-measurable process (𝜏(𝑗)𝑡 )𝑡∈T(𝑗) in Eq. (8) for Definition 2.21,
roposition 2.22 below. Monitoring (𝜏(𝑗)𝑡 )𝑡∈T(𝑗) is necessary to ensure that (𝑋𝑡)𝑡∈T stays in the most recently visited internal corridor
t may have jumped to. This aspect is fleshed-out in what follows.

We now introduce a monitoring process (𝛹𝑡)𝑡∈T that records the values of (𝑋𝑡)𝑡∈T at (𝜏(𝑗)𝑡 )𝑡∈T(𝑗) for 𝑗 = 0,… , 𝑚. As such, we let
𝛹𝑡)𝑡∈T be the non-anticipative and set-valued process given by

𝛹𝑡 = {𝑋𝜏(𝑗)𝑡
, 𝜏(𝑗)𝑡 ∶ 𝜏(𝑗)𝑡 ≤ 𝑡, for 𝑗 = 0,… , 𝑚 − 1},

or all 𝑡 ∈ T. In the case that we require a function to be continuous with respect to 𝛹 , we mean that the function is continuous with
espect to the elements of 𝛹 . Since 𝛹𝑡 is a set-valued random variable for each 𝑡 ∈ T, we clarify what is meant by its measurability
roperty. We note that 𝛹𝑡 is a compact set for every 𝑡 ∈ T since 𝑚 < ∞. Hence, denoting by (R) the family of compact subsets of
, the map 𝛹 ∶ 𝛺 × T → (R) defines a compact set-valued random variable, where its measurability condition is given by

{(𝜔, 𝑡) ∈ 𝛺 × T ∶ 𝛹𝑡(𝜔) ∩ 𝐴 ≠ ∅} ∈  ∀𝐴 ∈ (R), 𝛹𝑡(𝜔) ∈ (R). (9)

or the notion of measurability of set-valued random variables, we refer the reader to [32–36]. For the process (𝛹𝑡)𝑡∈T to be adapted,
𝛹𝑡)𝑡∈T needs to be progressively measurable, that is

(𝜔, 𝑡) ↦ 𝛹𝑡(𝜔) is
(

𝑋
𝑡 ⊗ (T)

)

-measurable ∀𝑡 ∈ T, (10)

n the above sense. The following definition allows us to introduce internal corridors and may also be viewed as a lemma to
roposition 2.22, see below.

efinition 2.21. An internally piecewise-confined captive jump process (𝑋𝑡)𝑡∈T is a solution to the SDE

𝑋𝑡 = 𝑥0 + ∫

𝑡

0
𝜇
(

𝑠, 𝛹𝑠, 𝑋𝑠; 𝐠𝑠
)

d𝑠 + ∫

𝑡

0
𝜎
(

𝑠, 𝛹𝑠, 𝑋𝑠; 𝐠𝑠
)

d𝑀𝑠 +
∑

0≤𝑠≤𝑡
𝛾
(

𝑠−, 𝛹𝑠−, 𝑋𝑠−; 𝐠𝑠−
)

𝛥𝐽𝑠, (11)

here 𝑋0 = 𝑥0 ∈ [𝑔(0)0 , 𝑔(𝑚)0 ). The maps 𝜇 and 𝜎 are continuous (possibly except at points where 𝛥𝐽 ≠ 0 with bounded jumps), and 𝛾
s a locally bounded càdlàg map such that

1. 𝜇
(

𝑡, 𝛹𝑡, 𝑔
(𝑗)
𝑡 ; 𝐠𝑡

)

≥ d𝑔(𝑗)+ (𝑡)∕d𝑡, if 𝑋𝜏(𝑗)𝑡
≥ 𝑔(𝑗)

𝜏(𝑗)𝑡
for any 𝑡 ∈ T(𝑗) where 𝑋𝑡 = 𝑔(𝑗)𝑡 ;

2. 𝜇
(

𝑡, 𝛹𝑡, 𝑔
(𝑗)
𝑡 ; 𝐠𝑡

)

≤ d𝑔(𝑗)+ (𝑡)∕d𝑡, if 𝑋𝜏(𝑗)𝑡
< 𝑔(𝑗)

𝜏(𝑗)𝑡
for any 𝑡 ∈ T(𝑗) where 𝑋𝑡 = 𝑔(𝑗)𝑡 ;

3. 𝜎
(

𝑡, 𝛹𝑡, 𝑔
(𝑗)
𝑡 ; 𝐠𝑡

)

= 0 for any 𝑡 ∈ T(𝑗) where 𝑋𝑡 = 𝑔(𝑗)𝑡 ;

4. 𝑔(0)𝑡− −𝑋𝑡− ≤ 𝛾
(

𝑡−, 𝛹𝑡−, 𝑋𝑡−; 𝐠𝑡−
)

≤ 𝑔(𝑚)𝑡− −𝑋𝑡− for all 𝑡 ∈ T,

or 𝑗 = 0,… , 𝑚 P-a.s., given that (𝑀𝑡)𝑡∈T ∈ (R) and (𝐽𝑡)𝑡∈T ∈  (R) are mutually independent.

There are a few observations worth making at this stage which will help with the proof below. First, we notice that 𝛥𝑔(𝑗)𝑡 = 0 for
ny 𝑗 ≠ 0 and 𝑗 ≠ 𝑚, since they belong to , i.e., internal boundaries cannot have discontinuities. This however is no real restriction,
ince multiple internal confining functions (𝑔(𝑗)𝑡 )𝑡∈T can be used in sequence to construct a piecewise process that behaves like an
nternal corridor with jumps. The reason for requiring each 𝑔(𝑗) ∈  for any 𝑗 ≠ 0 and 𝑗 ≠ 𝑚 is a technical requirement that is
eeded for Proposition 2.22 to ensure captivity in each corridor segment that would otherwise be broken over time periods where
𝑋𝑡)𝑡∈T is continuous. Second, the SDE coefficients are path-dependent, that is, they monitor past values of the CJP at each (𝜏(𝑗)𝑡 )𝑡∈T(𝑗) .
his means that such processes can be non-Markovian even if (𝑀𝑡)𝑡∈T and (𝐽𝑡)𝑡∈T are Markov processes. Third, the initial condition
0 ∈ [𝑔(0)0 , 𝑔(𝑚)0 ) does not include 𝑔(𝑚)0 , since we associated the case 𝑋(𝜏(𝑗)start) = 𝑔(𝑗)(𝜏(𝑗)start) with Property 1 above that, alternatively,
ould have been associated with Property 2 having initial condition 𝑥0 ∈ (𝑔(0)0 , 𝑔(𝑚)0 ]. Fourth, Property 4 only requires the jump
oefficient 𝛾 to be bounded with respect to the master boundaries {𝑔(0)𝑡 , 𝑔(𝑚)𝑡 }. Hence, Definition 2.21 allows for jump-sizes to take
𝑋𝑡)𝑡∈T from one internal corridor to another. We are now in the position to state the following result:

roposition 2.22. The following statements hold P-almost surely.

1. For any 𝑡 ∈ T, 𝑔(0)𝑡 ≤ 𝑋𝑡 ≤ 𝑔(𝑚)𝑡 .
2. For any 𝑗 ≠ 0 and 𝑗 ≠ 𝑚, if 𝑋𝜏(𝑗)start

≥ 𝑔(𝑗)
𝜏(𝑗)start

and 𝛥𝐽𝑡 = 0 for all 𝑡 ∈ T(𝑗), then 𝑋𝑡 ≥ 𝑔(𝑗)𝑡 for all 𝑡 ∈ T(𝑗). If 𝛥𝐽𝑡 = 1 for some 𝑡 ∈ T(𝑗)

then P(𝑋𝑡 < 𝑔
(𝑗)
𝑡 ) ≥ 0 for 𝑡 ∈ T(𝑗).

3. For any 𝑗 ≠ 0 and 𝑗 ≠ 𝑚, if 𝑋𝜏(𝑗)start
< 𝑔(𝑗)

𝜏(𝑗)start
and if 𝛥𝐽𝑡 = 0 for all 𝑡 ∈ T(𝑗)∕(𝜏(𝑗)start), then 𝑋𝑡 ≤ 𝑔(𝑗)𝑡 for all 𝑡 ∈ T(𝑗)∕(𝜏(𝑗)start). If 𝛥𝐽𝑡 = 1 for

(𝑗) (𝑗) (𝑗) (𝑗)
9

some 𝑡 ∈ T then P(𝑋𝑡 > 𝑔𝑡 ) ≥ 0 for 𝑡 ∈ T ∕(𝜏start)
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Proof. This follows from the construction given by Definition 2.21 together with Proposition 2.3, and Proposition 2.8 in [4],
ombined with Property 4 in Definition 2.21: it allows for 𝛥𝑋𝑡, 𝑡 ∈ T, to be large enough for (𝑋𝑡)𝑡∈T to exceed the boundary 𝑔(𝑗) for
≠ 0 and 𝑗 ≠ 𝑚, but not the master boundaries {𝑔(0), 𝑔(𝑚)}, P-a.s. The progressively measurable process (𝜏(𝑗)𝑡 )𝑡∈T(𝑗) in (8) ensures that

he ordering of the right-derivatives agree with the direction of (𝑋𝑡)𝑡∈T at the boundaries so that 𝑔(0)𝑡 ≤ 𝑋𝑡 ≤ 𝑔(𝑚)𝑡 holds for every
∈ T, as well as the captivity within any internal corridor when there is no jump over the corresponding time horizon T(𝑗). □

Proposition 2.22 tells us that if there is no jump during an internal corridor, (𝑋𝑡)𝑡∈T cannot leave that corridor. It also tells us
hat 𝛾 can be chosen in such a way that if (𝑋𝑡)𝑡∈T is in an internal corridor, then it may still stay in that corridor even if there is a
small enough) jump. Property 4 of Definition 2.21 allows for this feature. However, we are more interested in modelling systems
here a transition between two internal corridors is allowed if there is a jump, and only if there is a jump, as Definition 2.21 offers.
any of the results from the previous section can be extended to piecewise-confined CJPs, which we omit to avoid repetition.

