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Abstract
We consider a d-dimensional dyadic branching Brownian motion, and study the density
of its support in the region where there is typically exponential growth of particles. Using
geometric arguments and an extension of a previous result on the probability of absence
of branching Brownian motion in linearly moving balls of fixed size, we obtain sharp
asymptotic results on the covering radius of the support of branching Brownian motion,
which is a measure of its density. As a corollary, we obtain large deviation estimates on the
volume of the r(t)-enlargement of the support of branching Brownian motion when r(t)
decays exponentially in time t. As a by-product, we obtain the lower tail asymptotics for
the mass of branching Brownian motion falling in linearly moving balls of exponentially
shrinking radius, which is of independent interest.
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1. Introduction
The model studied in this paper is a branching Brownian motion (BBM) evolving in

Rd. It is well-known that typically the mass, i.e., the number of particles, of a BBM grows
exponentially in time. To be precise, if Nt denotes the total mass of a strictly dyadic BBM
at time t and β is the branching rate, then N = (Nt)t≥0 is a Yule process, and the limit

M := lim
t→∞

Nt e−βt

exists and is positive almost surely. It is also known [3, 4, 13] that the speed of a strictly
dyadic BBM is

√
2β, which means that typically for large time the support of BBM at

time t is contained in B(0,
√

2β(1 + ε)t), where we use B(x, r) to denote the open ball
of radius r and center x, but not contained in B(0,

√
2β(1 − ε)t) for any 0 < ε < 1.

Moreover, Bt := B(0,
√

2β(1 − ε)t) is a region where there is typically exponential growth
of particles. Then, a natural question concerns the spatial distribution of mass at time t:
how homogeneously are the exponentially many particles spread out over Bt? If they are
spread out sufficiently homogeneously, then one may formulate this in terms of the density
of the support of BBM, and obtain quantitative results on its covering radius in Bt. This
work presents fine results on the geometry of particles in a BBM at time t for large t, and
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mainly aims at answering the question of how dense the support of BBM is in the region
where there is typically exponential growth of particles.

We first extend a previous result [14, Thm. 1] on the probability of aytpically small mass
of BBM inside moving balls of fixed radius to moving balls of time-dependent radius; then
using this extension and some geometric arguments, we obtain a large deviation (LD)
result on the asymptotic behavior of the density of the support of BBM. As a corollary,
we show that for a suitably decreasing function r : R+ → R+, the r(t)-enlargement of the
support of BBM at time t fills up Bt with overwhelming probability as t → ∞.

1.1. Formulation of the problem
Let Z = (Z(t))t≥0 be a d-dimensional strictly dyadic BBM with constant branching

rate β > 0. Here, t represents time, and strictly dyadic means that every time a particle
branches, it gives exactly two offspring. The process starts with a single particle, which
performs a Brownian motion in Rd for a random exponential time of parameter β, at which
the particle dies and simultaneously gives birth to two offspring. Similarly, starting from
the position where their parent dies, each offspring particle repeats the same procedure as
their parent independently of others and of the parent, and the process evolves in time in
this way. The Brownian motions and exponential lifetimes of particles are all independent
from one another. For each t ≥ 0, Z(t) can be viewed as a discrete measure on Rd. Let
Px and Ex, respectively, denote the probability and corresponding expectation for Z when
the process starts with a single particle at position x ∈ Rd, that is, when Z(0) = δx,
denoting the Dirac measure at x. When Z(0) = δ0, we simply use P and E. For a Borel
set B ⊆ Rd and t ≥ 0, we write Zt(B) to denote the mass of Z that fall inside B at time
t. We write Nt := Zt(Rd) for the total mass at time t. The range of Z up to time t, and
the full range of Z, are defined respectively as

R(t) =
⋃

0≤s≤t

supp(Z(s)), R =
⋃
t≥0

R(t). (1.1)

By the classical result of [13], it is well-known that the speed of strictly dyadic BBM in
one dimension is equal to

√
2β, which was later generalized to higher dimensions by [8].

More precisely, we have the following result.

Theorem A (Speed of BBM; [8, 13]). Let Z be a strictly dyadic BBM with branching
rate β > 0 in Rd. For t ≥ 0 define Mt := inf{r > 0 : supp(Z(t)) ⊆ B(0, r)} to be the radius
of the minimal ball that contains the support of BBM at time t. Then, in any dimension,

Mt/t →
√

2β in probability as t → ∞.