. Applications

For all the examples below, the coefficients satisfy local Lipschitz-continuity (possibly except at points where 𝛥𝐽 ≠ 0, see for
xample [37] for SDEs with piecewise-continuous coefficients), and each SDE below has a bounded solution. We expect many other
xamples can be constructed and studied in detail by using Definition 2.21. For the simulations, we use the Euler–Maruyama scheme.
f {�̂�𝑡𝑘}𝑡𝑘∈T is an approximation of (𝑋𝑡)𝑡∈T over the discretized grid 0 = 𝑡0 ≤ 𝑡1 ≤ ⋯ ≤ 𝑡𝑚 ≤= 𝑇 < ∞ for some 𝑚 ∈ N+, then the
ath-by-path simulation scheme is generated as follows:

1. For 𝑡 = 𝑡0, set �̂�𝑡 = 𝑥0 and 𝛥𝐽𝑡 = 0.
2. For 𝑡 = 𝑡𝑘, let

�̂�𝑡𝑘+1 = �̂�𝑡 + 𝜇
(

𝑡,𝛹𝑡, �̂�𝑡; 𝒈𝑡
)

𝛿 + 𝜎
(

𝑡, 𝛹𝑡, �̂�𝑡; 𝒈𝑡
)

(

𝑊𝑡𝑘+1 −𝑊𝑡

)

+ 𝐴𝑡, where
𝐴𝑡 = 𝛾

(

𝑡, 𝛹𝑡, �̂�𝑡; 𝒈𝑡
)

if 𝛥𝐽𝑡 = 1, otherwise 𝐴𝑡 = 0.
3. Repeat Step 2 for 𝑘 = 1,… , 𝑚 − 1,

here 𝛿 = 𝑇 ∕𝑚, 𝑡𝑘 = 𝑘𝛿, and 𝛥𝐽𝑡𝑘 ∈ {0, 1} for every 𝑡𝑘 ∈ T. Usually, the weak and strong convergence of numerical methods for
DEs rely on global Lipschitz-continuity, see [38], where the pathwise error for (�̂�𝑡𝑘 )𝑡𝑘∈T is given by

sup
𝑘=0,…,𝑚

|�̂�𝑡𝑘 (𝜔) −𝑋𝑡𝑘 (𝜔)|.

or Itô-Taylor schemes, such as the Euler–Maruyama scheme, this condition can be relaxed to local Lipschitz-continuity, where

sup
𝑘=0,…,𝑚

|

|

|

�̂�𝑡𝑘 (𝜔) −𝑋𝑡𝑘 (𝜔)
|

|

|

≤ 𝜙𝜖(𝜔)𝑚𝜖−1∕2,

or all 𝜖 > 0 and almost all 𝜔 ∈ 𝛺, where 𝜙𝜖 ∶ 𝛺 → R+ is finite, such that the pathwise order of convergence equals (1∕2 − 𝜖),
ee [39,40]. Since CJPs in general do not admit closed-form representations, the use of Euler–Maruyama scheme does not guarantee
ll simulated paths to remain within (potentially complex) bounded domains. We shall run a numerical sensitivity analysis with
espect to different choices of 𝛿 for different applications that we demonstrate below. We later present a modified Euler–Maruyama
cheme that adjusts for path violations in an implicit way.

We also explain how path-dependency arising through the monitoring process (𝛹𝑡)𝑡∈T can be implemented. Since 𝑚 < ∞ and
𝐽𝑡)𝑡∈T is of finite-activity, 𝛹𝑡 is a finite set for every 𝑡 ∈ T. Thus, in all produced examples, both 𝜇 and 𝜎 satisfy

𝜇
(

𝑡, 𝛹𝑡, 𝑋𝑡; 𝐠𝑡
)

= 𝜇
(

𝑡, 𝑋𝜏(0)𝑡
, 𝜏(0)𝑡 ,… , 𝑋

𝜏(𝑗
∗)

𝑡
, 𝜏(𝑗

∗)
𝑡 , 𝑋𝑡; 𝐠𝑡

)

,

𝜎
(

𝑡, 𝛹𝑡, 𝑋𝑡; 𝐠𝑡
)

= 𝜎
(

𝑡, 𝑋𝜏(0)𝑡
, 𝜏(0)𝑡 ,… , 𝑋

𝜏(𝑗
∗)

𝑡
, 𝜏(𝑗

∗)
𝑡 , 𝑋𝑡; 𝐠𝑡

)

ith respect to 𝛹𝑡 for every 𝑡 ∈ T where

𝑗∗ = max{ 𝑗 ∶ 𝜏(𝑗)start ≤ 𝑡 , 0 < 𝑗 < 𝑚}.

he property possessed by the functions 𝜇 and 𝜎, c.f. above, is also enjoyed by the jump size function 𝛾. The numerical simulations
enerated next handle path-dependency through 𝜇, 𝜎, and 𝛾 which are projected onto higher-dimensional spaces. This will be
emonstrated explicitly through the provided path-dependent examples in which we will use conditional if arguments as a function
f time. This can be represented mathematically by using a collection of indicator functions.

.1. Confinement within circular domains

We first consider a setup without internal corridors. Let (𝑋(1)
𝑡 )𝑡∈T be a captive jump–diffusion, where 𝑋(0)

0 ∈ [𝑎, 𝑑] for some
≤ 𝑎 < 𝑑 < ∞. Let (𝑋(2)

𝑡 )𝑡∈T be a second captive jump–diffusion where 𝑋(0)
0 ∈ [0, 2𝜋]. These two processes are governed by

d𝑋(𝑖) = (𝛽(𝑖) −𝑋(𝑖))d𝑡 + (𝑋(𝑖) − 𝐿(𝑖))
(

𝑈 (𝑖) −𝑋(𝑖)
)

d𝑊 (𝑖) + 𝜃(𝑖) min
(

𝑋(𝑖) − 𝐿(𝑖), 𝑈 (𝑖) −𝑋(𝑖)
)

𝛥𝐽 (𝑖).
10
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Fig. 2. Here, 𝑎 = 0, 𝑑 = 𝑟 = 4 and 𝛽 = 1
2
(𝑎 + 𝑑).

Here, the Brownian motions (𝑊 (1)
𝑡 )𝑡∈T and (𝑊 (2)

𝑡 )𝑡∈T may be correlated. Similarly, (𝐽 (1)
𝑡 )𝑡∈T and (𝐽 (2)

𝑡 )𝑡∈T may also be correlated. The
process (𝜃𝑡)𝑡∈T may be any càdlàg map as long as 𝜃𝑡 ∈ [−1, 1]∕{0} for all 𝑡 ∈ T. For the examples below, we simulate in advance a
random path for (𝜃𝑡)𝑡∈T by uniformly sampling its values at every step on a discrete time grid. The lower and upper boundaries are
given by

𝑎 = 𝐿(1) < 𝛽(1) < 𝑈 (1) = 𝑑

0 = 𝐿(2) < 𝛽(2) < 𝑈 (2) = 2𝜋

respectively. Next, we construct a two-dimensional process (𝑃𝑡)𝑡∈T given by (𝑋(1)
𝑡 , 𝑋(2)

𝑡 )𝑡∈T on a polar coordinate system, where
(𝑋(1)

𝑡 )𝑡∈T models the distance from the origin and (𝑋(2)
𝑡 )𝑡∈T is the radian process. First we show the case where an outer circle serves

as the outer boundary for the confined circular domain. One can see two different accumulation behaviours in Fig. 2. On the left-hand
side, we see that the process tends to evolve towards the origin of the circle, while on the right-hand side, the process visits the
boundary of the circular domain many times during the simulation period.

Remark 3.1. For the case of central accumulation, the drift and volatility of the distance process (𝑋(1)
𝑡 )𝑡∈T can be used to model

the gravitational force exerted on jump-diffusing particles by a central mass sitting at the origin.