Note that Mt quantifies the spatial spread of BBM at time t so that Mt/t is a measure
of the speed of BBM. More sophisticated results on the speed of BBM, such as almost
sure results and higher order sublinear corrections, exist in the literature (see for example
[3,11,12]). For our purposes, Theorem A suffices; it says that typically for large t and any
ε > 0, at time t there will be particles outside B(0,

√
2β(1 − ε)t) but no particles outside

B(0, (
√

2β(1 + ε)t). Therefore, when we study the density of the support of BBM at time
t, to obtain meaningful results, we consider the density within a subcritical ball, which we
define as follows.

Definition 1.1 (Subcritical ball). We call B = (B(0, ρt))t≥0 a subcritical ball if there
exists 0 < ε < 1 and time t0 such that B(0, ρt) ⊆ B

(
0,

√
2β(1 − ε)t

)
for all t ≥ t0.

Remark 1.2. We emphasize that the term ‘subcritical’ above is a property of the radius
ρt, which can be rewritten as lim supt→∞

ρt

t <
√

2β.
Also, we use the term subcritical ball both in the sense of a time-dependent ball B =

(B(0, ρt))t≥0 as in Definition 1.1, and also simply as a snapshot taken of a time-dependent
ball at a fixed large time t as B(0, ρt).
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Typically, for a unit vector e, fixed radius r0 > 0, and 0 ≤ θ < 1, the mass of BBM
falling in Bt := B(θ

√
2βte, r0) at time t is exp[β(1 − θ2)t + o(t)] as t → ∞. This follows

from [2, Corollary 4], which implies that

lim
t→∞

1
t

log Zt(Bt) = β(1 − θ2) a.s.

The current work is motivated by, and presents applications of the following LD result
from [14], which concerns atypically small mass falling in linearly moving balls of fixed
radius.

Theorem B (Lower tail asymptotics for mass inside a moving ball; [14]). Let 0 ≤ θ < 1,
r0 > 0, and e be a unit vector in Rd. For t ≥ 0, define Bt := B(θ

√
2βte, r0). Then, for

0 ≤ a < 1 − θ2, in any dimension d ≥ 1,

lim
t→∞

1
t

log P
(
Zt(Bt) < eβat

)
= −β × J, (1.2)

where J = J(θ, a) is a positive rate function.∗ When a = 0, as a special case,

lim
t→∞

1
t

log P (Zt(Bt) = 0) = −β × J(θ, 0) = −2β(
√

2 − 1)(1 − θ). (1.3)

Observe that (1.3) gives the large-time behavior of the probability of absence of Z in
linearly moving balls of fixed size.

Recall the following standard definition.

Definition 1.3. The covering radius of a set S in X ⊆ Rd is defined as
inf {r > 0 : ∪x∈SB(x, r) ⊇ X} .

Observe then that given a subset X ⊆ Rd, the covering radius of supp(Z(t)) in X
is a measure of the density of supp(Z(t)) in X. For finer results on the distribution of
mass of Z in Rd, in Theorem 2.1, we first extend (1.2) to linearly moving balls of time-
dependent (exponentially decreasing) radius r = r(t). In Theorem 2.4, via a covering by
sufficiently many of such smaller balls, we obtain an LD result on the covering radius of
the support of BBM in subcritical balls. In Theorem 2.8, building on Theorem 2.4, we
obtain large deviation estimates as t → ∞ on the volume of the r(t)-enlargement of BBM
(see Definition 2.7).

1.2. History and related problems
At the root of the present work is the strong law of large numbers (SLLN) for the local

mass of BBM [17, Corollary, p. 222], where Watanabe established an almost sure result on
the asymptotic behavior of certain branching Markov processes, which covers the SLLN
for local mass of BBM in fixed Borel sets in Rd as a special case. This was extended by
Biggins [2, Corollary 4] to linearly moving Borel sets. The result of Biggins was originally
cast in the setting of a branching random walk in discrete time, and extended in the same
paper to the continuous setting of a BBM.