Remark 3.2. One can introduce a third captive jump–diffusion process (𝑋(3)
𝑡 )𝑡∈T as the second orthogonal radian coordinate, and

project (𝑋(1)
𝑡 , 𝑋(2)

𝑡 , 𝑋(3)
𝑡 )𝑡∈T inside a sphere. This indicates how the construction of CJPs can be extended to processes taking values

in confined domains in R𝑛, 𝑛 ∈ N.

In Fig. 3, we shrink the domain inside the circle to keep the paths within shrinking rings, each shaped as a toroid. Again, this
can be extended to three dimensions in the spirit of Remark 3.2.

This setup can be used to model systems with a central gravitational force which keeps stochastic particles within circular
corridors. Here, even if (𝑋(1)

𝑡 , 𝑋(2)
𝑡 )𝑡∈T jumps, it can never cross the master (outer) boundaries and break free from the confined

toroidal space. In the next section, we shall add internal corridors, which the particles are allowed to trespass only if they jump far
enough.

3.2. Captive jumps across circular domains

Now we consider the situation where, in addition to the outer boundaries, there are two inner boundaries for the distance-process
(𝑋(1)

𝑡 )𝑡∈T. We keep the radian-process (𝑋(2)
𝑡 )𝑡∈T as in the previous section. We set T(0) = T(1) = T(2) = T(3) = T such that

(𝑔(0)𝑡 )𝑡∈T = 𝑎, (𝑔(1)𝑡 )𝑡∈T = 𝑏, (𝑔(2)𝑡 )𝑡∈T = 𝑐, (𝑔(3)𝑡 )𝑡∈T = 𝑑.

Hence, 𝜏(𝑗)start = 0 and 𝜏(𝑗)end = 𝑇 for 𝑗 = 1,… , 3. So, we write 𝜏(𝑗)𝑡 = 𝜏𝑡 for 𝑗 = 1,… , 3 and 𝑡 ∈ T. We initialize (𝑋(1)
𝑡 )𝑡∈T such that it starts

within the inner circular corridor, where 𝑋(0)
0 ∈ [𝑎, 𝑏] for some 0 ≤ 𝑎 < 𝑏 < 𝑐 < 𝑑 < ∞, where [𝑎, 𝑏] forms the innermost corridor,

[𝑏, 𝑐] forms a mid-corridor and [𝑐, 𝑑] forms the outermost corridor for (𝑋(1)
𝑡 )𝑡∈T, which is now governed by

d𝑋(1)
𝑡 = (𝛽(1)𝑡 (𝛹 (1)

𝑡 ) −𝑋(1)
𝑡 )d𝑡 +

∏

𝑔(𝑗)∈𝒈

(𝑋(1)
𝑡 − 𝑔(𝑗))d𝑊 (1)

𝑡 + 𝜃(1)𝑡− min
(

𝑋(1)
𝑡− − 𝑎, 𝑑 −𝑋(1)

𝑡−

)

𝛥𝐽 (1)
𝑡 .

Here, 𝒈 = {𝑎, 𝑏, 𝑐, 𝑑}, and (𝛽(1)𝑡 (𝛹 (1)
𝑡 ))𝑡∈T is given by

𝛽(1)𝑡 (𝛹 (1)
𝑡 ) =

⎧

⎪

⎨

⎪

𝑤1𝑎 + (1 −𝑤1)𝑏 if 𝑋𝜏𝑡 ∈ [𝑎, 𝑏),
𝑤2𝑏 + (1 −𝑤2)𝑐 if 𝑋𝜏𝑡 ∈ [𝑏, 𝑐),
11

⎩

𝑤3𝑐 + (1 −𝑤3)𝑑 if 𝑋𝜏𝑡 ∈ [𝑐, 𝑑],
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Fig. 3. The boundaries are: Top-left {0, 3.5}, top-right {1, 3}, bottom-left {1.5, 2.5}, and bottom-right {1.5, 2}.

for some 𝑤1, 𝑤2, 𝑤3 ∈ (0, 1). Next, we construct a process (𝑃𝑡)𝑡∈T by introducing the two-dimensional process (𝑋(1)
𝑡 , 𝑋(2)

𝑡 )𝑡∈T taking
values in the polar coordinate system. The plots in Fig. 4 show samples of (𝑋(1)

𝑡 )𝑡∈T and the associated process (𝑋(1)
𝑡 , 𝑋(2)

𝑡 )𝑡∈T. The
simulation on the left-hand side shows how (𝑋(1)

𝑡 , 𝑋(2)
𝑡 )𝑡∈T in polar coordinates stays within the inner or outer corridors, where

the transition from [𝑎, 𝑏) to [𝑐, 𝑑] occurs when (𝑋(1)
𝑡 )𝑡∈T jumps far enough to skip the mid-corridor [𝑏, 𝑐). On the right-hand side,

(𝑋(1)
𝑡 , 𝑋(2)

𝑡 )𝑡∈T visits every corridor, depending on the size of the jumps. Of course, the process might jump within a specific corridor
without necessarily leaving it.

The conditional state probabilities can be calculated, where in our context, state means a corridor. That is, it is possible to
calculate the probability of the CJP to move from one corridor to another. We express the conditional state probability by

P𝑡((𝑘, 𝑙), (𝑎, 𝑏)) ∶= P
(

𝑋(1)
𝑡 ∈ (𝑘, 𝑙) ||

|

𝑡−, 𝑋
(1)
𝑡− ∈ (𝑎, 𝑏)

)

,

for (𝑘, 𝑙) ∈ ((𝑏, 𝑐), (𝑐, 𝑑)). We also define the interval

 (𝑘,𝑙) ∶=

⎡

⎢

⎢

⎢

⎣

(𝑘 −𝑋(1)
𝑡− )

min
(

𝑋(1)
𝑡− − 𝑎, 𝑑 −𝑋(1)

𝑡−

) ,
(𝑙 −𝑋(1)

𝑡− )

min
(

𝑋(1)
𝑡− − 𝑎, 𝑑 −𝑋(1)

𝑡−

)

⎞

⎟

⎟

⎟

⎠

,

for the denominator min(.) ≠ 0. Moreover, if (𝜃(1)𝑡 )𝑡∈T and (𝐽 (1)
𝑡 )𝑡∈T are mutually independent, then we have the following

decomposition:

P𝑡((𝑘, 𝑙), (𝑎, 𝑏)) = P
(

𝜃𝑡 ∈  (𝑘,𝑙) |
|

|

𝑡−, 𝑋
(1)
𝑡− ∈ (𝑎, 𝑏)

)

P
(

𝛥𝐽𝑡 = 1 ∣ 𝑡−, 𝑋
(1)
𝑡− ∈ (𝑎, 𝑏)

)

,

for (𝑘, 𝑙) ∈ ((𝑏, 𝑐), (𝑐, 𝑑)). Since in this model 𝜃𝑡 ∈ [−1, 1]∕{0} for all 𝑡 ∈ T, it follows that P𝑡((𝑘, 𝑙), (𝑎, 𝑏)) = 0 if (𝑘 − 𝑋(1)
𝑡− ) >

min(𝑋(1)
𝑡− − 𝑎, 𝑑 −𝑋(1)

𝑡− ). This shows that (𝑋(1)
𝑡 )𝑡∈T has a higher probability of moving to another corridor if it is closer to a boundary

of that corridor. These probabilities can be calculated from any one corridor to another, i.e.,

P ((𝑘, 𝑙), (𝑐, 𝑑)) = P
(

𝜃 ∈  (𝑘,𝑙) |
|  , 𝑋(1) ∈ (𝑐, 𝑑)

)

P
(

𝛥𝐽 = 1 ∣  , 𝑋(1) ∈ (𝑐, 𝑑)
)

,
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Fig. 4. Here, 𝑎 = 1, 𝑏 = 2, 𝑐 = 2.5, 𝑑 = 3.5. Also, 𝑤1 = 𝑤2 = 𝑤3 = 0.5.

for (𝑘, 𝑙) ∈ ((𝑎, 𝑏), (𝑏, 𝑐)). Since 𝜃𝑡 ∈ [−1, 1]∕{0} for all 𝑡 ∈ T, we have P𝑡((𝑘, 𝑙), (𝑐, 𝑑)) = 0 if (𝑙 −𝑋(1)
𝑡− ) < −min(𝑋(1)

𝑡− − 𝑎, 𝑑 −𝑋(1)
𝑡− ). Finally,

the probability of the CJP moving from the mid-corridor to either the inner or outer corridor is given by

P𝑡((𝑘, 𝑙), (𝑏, 𝑐)) = P
(

𝜃𝑡 ∈  (𝑘,𝑙) |
|

|

𝑡−, 𝑋
(1)
𝑡− ∈ (𝑏, 𝑐)

)

P
(

𝛥𝐽𝑡 = 1 ∣ 𝑡−, 𝑋
(1)
𝑡− ∈ (𝑏, 𝑐)

)

,

for (𝑘, 𝑙) ∈ ((𝑎, 𝑏), (𝑐, 𝑑)). Hence, the set  (𝑘,𝑙) serves for all possible changes of state in this model. All expressions can be further
simplified if (𝜃𝑡)𝑡∈T and (𝐽𝑡)𝑡∈T are mutually independent from all variables in the system such that

P𝑡((𝑘, 𝑙), (𝑥1, 𝑥2)) = P
(

𝜃𝑡 ∈  (𝑘,𝑙) |
|

|

𝑋(1)
𝑡− ∈ (𝑥1, 𝑥2)

)

P
(

𝛥𝐽𝑡 = 1
)

.