We now review various LD results concerning the mass of BBM. First, we consider
probabilities of absence or presence. Let Xmax(t) denote the position of the rightmost
particle at time t of a BBM in R, and for any d ≥ 1 let

Mt := inf{r > 0 : supp(Z(t)) ⊆ B(0, r)}
as before. Set v =

√
2β. Recall that by Theorem A, for large t, typically there is mass

outside B(0, rt) when r < v, but no mass outside B(0, rt) when r > v. In [4], the large-
time asymptotics of LD probabilities P (Xmax(t) ≥ rt) for r > v were found when d = 1,
∗The rate function in Theorem B is related to the one in Theorem 2.1 as J(θ, a) = I(θ, 0, a) (see (2.2) and
(2.3)).
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where P (Xmax(t) ≥ rt) is a probability of presence in a region where there would typically
be no mass. In [7], the asymptotics of P (Mt ≤ rt) for 0 < r < v were found in any
dimension, and note that in this case P (Mt ≤ rt) is a probability of absence outside
B(0, rt) where there would typically be mass. Recently in [6], the asymptotic behavior to
the leading order of P (Xmax(t) ≤ rt) for r < v was found when d = 1, where r was allowed
to be negative as well. This result was then refined in [5], where the precise asymptotics
of the same lower deviation probability was obtained. More generally, concerning the
mass of BBM in time-dependent domains, fewer results are available. In [1], the upper
tail asymptotics for the mass inside [rt, ∞), r < v were found for a BBM in R. Due to
[2, Corollary 4], the mass inside [rt, ∞) at time t is typically exp[β(1 − θ2) + o(t)], and in
[1], LD probabilities P (Zt([rt, ∞)) ≥ eβat) were studied for 1 − θ2 < a < 1.

The current work can be regarded as a sequel to [14] and a prequel to [15] under the
common theme of spatial distribution of mass in BBM. In [14], two LD results in the
downward direction as t → ∞ were obtained concerning the mass of BBM: the first one,
as detailed in Subsection 1.1, was on the mass of BBM falling in linearly moving balls
of fixed radius, and the second one was on the mass falling outside linearly expanding
balls centered at the origin. In both cases, the asymptotic rate of decay was found for
the probability that the mass is atypically small in the respective time-dependent domain.
In [15], a branching Brownian sausage with radius exponentially decaying in time was
studied, and almost sure limit theorems as t → ∞ on its volume were obtained in all
dimensions.

As for the density of BBM, in [9], Grigor’yan and Kelbert established sufficient condi-
tions for the transience and recurrence of a general class of BBMs with time-dependent
branching rates and mechanisms on Riemannian manifolds, where the term recurrence
therein is equivalent to the almost sure density of the full range of BBM in the manifold.

Outline: The rest of the paper is organized as follows. In Section 2, we present our
main results. In Section 3, we develop the preparation needed, including the statement
and proof of several introductory results, for the proofs of Theorem 2.1 and Theorem 2.4.
Section 4 is on the large deviations of the mass of BBM in moving and shrinking balls,
including the proof of Theorem 2.1. Section 5 is on the density of BBM in subcritical
balls, including the proof of Theorem 2.4. In Section 6, we prove almost sure results on
the large-time behavior of r(t)-enlargement of the support of BBM when the radius r(t)
is exponentially decreasing in t.

2. Results
Our first result is an LD result, giving the large-time asymptotic rate of decay for the

probability that the mass of BBM inside a linearly moving and exponentially shrinking
ball is atypically small on a logarithmic scale. It is an extension of [14, Thm. 1], where
linearly moving balls of fixed size were considered. Here, the radius of the moving ball is
time-dependent as well.

Theorem 2.1 (Lower tail asymptotics for mass inside a moving and shrinking ball). Let
0 ≤ θ < 1, 0 ≤ k < (1 − θ2)/d, r0 > 0 and e be a unit vector in Rd. Let x : R+ → R+
and r : R+ → R+ be defined by x(t) = θ

√
2βt and r(t) = r0e−βkt. For t ≥ 0, define

Bt = B(x(t)e, r(t)). Then, for 0 ≤ a < 1 − θ2 − kd,

lim
t→∞

1
t

log P
(
Zt(Bt) < eβat

)
= −β × I(θ, k, a), (2.1)

where

I(θ, k, a) = inf
σ∈(0,σ̄]

σ +

(√
(1 − σ)2 − (a + kd)(1 − σ) − θ

)2

σ

 , (2.2)
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and

σ̄ = σ̄(θ, k, a) = 1 − a + kd

2
−

√(
a + kd

2

)2
+ θ2. (2.3)

Remark 2.2. In terms of the BBM’s optimal strategies, the theorem above means that
in order to realize the LD event

{
Zt(Bt) < eβat

}
(see the proof of Theorem 2.1): the

system suppresses the branching completely, and sends the single particle to a distance of√
2β(

√
(1 − σ̂)2 − (a + kd)(1 − σ̂) − θ)t + o(t) in the opposite direction of the center of Bt

over [0, σ̂t], and then behaves ‘normally’ in the remaining interval [σ̂t, t], where σ̂ denotes
the unique minimizer of the optimization problem in (2.2).