This setup can be used to model a system in which a stochastic particle may jump from one energy state to another with a large-
enough jump that is induced by a sufficiently strong exogenous shock, e.g., an energy pulse. For example, consider a quantum
mechanical system, whereby one is interested in modelling the transition of the stochastic wave function of a quantum particle
from one energy state to another. Another application is quantum tunnelling where the potential walls (barriers) of the quantum
system that the particle ‘‘overcomes’’ could be modelled by the boundaries of an internal corridor, which are overcome by a large-
enough jump. In this context, while the quantum particle is modelled by a captive jump process that can overcome walls, a classical
particle would be modelled by a captive diffusion process trapped within a (possibly time-dependent) corridor, see [4]. The concept
of domain boundaries (or walls), which produce clusters unable to disperse (if unaided by external intervention), abounds in many
fields of physics, but it is also encountered in, e.g., finance (e.g., volatility clustering, herding in markets), chemistry, sociology, and
psychology.

3.3. Attractors in dynamical systems

In dynamical systems, attractors represent (possibly multiple) physical states in a given environment to which the system closes
in on. Using captive jump-processes, one can consider bounded stochastic systems that tend to any of these attractors as time passes,
while providing the possibility that the system may jump from one attraction point (or region) to another, provided there is a strong
enough force. We shall construct an example where we have two attracting points at time 𝑡 = 𝑇 . First, we set {T(𝑖) = T} .
13
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f

As for the coordinates of the channels, we keep the outermost boundaries constant (for simplicity, as before), where (𝑔(0)𝑡 )𝑡∈T = 𝑎,
(𝑔(3)𝑡 )𝑡∈T = 𝑑, and −∞ < 𝑎 < 𝑑 < ∞. The internal corridors are modelled as linear, time-dependent maps by

𝑔(1)𝑡 =

{ 𝑎+𝑑
2 𝑡 < 𝑡∗,

(𝑎+𝑑)
2 − (𝑑−𝑎)

2(𝑇−𝑡∗) (𝑡 − 𝑡
∗) 𝑡 ∈ [𝑡∗, 𝑇 ],

𝑔(2)𝑡 =

{ 𝑎+𝑑
2 𝑡 < 𝑡∗,

(𝑎+𝑑)
2 + (𝑑−𝑎)

2(𝑇−𝑡∗) (𝑡 − 𝑡
∗) 𝑡 ∈ [𝑡∗, 𝑇 ].

where 𝑡∗ ∈ (𝑡, 𝑇 ) is an arbitrary point in time after which the internal channels evolve in opposite directions. The internal boundaries
produce a divide that begins at the mid-level (𝑎+𝑑)∕2 of the overall confined space given by [𝑎, 𝑑]. The boundary (𝑔(1)𝑡 )𝑡∈T converges
linearly (downwards) to 𝑎 as 𝑡∗ ≤ 𝑡 → 𝑇 , while (𝑔(2)𝑡 )𝑡∈T converges linearly (upwards) to 𝑑 as 𝑡∗ ≤ 𝑡→ 𝑇 . Thus, we have

d
d𝑡
𝑔(1)+ (𝑡) = −

(𝑑 − 𝑎)
2(𝑇 − 𝑡∗)

and d
d𝑡
𝑔(2)+ (𝑡) =

(𝑑 − 𝑎)
2(𝑇 − 𝑡∗)

,

or 𝑡 ≥ 𝑡∗. In this setting we can view 𝑎 and 𝑑 as attractors towards which we expect the system to close in on as 𝑡 → 𝑇 . The
dynamics of the considered captive jump process guarantee that the process either tends to attractor state 𝑎 or attractor state 𝑑
as 𝑡 → 𝑇 , irrespective of the stochastic trajectory up to that time, or its starting point. In this setting, we propose the following
structure for the captive jump process:

d𝑋𝑡 = 𝜅𝑡(𝛹𝑡)(𝛽𝑡(𝛹𝑡) −𝑋𝑡)d𝑡 + 𝜎(𝑡, 𝑋𝑡; 𝒈𝑡)d𝑊𝑡 + 𝛾(𝑡−, 𝛹𝑡−, 𝑋𝑡−; 𝒈𝑡−)𝛥𝐽𝑡,

where 𝑡 ∈ [0, 𝑇 ) and 𝑋0 ∈ (𝑎, 𝑔(1)0 ) or 𝑋0 ∈ (𝑔(2)0 , 𝑑). Here, we have

𝛽𝑡(𝛹𝑡) =

{

ℎ(0)𝑡 if 𝑋𝜏𝑡 ∈ [𝑎, 𝑔(1)𝑡 ]
ℎ(3)𝑡 if 𝑋𝜏𝑡 ∈ [𝑔(2)𝑡 , 𝑑],

where ℎ(0) ∶ T(1) → R and ℎ(3) ∶ T(2) → R are continuous maps satisfying 𝑎 < ℎ(0)𝑡 < 𝑔(1)𝑡 for every 𝑡 ∈ [0, 𝑇 ) and 𝑔(2)𝑡 < ℎ(3)𝑡 < 𝑑 for
every 𝑡 ∈ [0, 𝑇 ) such that lim𝑡→𝑇 ℎ

(0)
𝑡 = 𝑎 and lim𝑡→𝑇 ℎ

(3)
𝑡 = 𝑑, respectively. Moreover, {𝜅𝑡(𝛹𝑡)}𝑡∈[0,𝑇 ) is a process that satisfies

𝜅𝑡(𝛹𝑡) >
(𝑑 − 𝑎)
2(𝑇 − 𝑡∗)

(𝑔(1)𝑡 − ℎ(0)𝑡 )−1 if 𝑋𝜏𝑡 ∈ [𝑎, 𝑔(1)𝑡 ] for 𝑡 ∈ [0, 𝑇 ),

𝜅𝑡(𝛹𝑡) >
(𝑑 − 𝑎)
2(𝑇 − 𝑡∗)

(ℎ(3)𝑡 − 𝑔(2)𝑡 )−1 if 𝑋𝜏𝑡 ∈ [𝑔(2)𝑡 , 𝑑] for 𝑡 ∈ [0, 𝑇 ).

These requirements ensure that the drift function 𝜇 satisfies the conditions in Definition 2.21. We note that 𝜅𝑡(𝛹𝑡) is not defined at
𝑡 = 𝑇 , due to the singularity. As an example, if half of the spatial-distance between the outermost boundaries equals the time-distance
between the divergence point 𝑡∗ and 𝑇 , with (𝑑 − 𝑎)∕2 = 𝑇 − 𝑡∗, we have

𝜅𝑡(𝛹𝑡) >
1

𝑔(1)𝑡 − ℎ(0)𝑡
if 𝑋𝜏𝑡 ∈ [𝑎, 𝑔(1)𝑡 ] for 𝑡 ∈ [0, 𝑇 ),

𝜅𝑡(𝛹𝑡) >
1

ℎ(3)𝑡 − 𝑔(2)𝑡
if 𝑋𝜏𝑡 ∈ [𝑔(2)𝑡 , 𝑑] for 𝑡 ∈ [0, 𝑇 ).

In addition, we set

𝜎(𝑡, 𝑋𝑡; 𝒈𝑡) = 𝜂
4
∏

𝑗=1
(𝑋𝑡 − 𝑔

(𝑗)
𝑡 ),

= 𝜂(𝑋𝑡 − 𝑎)(𝑋𝑡 − 𝑔
(1)
𝑡 )(𝑋𝑡 − 𝑔

(2)
𝑡 )(𝑋𝑡 − 𝑑),

and

𝛾(𝑡, 𝛹𝑡, 𝑋𝑡; 𝒈𝑡) =

{

𝑤𝑡(𝑑 −𝑋𝑡) + (1 −𝑤𝑡)(𝑔
(2)
𝑡 −𝑋𝑡) if 𝑋𝜏𝑡 ∈ [𝑎, 𝑔(1)𝑡 ],

𝑤𝑡(𝑎 −𝑋𝑡) + (1 −𝑤𝑡)(𝑔
(1)
𝑡 −𝑋𝑡) if 𝑋𝜏𝑡 ∈ [𝑔(2)𝑡 , 𝑑],

where 𝑤𝑡 ∈ (0, 1) for every 𝑡 ∈ T. We now have a stochastic process that satisfies all the conditions in Definition 2.21, and so is
a captive jump process. In this model, whenever there is a jump, the discontinuity takes (𝑋𝑡)𝑡∈[0,𝑇 ) from one internal corridor to
another. Thus, each jump necessarily provides a change of direction towards a different attractor from the most recent attractor’s
influence—this can of course be relaxed. We can control the likelihood of regime changes through the jump-time distribution of
(𝐽𝑡)𝑡∈T. One may ask for P(𝛥𝐽𝑡 = 1) → 0 as 𝑡 → 𝑇 , if one wanted to decrease the probability that the system jumps to another
attractor state while it approaches the (current) attractor to which it is closest. Fig. 5 demonstrates the simulated behaviour of the
aforementioned double-attractor system, where we choose

ℎ(0)𝑡 =
𝑎 + 𝑔(1)𝑡

2
and ℎ(3)𝑡 =

𝑑 + 𝑔(2)𝑡
2

.

Each path remains within the geometry as constructed above, where the system necessarily tends to one of the attractors located at
𝑎 and 𝑑, as 𝑡→ 𝑇 .
14



Communications in Nonlinear Science and Numerical Simulation 128 (2024) 107646A. Macrina et al.
Fig. 5. Here, 𝑎 = 1, 𝑑 = 7, 𝑡∗ = 𝑇 ∕2, 𝜂 = 0.125 and 𝑤 = 0.5.

Fig. 6. Here, 𝑎 = −5, 𝑏 = 0, 𝑐 = 15, 𝜂 = 0.3 and 𝑑 = 20.

3.4. Island visitors

We shall briefly demonstrate the dynamics of what we call an island-visiting captive jump process, where the geometry of the
domain includes at least one isolated region the captive process jumps into, only to remain there temporarily. We shall clarify this
description through a specific setting. We first draw attention to the simulated samples in Fig. 6 before detailing the mathematical
model construction. The island region shown in Fig. 6 is the isolated domain between the sinusoidal corridors. In this example, we
choose 𝑚 = 5 such that T(0) = T(1) = T(4) = T(5) = T and T(2) = T(3) ⊂ T. Here, T(2) and T(3) define the isolated region, where
15
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Fig. 7. Here, 𝑎 = 1, 𝑏 = 2 and 𝑤1 = 𝑤2 = 0.5.

𝑔(0)𝑡 < 𝑔(1)𝑡 < 𝑔(4)𝑡 < 𝑔(5)𝑡 for all 𝑡 ∈ T, and 𝑔(1)𝑡 < 𝑔(2)𝑡 < 𝑔(3)𝑡 < 𝑔(4)𝑡 for all 𝑡 ∈ T(2) = T(3). In addition, for some 𝑎 < 𝑏 < 𝑐 < 𝑑, we set
𝑔(0)𝑡 = 𝑎+sin(𝑡), 𝑔(1)𝑡 = 𝑏+sin(𝑡), 𝑔(2)𝑡 = 𝑤2 max(𝑔(1)𝑡 ∶ 𝑡 ∈ T)+(1−𝑤2) min(𝑔(4)𝑡 ∶ 𝑡 ∈ T), 𝑔(3)𝑡 = 𝑤3 max(𝑔(1)𝑡 ∶ 𝑡 ∈ T)+(1−𝑤3) min(𝑔(4)𝑡 ∶ 𝑡 ∈ T),
𝑔(4)𝑡 = 𝑐 + sin(𝑡), and 𝑔(5)𝑡 = 𝑑 + sin(𝑡), where 𝑤2, 𝑤3 ∈ (0, 1) such that 𝑤2 > 𝑤3. Due to the choice of the time-segments, we have
𝜏(0)𝑡 = 𝜏(1)𝑡 = 𝜏(4)𝑡 = 𝜏(5)𝑡 and 𝜏(2)𝑡 = 𝜏(3)𝑡 . We let 𝑋0 ∈ (𝑔(0)0 , 𝑔(1)0 ) and choose the drift function 𝜇 and volatility function 𝜎 of the CJP as
follows:

𝜇(𝑡, 𝛹𝑡, 𝑋𝑡, 𝒈𝒕) =

⎧

⎪

⎪

⎨

⎪

⎪

⎩

cos(𝑡) if 𝑋𝜏(0)𝑡
∈ [𝑔(0)𝑡 , 𝑔(1)𝑡 ],

1
2 (𝑔

(2)
𝑡 + 𝑔(3)𝑡 ) −𝑋𝑡 if 𝑋𝜏(2)𝑡

∈ [𝑔(2)𝑡 , 𝑔(3)𝑡 ] and 𝑡 ∈ T(2),

cos(𝑡) if 𝑋𝜏(0)𝑡
∈ [𝑔(4)𝑡 , 𝑔(5)𝑡 ],

and

𝜎(𝑡, 𝛹𝑡, 𝑋𝑡, 𝒈𝒕) =

⎧

⎪

⎪

⎨

⎪

⎪

⎩

𝜂(𝑋𝑡 − 𝑔
(0)
𝑡 )(𝑋𝑡 − 𝑔

(1)
𝑡 ) if 𝑋𝜏(0)𝑡

∈ [𝑔(0)𝑡 , 𝑔(1)𝑡 ],

𝜂(𝑋𝑡 − 𝑔
(2)
𝑡 )(𝑋𝑡 − 𝑔

(3)
𝑡 ) if 𝑋𝜏(2)𝑡

∈ [𝑔(2)𝑡 , 𝑔(3)𝑡 ] and 𝑡 ∈ T(2),

𝜂(𝑋𝑡 − 𝑔
(4)
𝑡 )(𝑋𝑡 − 𝑔

(5)
𝑡 ) if 𝑋𝜏(0)𝑡

∈ [𝑔(4)𝑡 , 𝑔(5)𝑡 ].

As for the coefficient 𝛾, we use

𝛾(𝑡, 𝛹𝑡, 𝑋𝑡; 𝒈𝑡) =

⎧

⎪

⎪

⎨

⎪

⎪

⎩

𝜆(𝑔(2)𝑡 −𝑋𝑡) + (1 − 𝜆)(𝑔(3)𝑡 −𝑋𝑡) if 𝑋𝜏(0)𝑡
∈ [𝑔(0)𝑡 , 𝑔(1)𝑡 ] and 𝑡 ∈ T(2),

𝜆(𝑔(4)𝑡 −𝑋𝑡) + (1 − 𝜆)(𝑔(5)𝑡 −𝑋𝑡) if 𝑋𝜏(2)𝑡
∈ [𝑔(2)𝑡 , 𝑔(3)𝑡 ] and 𝑡 ∈ T(2),

0 if 𝑋𝜏(0)𝑡
∈ [𝑔(2)𝑡 , 𝑔(3)𝑡 ],

where 𝜆 ∈ (0, 1). In this example, the CJP must jump from the region defined by {(𝑔(0)𝑡 , 𝑔(1)𝑡 )}𝑡∈T(2) to the one determined by
{(𝑔(2)𝑡 , 𝑔(3)𝑡 )}𝑡∈T(2) , and from {(𝑔(2)𝑡 , 𝑔(3)𝑡 )}𝑡∈T(2) to {(𝑔(4)𝑡 , 𝑔(5)𝑡 )}𝑡∈T(2) . To ensure there are necessarily two jumps occurring over the time-
segment T(2) = T(3), we set P(𝐽max(T(2)) − 𝐽min(T(2)) = 2) = 1. Hence, the captive process visits the isolated region located between the
sinusoidal corridors almost surely, but only temporarily.

3.5. Captive jump processes within adhesive boundaries

In various applications, one observes adhesive behaviour whereby a stochastic process is temporarily absorbed at a boundary (if
it hits that boundary) until the process leaves the boundary again after a finite amount of time. For example, in biology, molecules
may evolve near sticky cell membranes, see [41], in epidemics, pathogens can behave in an adhesive way at zero-concentration
levels, see [42].

CJPs can contribute to the mathematical foundations of such literature. As an example, we model situations where the process
spends some time on the boundary it has hit, until a jump occurs allowing it to bounce back into the internal domain. We simulate
the following CJP:

d𝑋𝑡 = sin(𝑋𝑡 − 𝑎) sin(𝑋𝑡 − 𝑏)d𝑊𝑡 + 𝜃𝑡−
(

𝑋𝑡− − (𝑤1𝑎 +𝑤2𝑏)
)

𝛥𝐽𝑡, (12)

for 𝑋0 ∈ (𝑎, 𝑏), and where 𝜃𝑡 ∈ [−1, 0) for all 𝑡 ∈ T, 𝑤1 ∈ (0, 1) and 𝑤2 = 1 −𝑤1.
In Fig. 7, the sample paths show that the process is absorbed at a boundary whenever it hits that boundary and stays there until

a jump occurs that takes it back into the internal domain. We highlight that the dynamics (12) are just one example amongst many
that belong to a large family of captive jump processes featuring adhesive behaviour.
16
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Fig. 8. Numerical performance metrics.