The optimization problem in (2.2) is identical to the one in [14, Eq. 4] with the replace-
ment of the parameter a therein by a + kd. The following can be shown to hold:

(i) The function to be minimized in (2.2), call f , is strictly convex, and has a unique
minimizer on (0, 1 − a − kd). Denote this minimizer by σ̂ = σ̂(θ, k, a). Then, σ̂
satisfies σ̂ ≤ σ̄.

(ii) If we consider f as fθ,k,a, and keep any two of the three parameters θ, k, a fixed,
both σ̂ and f(σ̂) are strictly decreasing in the remaining parameter over the allowed
set of values for that parameter. This is intuitively obvious since it becomes easier
to send less than eβat particles to Bt, i.e., the event {Zt(Bt) < eβat} becomes more
likely, as either of θ, k, a increases.

For the proofs of (i) and (ii), and more details on the optimization problem in (2.2), we
refer the reader to [14, Sect. 5].

Next, we present the main result of this work, which is on the density of BBM in
subcritical balls. First, we recall the following standard definition.

Definition 2.3. A set S is said to be δ-dense in X ⊆ Rd for a given δ > 0 if for any x in
X, there exists s in S such that |s − x| < δ.

Observe that if S is δ-dense in X, then the covering radius of S in X is at most δ (see
Definition 1.3).

Theorem 2.4 (LD on density of BBM). Let 0 < θ < 1, 0 ≤ k < (1 − θ2)/d, and for t > 0
define ρt := θ

√
2βt. For t > 0 and a function r : R+ → R+, define the event Ar

t as

Ar
t := {supp(Z(t)) is not r(t)-dense in B(0, ρt)} .

If r is defined by r(t) = r0 e−βkt, where r0 > 0, then

lim
t→∞

1
t

log P (Ar
t ) = −β × I(θ, k, 0). (2.4)

Note that the rate constant in (2.4) is a measure of how fast the support of BBM
becomes r(t)-dense in the linearly expanding ball B = (B(0, ρt))t≥0. Via a Borel-Cantelli
argument, Theorem 2.4 leads to the following corollary, which is on the density of the full
range of BBM. We provide a proof for completeness.

Corollary 2.5 (Density of BBM). Let Z be a strictly dyadic BBM with branching rate
β > 0, and let R be its full range as defined in (1.1). Then, in any dimension d ≥ 1, R is
dense in Rd almost surely.

Proof. For concreteness, set θ = 1/
√

2 in the definition of ρt in the statement of The-
orem 2.4 so that ρt =

√
βt. For n ∈ N, let Fn be the event that R(n) is not (1/n)-

dense in B(0, ρn). Note that for any k, 1/n ≥ e−kn for all large n, and for any n,
supp(Z(n)) ⊆ R(n). Therefore, Theorem 2.4 implies that there exist c > 0 and j ∈ N such
that for n ≥ j, P (Fn) ≤ e−cn. Since

∑∞
n=j P (Fn) ≤ 1/(1 − e−c) < ∞, by Borel-Cantelli
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lemma, with probability one, only finitely many Fn occur. This means that P (Ω0) = 1,
where

Ω0 := {ω : ∃ n0 = n0(ω) such that ∀ n ≥ n0, R(n)(ω) is (1/n)-dense in B(0, ρn)} .

Let ω ∈ Ω0 . Then, there exists n0(ω) such that for all n ≥ n0, R(n)(ω) is (1/n)-dense in
B(0, ρn). Let x ∈ Rd and ε > 0. Consider B(x, ε). Choose N large enough so that

N > n0, x ∈ B(0, ρN ), 1
N

< ε.

For instance, choosing N > max
{
n0, |x|/

√
β, 1/ε

}
suffices. Then, B(x, ε) ∩ R(N) ̸= ∅,

which in view of R(N) ⊆ R implies that B(x, ε)∩R ̸= ∅. Therefore, P (R is dense inRd) ≥
P (Ω0) = 1. �

Remark 2.6. We note that Corollary 2.5 is not a new result. Via a similar Borel-Cantelli
argument as the one above, one can deduce the almost sure density of the full range of
BBM from Watanabe’s SLLN [17, Corollary, p. 222] for the local mass of BBM. Also,
Corollary 2.5 can be recovered as a special case of [9, Thm. 8.1], which provides sufficient
conditions for the transience or recurrence of a general class of branching diffusions on
Riemannian manifolds, including the BBM in Rd.