3.6. Numerical sensitivity analysis

As mentioned above, since CJPs in general do not admit closed-form representations and may evolve in highly complex
geometries, simulating CJPs becomes soon non-trivial, where standard Euler–Maruyama schemes could fail to keep all CJP paths
within their bounded domains. As an example, we refer to [43] and the references therein for the complex nature of simulating
Wright-Fisher diffusions, which form a specific example of CJPs that exclude jumps within constant boundaries. Studying exact
simulations of CJPs is a significantly more involved proposition, and it goes beyond the scope of this paper. The development of
a general simulation scheme for CJPs deserves separate and dedicated research. Nonetheless, we shall hereby quantify numerical
violations produced by the Euler–Maruyama scheme when simulating CJPs to show how such violations diminish as the time-step
𝛿 becomes shorter—and so the theoretical setting is approached. Later, we present an implicit method to remove all violations for
practical applications. The analysis of the distributional convergence properties of the proposed new numerical method is left for
future research.

The sensitivity table presents three applications detailed above in order to demonstrate how numerical violations behave across
different geometries and choices of 𝛿. We identify three violation metrics, of which two are tolerance measures and the third is an
absolute measure. The tolerance measures express ‘‘how badly’’ boundaries have been exceeded: the first such measure tells one how
often the violation has occurred, while the second expresses a severity level in terms of by how much a boundary has been exceeded.
The third metric, i.e., the absolute measure, states how many of the process trajectories (i.e., sample paths) violate a boundary, no
matter how often or by how much. Hence, the third metric can be regarded as the most punitive among the three. Here are the
violation metrics utilized in our analysis:

• Metric 1, temporal tolerance measure for violation (‘‘how often’’):
number of violated time points

(total number of paths) × (total number of time points)

• Metric 2, spatial tolerance measure for violation (‘‘how much’’):
maximum violated distance

local tunnel width

• Metric 3, absolute measure for violation (‘‘how many’’):
number of violated paths

total number of paths
The metrics above quantify different aspects of what we collectively call numerical violations. Metric 1 is the ratio of the number of
time points when the simulated values reside outside of the expected domain with respect to the total number of simulated paths
multiplied by the total number of time points in the mesh. Metric 2 quantifies the magnitude (i.e., the severity) of the violations
in terms of the maximum distance that the simulated values take outside of the expected boundaries (i.e., tunnels) at any time 𝑡𝑘.
Metric 3 is the number of simulated paths which fail to be CJPs because they escape their boundaries at some 𝑡𝑘 during their lifetime
(see Fig. 8).

All values in the sensitivity analysis are based on 1000 simulated paths for each cell of the table. It can be seen that each metric
resolves differently for each application being considered, since each CJP model has a different level of complexity. For example,
the constant-boundary setup of Example 3.2 not only starts with lower violation metrics, but also converges to zero violation the
quickest as 𝛿 decreases. On the other hand, Example 3.2 and Example 3.3 converge at different speeds with respect to different
metrics. While Metric 3 of Example 3.2 starts off with a higher degree of violation than that of Example 3.3, Example 3.2 gives
evidence for a faster convergence when compared to Example 3.3 as 𝛿 decreases. We highlight the convergence dynamics of Metric
3 below (see Fig. 9).
17
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Fig. 9. Speed of convergence for Metric 3.

In summary, the sensitivity analysis demonstrates how numerical violations account for decreasing values of the aforementioned
systems as the mesh becomes finer, but also highlights how one needs to be careful when simulating CJPs in practice by using the
classical Euler–Maruyama scheme.

We now recall (�̂�𝑡𝑘 )𝑡𝑘∈T is an approximation of (𝑋𝑡)𝑡∈T over the discretized grid 0 = 𝑡0 ≤ 𝑡1 ≤ ⋯ ≤ 𝑡𝑚 ≤= 𝑇 <∞ for some 𝑚 ∈ N+,
and generate the implicit scheme that adjusts every violation by projecting their value onto the closest boundary that is violated at
any 𝑡𝑘. In doing so, we define 𝑡𝑘 as the set of all possible values determined by the boundaries 𝐠𝑡𝑘 that 𝑋𝑡𝑘 is expected to take at
𝑡𝑘. In other words, 𝑡𝑘 is the theoretical domain of 𝑋𝑡𝑘 as proven in Proposition 2.22. In addition, we define 𝑔(∗)𝑡𝑘 as the boundary
that is violated at 𝑡𝑘 when 𝑋𝑡𝑘 ∉ 𝑡𝑘 . The adjusted algorithm for the implicit Euler–Maruyama scheme we propose is as follows:

Adjusted implicit algorithm

1. For 𝑡 = 𝑡0, set �̂�𝑡 = 𝑥0 and 𝛥𝐽𝑡 = 0.
2. For 𝑡 = 𝑡𝑘, let

�̂�𝑡𝑘+1 = �̂�𝑡 + 𝜇
(

𝑡,𝛹𝑡, �̂�𝑡; 𝒈𝑡
)

𝛿 + 𝜎
(

𝑡, 𝛹𝑡, �̂�𝑡; 𝒈𝑡
)

(

𝑊𝑡𝑘+1 −𝑊𝑡

)

+ 𝐴𝑡, where
𝐴𝑡 = 𝛾

(

𝑡, 𝛹𝑡, �̂�𝑡; 𝒈𝑡
)

if 𝛥𝐽𝑡 = 1, otherwise 𝐴𝑡 = 0.
3. If �̂�𝑡𝑘+1 ∉ 𝑡𝑘+1 , set �̂�𝑡𝑘+1 = 𝑔(∗)𝑡𝑘+1 .
4. Repeat Step 2 and 3 for 𝑘 = 1,… , 𝑚 − 1,

where 𝛿 = 𝑇 ∕𝑚, 𝑡𝑘 = 𝑘𝛿, and 𝛥𝐽𝑡𝑘 ∈ {0, 1} for every 𝑡𝑘 ∈ T.
This adjusted algorithm guarantees that all simulated process trajectories stay within the constraining boundaries. As such, Metric

3 will return zero violating paths, which of course also makes Metric 1 and 2 yield a zero value.
Next, we apply the adjusted implicit algorithm above to simulate 1000 paths of a CJP—none of the paths will exceed the given

boundaries (see Figs. 10 and 11).
By construction of the scheme above, there are zero violations for any choice of 𝛿 due to the adjustment Step 3. We shall call

the discrete-time constrained stochastic process (𝑋𝑡𝑘 )𝑡𝑘∈T generated by the proposed implicit algorithm the empirical captive jump
process, of which formal numerical analysis (e.g., distributional convergence properties) we leave for future research.

4. Endogenous CJPs

We briefly discuss how a specific family of captive jump processes arises naturally in nonlinear filtering when so-called piecewise-
enlarged filtrations—as introduced in [44] for energy-based quantum state reduction—are used to model noisy information flows.
To avoid distraction from the core topic of this paper, we refer the reader to [44] for details on the piecewise-enlarged filtration
framework, and instead present here only the necessary parts for our purposes.

4.1. Endogenous captive jump processes in nonlinear filtering

Let (𝜏𝑖)𝑛𝑖=1 be an 𝑛-sequence of (𝑡)-stopping times such that 0 < 𝜏1 < 𝜏2 < ⋯ < 𝜏𝑛 < ∞. We associate the sequence of stopping
times to càdlàg Heaviside processes (𝐻𝜏𝑖 (𝑡))𝑡∈T via

𝐻𝜏𝑖 (𝑡) =

{

1 if 𝜏𝑖 ≤ 𝑡,
18
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Fig. 10. Left: Application 3.2. Right: Application 3.3.

Fig. 11. Application 3.4.

for 𝑖 = 1,… , 𝑛. We let (𝜉(𝑖)𝑡 )𝑡∈T denote a noisy information process, mutually independent of each 𝜏𝑖, given by 𝜉(𝑖)𝑡 = (𝑡∕𝑇 )𝑍+𝐵(𝑖)
𝑡𝑇 , where

each (𝐵(𝑖)
𝑡𝑇 )𝑡∈T is a standard Brownian bridge that is independent of the square-integrable random variable 𝑍, for 𝑖 = 1,… , 𝑛+1. This

type of information process and construction of filtering systems were introduced in the information-based asset pricing approach,
see [45,46] for early works, and [47] for a collection of publications in this field. Using the aforementioned processes, we construct
a piecewise-enlarged filtration (𝑡)𝑡∈T, where 𝑡 is a sub-algebra of 𝑡 for all 𝑡 ∈ T, as follows:

𝑡 = 𝜎((𝜉(1)𝑠 )0≤𝑠≤𝑡)
⋁

( 𝑛
⋁

𝑖=1
𝜉

(𝑖+1)

𝑡

)

,

where each (𝜉
(𝑖)

𝑡 )𝑡∈T is given by

𝜉
(𝑖+1)

𝑡 =

{

𝜎((𝐻𝜏𝑖 (𝑠))0≤𝑠≤𝑡) 𝜏𝑖 > 𝑡,
𝜎((𝐻𝜏𝑖 (𝑠))0≤𝑠≤𝑡, (𝜉

(𝑖+1)
𝑠 )𝜏𝑖≤𝑠≤𝑡) 𝜏𝑖 ≤ 𝑡,

for 𝑖 = 1,… , 𝑛 and 𝑡 ∈ T. We now define the conditional expectation process (𝑋𝑡)𝑡∈T as our 2-best-estimate of 𝑍 given (𝑡)𝑡∈T by

𝑋𝑡 = E[𝑍 |𝑡]. (13)

In [44] it is shown that 𝑋𝑡 = 𝐗⊤𝑡 𝐈𝑡 for all 𝑡 ∈ T, where

𝐗𝑡 =

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎢

E
[

𝑍 |

|

|

𝜉1𝑡
]

⋮

E
[

𝑍 |

|

|

𝜉(𝑗)𝑡
]

⋮

E
[

𝑍 |

| 𝜉(𝑛+1)
]

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎥

and 𝐈𝑡 =

⎡

⎢

⎢

⎢

⎢

⎢

⎣

1 −𝐻𝜏1 (𝑡)
⋮

𝐻𝜏𝑗−1 (𝑡)(1 −𝐻𝜏𝑗 (𝑡))
⋮

𝐻𝜏𝑛 (𝑡)

⎤

⎥

⎥

⎥

⎥

⎥

⎦

,

19

⎣
|

𝑡
⎦
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given that each so-called effective information process (𝜉(𝑗)𝑡 )𝑡∈T can be represented by

𝜉(𝑗)𝑡 = 𝑋

√

𝑗𝑡
𝑇

+ 𝐵(𝑖)
𝑡𝑇 ,

ith (𝐵(𝑖)
𝑡𝑇 )𝑡∈T a standard Brownian bridge. The process (𝑋𝑡)𝑡∈T satisfies the SDE

𝑋𝑡 = E[𝑍]+
𝑛+1
∑

𝑗=1
∫

𝑡

0

√

𝑗
(𝑇 − 𝑠)

(

Var
[

𝑍 |

|

|

𝜉(𝑗)𝑠
])

𝐼 (𝑗)𝑠 d𝑊 (𝑗)
𝑠

+
𝑛+1
∑

𝑗=2
∫

𝑡

0

(

E
[

𝑍 |

|

|

𝜉(𝑗)𝑠
]

− E
[

𝑍 |

|

|

𝜉(𝑗−1)𝑠

])

𝛿𝜏𝑗−1 (d𝑠), (14)

for 𝑡 ∈ T, where each (𝑊 (𝑗)
𝑡 )𝑡∈T is a standard Brownian motion and 𝐼 (𝑗)𝑡 is the 𝑗th element of 𝐈𝑡. Now we choose 𝑍 ∶ 𝛺 → {𝑘𝑙 , 𝑘𝑢},

such that

0 < P(𝑍 = 𝑘𝑙) < 1 and P(𝑍 = 𝑘𝑢) = 1 − P(𝑍 = 𝑘𝑙).

As discussed in [48], it can be shown that

P(𝑍 = 𝑘𝑙 ∣ 𝜉
(𝑗)
𝑡 ) =

(

1 + exp

(

−1
2

√

𝑗(𝑘𝑢 − 𝑘𝑙)
(𝑇 − 𝑡)

( 𝑡
𝑇
(𝑘𝑙 + 𝑘𝑢) − 2𝜉(𝑗)𝑡

)

)

P(𝑍 = 𝑘𝑢)
P(𝑍 = 𝑘𝑙)

)−1

,

P(𝑍 = 𝑘𝑢 ∣ 𝜉
(𝑗)
𝑡 ) =

(

1 + exp

(

1
2

√

𝑗(𝑘𝑢 − 𝑘𝑙)
(𝑇 − 𝑡)

( 𝑡
𝑇
(𝑘𝑙 + 𝑘𝑢) − 2𝜉(𝑗)𝑡

)

)

P(𝑍 = 𝑘𝑙)
P(𝑍 = 𝑘𝑢)

)−1

,

from which it follows that

Var
[

𝑍 |

|

|

𝜉(𝑗)𝑠
]

=
(

E
[

𝑍 |

|

|

𝜉(𝑗)𝑠
]

− 𝑘𝑙
)(

𝑘𝑢 − E
[

𝑍 |

|

|

𝜉(𝑗)𝑠
])

=
(

𝑋(𝑗)
𝑡 − 𝑘𝑙

)(

𝑘𝑢 −𝑋
(𝑗)
𝑡

)

,

where 𝑋(𝑗)
𝑡 is the 𝑗th element of 𝐗𝑡. Therefore, with 𝑥0 = (𝑘𝑙P(𝑍 = 𝑘𝑙)+𝑘𝑢P(𝑍 = 𝑘𝑢)) ∈ (𝑘𝑙 , 𝑘𝑢) and the orthogonality of each element

of 𝐈𝑡, Eq. (14) takes the form

𝑋𝑡 = 𝑥0 +
𝑛+1
∑

𝑗=1
∫

𝑡

0

√

𝑗
(𝑇 − 𝑠)

(

𝑋(𝑗)
𝑡 − 𝑘𝑙

)(

𝑘𝑢 −𝑋
(𝑗)
𝑡

)

𝐼 (𝑗)𝑠 d𝑊 (𝑗)
𝑠 +

𝑛+1
∑

𝑗=2
∫

𝑡

0

(

𝑋(𝑗)
𝑡 −𝑋(𝑗−1)

𝑡

)

𝛿𝜏𝑗−1 (d𝑠),

law
= 𝑥0 + ∫

𝑡

0

𝐶𝑠
(𝑇 − 𝑠)

(

𝑋𝑡 − 𝑘𝑙
) (

𝑘𝑢 −𝑋𝑡
)

d𝑊𝑠 +
∑

0≤𝑠≤𝑡

(

𝑋𝑠 −𝑋𝑠−
)

𝛥𝐽𝑠, (15)

here (𝑊𝑡)𝑡∈T is a standard Brownian motion, and (𝐽𝑡)𝑡∈T and (𝐶𝑡)𝑡∈T are adapted to (𝑡)𝑡∈T and are given by

𝐽𝑡 =
∑

0≤𝑠≤𝑡

𝑛
∑

𝑖=1
𝐻𝜏𝑖 (𝑠) and 𝐶𝑡 =

(

1 +
∑

0<𝑠≤𝑡
1(𝛥𝑋𝑠 ≠ 0)

)
1
2

,

respectively, for every 𝑡 ∈ T. In [49], Proposition 2.9, it is shown that there exists a random variable 𝑌 and a function ℎ such that

ℎ(𝑌 ) −𝑋𝑡−
law
= 𝑋𝑡 −𝑋𝑡−.

Thus, Eq. (15) can be expressed more succinctly through

𝑋𝑡
law
= 𝑥0 + ∫

𝑡

0

𝐶𝑠
(𝑇 − 𝑠)

(

𝑋𝑡 − 𝑘𝑙
) (

𝑘𝑢 −𝑋𝑡
)

d𝑊𝑠 +
∑

0≤𝑠≤𝑡
𝛾
(

𝑠−, 𝑋𝑠−; 𝑘𝑙 , 𝑘𝑢
)

𝛥𝐽𝑠,

which satisfies all the conditions given in Definition 2.21. We emphasize that (𝐶𝑡)𝑡∈T can be constructed via the monitoring process
𝛹𝑡)𝑡∈T. Hence, there exists a captive jump process that is equal in law to the 2-best-estimate of 𝑍 given by Eq. (13). Accordingly,
n this specific setting with 𝑍 ∶ 𝛺 → {𝑘𝑙 , 𝑘𝑢}, where 0 < P(𝑍 = 𝑘𝑙) < 1 and P(𝑍 = 𝑘𝑢) = 1 − P(𝑍 = 𝑘𝑙), the captive jump process

allows one to represent the superposition expression in Eq. (14) in a more parsimonious way.

4.2. Interacting captive jump processes

We next present a multivariate extension of the aforementioned framework that allows CJPs to interact with each other while
maintaining their captive properties. Let (𝐗𝑡)𝑡∈T be a multidimensional captive jump process given by

𝐗𝑡 = [𝑋(1)
𝑡 ,… , 𝑋(𝑖)

𝑡 ,… , 𝑋(𝑛)
𝑡 ]⊤,

for 𝑛 ∈ N+, where (𝑋𝑖
𝑡 )𝑡∈T is CJP defined by Definition 2.2, for all 𝑖 ∈ N+. To identify a value for the 𝑖th coordinate of (𝐗𝑡), we

efine

𝐗 [𝑖; 𝑥] ≜ [𝑋(1),… , 𝑥,… , 𝑋(𝑛)],
20

𝑡 𝑡 𝑡
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for any 𝑖 = 1,… , 𝑛. We introduce T(𝑖,𝑗) ⊆ T for 𝑗 = 0,… , 𝑚(𝑖) and 𝑖 = 1,… , 𝑛, where 𝑚(𝑖) depends on index 𝑖 since the number of
time-segments can be different for each coordinate of (𝐗𝑡)𝑡∈T. Here, we have

T(𝑖,𝑗) = [𝜏(𝑖,𝑗)start, 𝜏
(𝑖,𝑗)
end ] with 0 ≤ 𝜏(𝑖,𝑗)start < 𝜏

(𝑖,𝑗)
end ≤ 𝑇 ,

where T(𝑖,0) = T(𝑖,𝑚(𝑖)) = T for all 𝑖 = 1,… , 𝑛. Over each time-segment, there is a boundary function that is collected in