The concept of r-density of Z(t) naturally leads to the following definition.

Definition 2.7 (Enlargement of BBM). Let Z = (Z(t))t≥0 be a BBM. For t ≥ 0, we
define the r-enlargement of BBM at time t corresponding to Z as

Zr
t :=

⋃
x ∈ supp(Z(t))

B(x, r).

For a function r : R+ → R+, we may similarly define the r(t)-enlargement of BBM
as Zrt

t := ∪x ∈ supp(Z(t))B(x, rt), where we have set rt = r(t) for notational convenience.
For a Borel set A ⊆ Rd, we say volume of A to refer to its Lebesgue measure, which we
denote by vol(A), and use ωd to denote the volume of the d-dimensional unit ball. The
following result may partially (see (2.5)) be viewed as a corollary of Theorem 2.4, and
concerns the behavior as t → ∞ of the rt-enlargement of BBM in Rd with rt decaying
exponentially as rt = r0 e−βkt. It says, provided that the decay rate of rt is not too large,
the typical volume of Zrt

t is [2β(1 − kd)]d/2ωdtd + o(td) and that deviations of order td are
exponentially unlikely.

Theorem 2.8 (LD on volume of enlargement of BBM). Let 0 ≤ k ≤ 1/d, r0 > 0 and
r : R+ → R+ be defined by r(t) = r0 e−βkt. Then, for every ε > 0 there exist c1 > 0 and
c2 > 0 such that for all large t,

P

(vol (Zrt
t )

td
≤ [2β(1 − kd − ε)]d/2ωd

)
≤ e−c1t, (2.5)

and
P

(vol (Zrt
t )

td
≥ [2β(1 − kd + ε)]d/2ωd

)
≤ e−c2t. (2.6)

3. Preparations
Notation: We introduce further notation for the rest of the manuscript. For x ∈ Rd,

we use |x| to denote its Euclidean norm. We use c, c0, c1, . . . as generic positive constants,
whose values may change from line to line. If we wish to emphasize the dependence of c on
a parameter p, then we write cp or c(p). We write o(t) to refer to g(t), where g : R+ → R+
is a generic function satisfying g(t)/t → 0 as t → ∞. We use a ∧ b and a ∨ b to denote,
respectively, the minimum and maximum of the numbers a and b.
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We denote by X = (X(t))t≥0 a generic standard Brownian motion in d-dimensions,
and use Px and Ex, respectively, as the law of X started at position x ∈ Rd, and the
corresponding expectation. Also, for t > 0, x, y ∈ Rd, and a Borel set A ⊆ Rd, we denote
by p(t, x, y) the Brownian transition density and use p(t, x, A) :=

∫
A p(t, x, y)dy, where dy

stands for the Lebesgue measure. Set p(t, A) := p(t, 0, A).
The following result says, the probability that there are no particles of BBM in a ball

of fixed radius is an increasing function of the distance between the center of the ball and
the starting point of the BBM. This is intuitively obvious, and is a direct consequence of
the facts that the Brownian transition density is a decreasing function of |x − y| and that
each particle of BBM performs an independent Brownian motion while alive.

Lemma 3.1 (Monotonicity of probability of absence). Let x1 and x2 be in Rd with |x1| >
|x2|, and r > 0 be fixed. Define B1 = B(x1, r) and B2 = B(x2, r). Then for any t > 0,

P (Zt(B1) = 0) ≥ P (Zt(B2) = 0) .

Proof. Fix r > 0 and let g : R+ × Rd → [0, 1] be defined by

g(t, x) = P (Zt(B(x, r)) = 0) .

Let H be any hyperplane in Rd that does not contain the origin. The hyperplane H splits
Rd into two half-spaces; let S be the half-space containing the origin. Also, let τ be the
first branching time of Z, and T be the first hitting time of H by Z. Condition the process
on the events {τ > t}, {T < τ ≤ t}, and {τ ≤ T ∧ t}, which form a partition of the sample
space, to obtain

g(t, x) = e−βt[1 − p(t, B(x, r))] + P (Zt(B(x, r)) = 0 | T < τ ≤ t)P (T < τ ≤ t)+∫ t

0

∫
S

[
g2(t − s, x − y)

]
p̃(s, 0, y)dy βe−βsds,

where p̃(s, 0, y) is the transition density of Brownian motion conditioned to stay in S up
to time s. Now fix x1, x2 ∈ Rd with |x1| > |x2|, and let

H := {x ∈ Rd : |x1 − x| = |x2 − x|}, S2 := {x ∈ Rd : |x1 − x| > |x2 − x|}.

Observe that by assumption, S2 is the half-space containing the origin. Then,

g(t, x2) − g(t, x1) = e−βt[p(t, B1) − p(t, B2)]+
P (T < τ ≤ t) [P (Zt(B2) = 0 | T < τ ≤ t) − P (Zt(B1) = 0 | T < τ ≤ t)] +∫ t

0

∫
S2

[
g2(t − s, x2 − y) − g2(t − s, x1 − y)

]
p̃(s, 0, y)dy βe−βsds.

(3.1)

The first term on the right-hand side of (3.1) is negative due to the monotonicity of
p(t, x, y) in |x − y|. Furthermore, since T is the first hitting time of H, the second term
on the right-hand side of (3.1) is zero by the strong Markov property of Brownian motion
applied at time T , and the spherical symmetry of BBM. Hence, (3.1) leads to

g(t, x2) − g(t, x1) ≤
∫ t

0

∫
S2

[
g2(t − s, x2 − y) − g2(t − s, x1 − y)

]
p̃(s, 0, y)dy βe−βsds

=
∫ t

0

∫
S2

[
g2(u, x2 − y) − g2(u, x1 − y)

]
p̃(t − u, 0, y)dy βe−β(t−u)du.

(3.2)

Define
w(t, x) := g(t, x2 − x) − g(t, x1 − x), w := w ∨ 0.
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Note that

g2(u, x2 − x) − g2(u, x1 − x) = [g(u, x2 − x) + g(u, x1 − x)][g(u, x2 − x) − g(u, x1 − x)]
≤ 2 w(u, x).

Then, it follows from (3.2) that

w(t, 0) ≤
∫ t

0

∫
S2

w(u, y)p̃(t − u, 0, y)dy 2βdu. (3.3)

Note that if w(t, 0) = 0, then (3.3) holds since the right-hand side is nonnegative, and if
w(t, 0) > 0, then (3.3) holds by definition of w and by (3.2). For u ≥ 0, define

F (u) := sup
z∈S2

w(u, z).

Then, (3.3) yields

w(t, 0) ≤
∫ t

0
F (u)

∫
S2

p̃(t − u, 0, y)dy 2βdu =
∫ t

0
F (u)2βdu.

Now let z0 ∈ S2. Recall that we use Px to denote the probability for Z when the process
starts with a single particle at x ∈ Rd. By translation invariance, we have

w(t, z0) = P (Zt(B(x2 − z0, r)) = 0) − P (Zt(B(x1 − z0, r)) = 0)
= Pz0 (Zt(B(x2, r)) = 0) − Pz0 (Zt(B(x1, r)) = 0) .

Then, by going through similar steps as (3.1)-(3.3), we obtain

w(t, z0) ≤
∫ t

0

∫
S2

w(u, y)p̃(t − u, z0, y)dy 2βdu ≤
∫ t

0
F (u)2βdu.

This implies that

sup
z∈S2

w(t, z) = F (t) ≤
∫ t

0
F (u)2βdu.

Then, by Grönwall’s inequality we conclude that F (t) ≤ 0. This implies that w(t, 0) ≤ 0.
But, w(t, 0) ≥ 0 by definition. Therefore, w(t, 0) = 0, that is, g(t, x2) − g(t, x1) ≤ 0, which
means that g(t, x1) ≥ g(t, x2) as claimed. �

Next, we list two well-known results; the first one is about the global growth of branching
systems, and the second one about the large-time asymptotic probability of atypically large
Brownian displacements. These results will be useful in the proofs of the main theorems.
For the proofs of Proposition A and Proposition B, see for example [10, Sect. 8.11] and
[16, Lemma 5], respectively.