𝐆𝑡 = {𝑔(𝑖,𝑗)𝑡 ∶ 𝑗 = 0,… , 𝑚(𝑖) for 𝑖 = 1,… , 𝑛 }

here 𝑔(𝑖,𝑗) ∈ (R) for every 𝑖, 𝑗. We now introduce progressively-measurable and increasing processes (𝜏(𝑖,𝑗)𝑡 )𝑡∈T(𝑖,𝑗) given by

𝜏(𝑖,𝑗)𝑡 = 𝜏(𝑖,𝑗)start ∨ sup(𝑠 ∶ 𝛥𝑋(𝑖)
𝑠 ≠ 0 for 𝜏(𝑖,𝑗)start ≤ 𝑠 ≤ 𝑡 ∈ T(𝑖,𝑗)), (16)

or 𝑗 = 0,… , 𝑚(𝑖), where sup ∅ = −∞. Hence, if there is no jump in a given time period T(𝑖,𝑗), then 𝜏(𝑖,𝑗)𝑡 = 𝜏(𝑖,𝑗)start for all 𝑡 in the period
(𝑖,𝑗). We now define non-anticipate set-valued processes

𝛹 (𝑖)
𝑡 =

{

𝑋(𝑖)
𝜏(𝑖,𝑗)𝑡

∶ 𝜏(𝑖,𝑗)𝑡 ≤ 𝑡, for 𝑗 = 0,… , 𝑚(𝑖)
}

,

or 𝑖 = 1,… , 𝑛 that are collected in the monitoring process (𝜳 𝑡)𝑡∈T as follows:

𝜳 𝑡 =
𝑛
⋃

𝑖=1
𝛹 (𝑖)
𝑡 .

easurability and continuity for (𝜳 𝑡) should be understood as presented in Section 2. Accordingly, a multivariate, internally
iecewise-confined captive jump process (𝐗𝑡)𝑡∈T is governed by the system

𝑋(𝑖)
𝑡 = 𝑥(𝑖)0 + ∫

𝑡

0
𝜇(𝑖)

(

𝑠,𝜳 𝑠,𝑿𝑠;𝐆𝑠
)

d𝑠 + ∫

𝑡

0
𝜎(𝑖)

(

𝑠,𝜳 𝑠,𝑿𝑠;𝐆𝑠
)

d𝑀 (𝑖)
𝑠

+
∑

0≤𝑠≤𝑡
𝛾 (𝑖)

(

𝑠−,𝜳 𝑠−,𝑿𝑠−;𝐆𝑠−
)

𝛥𝐽 (𝑖)
𝑠 ,

here 𝑋(𝑖)
0 = 𝑥(𝑖)0 ∈ [𝑔(𝑖,0)0 , 𝑔(𝑖,𝑚

(𝑖))
0 ) for 𝑖 = 1,… , 𝑛. The maps 𝜇(𝑖) and 𝜎(𝑖) are continuous (possibly except at points where 𝛥𝐽 (𝑖) ≠ 0

ith bounded jumps), and 𝛾 (𝑖) is a locally bounded càdlàg map such that

1. 𝜇(𝑖)
(

𝑡,𝜳 𝑡,𝐗𝑡[𝑖; 𝑔
(𝑖,𝑗)
𝑡 ];𝐆𝑡

)

≥ d𝑔(𝑖,𝑗)+ (𝑡)∕d𝑡 if 𝑋(𝑖)
𝜏(𝑖,𝑗)𝑡

≥ 𝑔(𝑖,𝑗)
𝜏(𝑖,𝑗)𝑡

, for any 𝑡 ∈ T(𝑖,𝑗) where 𝑋(𝑖)
𝑡 = 𝑔(𝑖,𝑗)𝑡 ,

2. 𝜇(𝑖)
(

𝑡,𝜳 𝑡,𝐗𝑡[𝑖; 𝑔
(𝑖,𝑗)
𝑡 ];𝐆𝑡

)

≤ d𝑔(𝑖,𝑗)+ (𝑡)∕d𝑡 if 𝑋(𝑖)
𝜏(𝑖,𝑗)𝑡

< 𝑔(𝑖,𝑗)
𝜏(𝑖,𝑗)𝑡

, for any 𝑡 ∈ T(𝑖,𝑗) where 𝑋(𝑖)
𝑡 = 𝑔(𝑖,𝑗)𝑡 ,

3. 𝜎(𝑖)
(

𝑡,𝜳 𝑡,𝐗𝑡[𝑖; 𝑔
(𝑖,𝑗)
𝑡 ];𝐆𝑡

)

= 0, for any 𝑡 ∈ T(𝑖,𝑗) where 𝑋(𝑖)
𝑡 = 𝑔(𝑖,𝑗)𝑡 ,

4. 𝑔(𝑖,0)𝑡− −𝑋(𝑖)
𝑡− ≤ 𝛾 (𝑖)

(

𝑡−,𝜳 𝑡−,𝑿𝑡−;𝐆𝑡−
)

≤ 𝑔(𝑖,𝑚)𝑡− −𝑋(𝑖)
𝑡− for all 𝑡 ∈ T,

or 𝑗 = 0,… , 𝑚(𝑖) and 𝑖 = 1,… , 𝑛, P-a.s., given that (𝑴 𝑡)𝑡∈T ∈ (R𝑛) and (𝑱 𝑡)𝑡∈T ∈  (R𝑛) are mutually independent.

roposition 4.1. The following statements hold P-almost-surely.

1. For any 𝑡 ∈ T, 𝑔(𝑖,0)𝑡 ≤ 𝑋(𝑖)
𝑡 ≤ 𝑔(𝑖,𝑚

(𝑖))
𝑡 .

2. For any 𝑗 ≠ 0 and 𝑗 ≠ 𝑚(𝑖), if 𝑋(𝑖)
𝜏(𝑖,𝑗)start

≥ 𝑔(𝑖,𝑗)
𝜏(𝑖,𝑗)start

and 𝛥𝐽 (𝑖)
𝑡 = 0 for all 𝑡 ∈ T(𝑖,𝑗), then 𝑋(𝑖)

𝑡 ≥ 𝑔(𝑖,𝑗)𝑡 for all 𝑡 ∈ T(𝑖,𝑗). If 𝛥𝐽 (𝑖)
𝑡 = 1 for some

𝑡 ∈ T(𝑖,𝑗) then P(𝑋(𝑖)
𝑡 < 𝑔(𝑖,𝑗)𝑡 ) ≥ 0 for 𝑡 ∈ T(𝑖,𝑗).

3. For any 𝑗 ≠ 0 and 𝑗 ≠ 𝑚(𝑖), if 𝑋(𝑖)
𝜏(𝑖,𝑗)start

< 𝑔(𝑖,𝑗)
𝜏(𝑖,𝑗)start

and if 𝛥𝐽 (𝑖)
𝑡 = 0 for all 𝑡 ∈ T(𝑖,𝑗)∕(𝜏(𝑖,𝑗)start), then 𝑋(𝑖)

𝑡 ≤ 𝑔(𝑖,𝑗)𝑡 for all 𝑡 ∈ T(𝑖,𝑗)∕(𝜏(𝑖,𝑗)start). If

𝛥𝐽 (𝑖)
𝑡 = 1 for some 𝑡 ∈ T(𝑖,𝑗) then P(𝑋(𝑖)

𝑡 > 𝑔(𝑖,𝑗)𝑡 ) ≥ 0 for 𝑡 ∈ T(𝑖,𝑗)∕(𝜏(𝑖,𝑗)start).

We omit the proof of Proposition 4.1 since it follows similar steps as those in the proof of Proposition 2.22. The multivariate
etup allows for the coordinates of (𝐗𝑡)𝑡∈T to display interacting captive dynamics with discontinuities within bounded domains.

. Conclusions

Captive jump processes (CJPs) are constrained stochastic processes that inherently embed random discontinues in their paths,
nd cannot escape their pre-specified confined space. The flexibility of the proposed mathematical framework can be formulated by
ontrolling the process trajectories via deterministic time-dependent boundary functions that form the constrained space. While these
oundary functions control the drift, volatility and jump size processes, the random jump times and the driving diffusion process
an be modelled independently. The modelling richness afforded by CJPs, and the mechanism by which the controlled jumps are
odulated in terms of the boundary functions, motivates its own mathematical development and justifies the dedicated study in this
aper. We anticipate many applications in fields across the natural, life and social sciences, and provide several explicit examples:
i) CJPs evolving within circular domains suggesting use in quantum physics and chemistry, (ii) CJPs in a dynamical system with
ttraction regions suggesting use in systems with gravitational tunnels from which the process can only escape with a jump of
21

uitable size, and (iii) CJPs in biological ecosystems in which adhesive agents are being absorbed at a boundary for some time
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before a jump gives the process a new lease of stochastic life within the confined space. Whenever a phenomenon requires the
modelling of constrained stochastic jump dynamics that may or may not involve internal corridors, the proposed family of CJPs can
be considered as an alternative candidate that finds tractable applications via numerical simulations.
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