Proposition A (Distribution of mass in branching systems). For a strictly dyadic continuous-
time branching process N = (Nt)t≥0 with constant branching rate β > 0, the probability
distribution at time t is given by

P (Nt = k) = e−βt(1 − e−βt)k−1, k ≥ 1,

from which it follows that
P (Nt > k) = (1 − e−βt)k. (3.4)

Proposition B (Linear Brownian displacements). Let X = (X(t))t≥0 represent a stan-
dard d-dimensional Brownian motion starting at the origin, and P0 the corresponding
probability. Then, for γ > 0 as t → ∞,

P0

(
sup

0≤s≤t
|X(s)| > γt

)
= exp[−γ2t/2 + o(t)].
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4. Mass in a moving and shrinking ball
We open this section with some terminology that are used often in the proofs below.

Definition 4.1 (SES). A generic function g : R+ → R+ is called super-exponentially
small (SES) if limt→∞ log g(t)/t = −∞.
Definition 4.2 (Overwhelming probability). Let (At)t>0 be a family of events. We say
that At occurs with overwhelming probability as t → ∞ if there are a constant c > 0 and
time t0 such that

P (Ac
t) ≤ e−ct for all t ≥ t0,

where Ac denotes the complement of event A.
Also, for a function g : R+ → R+, we will often use gt = g(t) for notational convenience.

The following lemma says that exponentially few particles in a moving and shrinking ball,
is exponentially unlikely. It constitutes the first step of a two-step bootstrap argument,
which we use to prove the upper bound of (2.1) in Theorem 2.1. The proof of the upper
bound of Theorem 2.1 will sharpen the constant on the right-hand side of (4.1) below.

Lemma 4.3. Let 0 ≤ θ < 1, 0 ≤ k < (1 − θ2)/d, r0 > 0, and e be a unit vector in Rd. Let
x : R+ → R+ and r : R+ → R+ be defined by x(t) = θ

√
2βt and r(t) = r0e−βkt. For t ≥ 0,

define Bt = B(x(t)e, r(t)). Then, for each 0 ≤ a < 1 − θ2 − kd, there exists a constant
c = c(β, d, θ, k, a) > 0 such that

lim sup
t→∞

1
t

log P
(
Zt(Bt) < eβat

)
≤ −c. (4.1)

Remark 4.4. Note that B = (Bt)t≥0 represents a linearly moving and exponentially
shrinking ball. Using a many-to-one formula, we have

E[Zt(Bt)] = E[Zt(Rd)] × p(t, Bt) = eβt × 1
(2πt)d/2

∫
Bt

e−|x|2/(2t)dx

= eβt(1−θ2−kd)+o(t), (4.2)
where p(t, A) is as before the Brownian transition probability from the origin to the Borel
set A at time t. As reflected by (4.2), the growth rate of Zt(Bt) consists of three pieces:
the first term in the exponent on the right-hand side of (4.2) contributes positively and is
simply the growth rate of the total mass of BBM, the second and third terms contribute
negatively to the exponent, and come from a ‘one-particle picture,’ where a Brownian
particle has linear displacement and falls inside a specified ball of exponentially decaying
radius. Since a < 1 − θ2 − kd in the lemma above, a is an atypically small exponent for
the mass in Bt at time t.
Proof. To start the proof, for 0 ≤ a < 1 − θ2 − kd and t > 0, let

At :=
{

Zt(Bt) < eβat
}

,

and choose 0 < δ < 1 small enough so as to satisfy
a < 1 − θ2 − kd − δ.

Consider the ball B(xte, r0) so that Bt ⊆ B(xte, r0) for all t > 0. Next, for t > 0, define
the event

Et :=
{

Zt−1 (B(xte, r0)) ≥ exp
[
β(1 − θ2 − δ)t

]}
,

and estimate
P (At) ≤ P (At | Et) + P (Ec

t ). (4.3)
Using Theorem B, since β(1 − θ2 − δ) is an atypically small exponent for the mass inside
B(xte, r0) at time t − 1, for all large t, P (Ec

t ) can be bounded from above as
P (Ec

t ) ≤ e−c1t (4.4)
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for some c1 = c1(β, θ, δ) > 0. (Note that δ = δ(d, θ, k, a).) Next, we show that P (At | Et)
on the right-hand side of (4.3) is SES in t.

Conditional on the event Et, there are at least exp
[
β(1 − θ2 − δ)t

]
particles in B(xte, r0)

at time t − 1. Apply the branching Markov property at time t − 1. For a lower bound
on the mass inside Bt at time t, neglect possible branching of the particles present in
B(xte, r0) at time t − 1 over the period [t − 1, t], and suppose that each one evolves as
an independent Brownian particle starting from her position at time t − 1. A standard
calculation yields, uniformly over x ∈ B(0, r0),

p(1, x, B(0, rt)) =
∫

B(0,rt)
p(1, x, y)dy = 1

(
√

2π)d

∫
B(0,rt)

e−|y−x|2/2dy

≥ e−(r0+rt)2/2

(
√

2π)d
vol (B(0, rt))

≥ e−(2r0)2/2

(
√

2π)d
ωdrd

t = c2 exp[−β(kd)t]

for some constant c2 > 0, and we have used in the second inequality that rt ≤ r0 for all
t > 0. By translation invariance, uniformly over x ∈ B(xte, r0),

p(1, x, B(xte, rt)) ≥ c2 exp[−β(kd)t].
Now for t > t0, where t0 is large enough, let

pt := c2e−β(kd)t, Mt :=
⌈
eβ(1−θ2−δ)t

⌉
,

and let Yt be a random variable, which under the law Q, has a binomial distribution with
parameters Mt and pt. (Here, pt is the probability of ‘success,’ and Mt is the number of
trials.) Note that each particle in B(xte, r0) at time t − 1 moves independently of others
over [t − 1, t], and that conditional on Et there are at least Mt particles in B(xte, r0) at
time t − 1. Therefore, it follows that

P (At | Et) = P
(
Zt(B(xte, rt)) < eβat

∣∣Zt−1(B(xte, r0)) ≥ Mt

)
= E

[
PZt−1

(
Z1(B(xte, rt)) < eβat

) ∣∣ Zt−1(B(xte, r0)) ≥ Mt

]
≤ sup

(y1,...,yMt )∈
∏Mt

i=1 B(xte,r0)
P∑Mt

i=1 δyi

(
Z1(B(xte, rt)) < eβat

)
≤ Q(Yt ≤ eβat), (4.5)

where we use
∏n

i=1 Ai to denote the Cartesian product of sets (Ai)1≤i≤n, use Pµ for the
law of a BBM starting with the discrete measure µ =

∑n
i=1 δxi , and associate Zt with the

discrete measure
∑Nt

i=1 δZi
t

with Zi
t denoting the position of the ith particle alive at time

t. We bound Q(Yt ≤ eβat) from above via a standard Chernoff bound as

Q(Yt ≤ eβat) ≤ e−ptMt

(
eptMt

eβat

)eβat

= exp
[
−c2e−β(kd)t

⌈
eβt(1−θ2−δ)

⌉]ec2e−β(kd)t
⌈
eβt(1−θ2−δ)

⌉
eβat

eβat

. (4.6)

It follows from (4.6) that for all large t,

Q(Yt ≤ eβat) ≤ exp
[
−c2eβt(1−θ2−kd−δ)

]
exp

(
βteβat

)
,

which is SES in t since a < 1 − θ2 − kd − δ by the choice of δ. Therefore, it follows from
(4.5) that P (At | Et) is SES in t as well. This completes the proof in view of (4.3) and
(4.4). �
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4.1. Proof of Theorem 2.1
Theorem 2.1 is proved in the same spirit as [14, Thm. 1]. For the lower bound, we find

a strategy that realizes the desired event with optimal probability on a logarithmic scale.
The proof of the upper bound can be viewed as the second step of a bootstrap argument,
whose first step was completed by Lemma 4.3; it sharpens the constant on the right-hand
side of (4.1) so as to show that the strategy that gives the lower bound is indeed optimal.

4.1.1. Proof of the lower bound. Fix 0 ≤ θ < 1, 0 ≤ k < (1−θ2)/d, and a unit vector
e. For 0 ≤ a < 1 − θ2 − kd and t ≥ 0, define the event

At =
{

Zt(Bt) < eβat
}

,

and define
σ̄ = σ̄(θ, k, a) = 1 − (a + kd)/2 −

√
((a + kd)/2)2 + θ2,

which is chosen so that (1 − σ̄)2 − (a + kd)(1 − σ̄) = θ2. Let 0 < σ ≤ σ̄ and ε > 0. Let Ft

be the event that in the time interval [0, σt], the branching is completely suppressed and
the initial Brownian particle is moved to a point whose coordinate in the direction of e is
less than −d(t), where

d(t) :=
(√

(1 − σ)2 − (a + kd)(1 − σ) − θ + ε

)√
2βt.

That is,
Ft = {Nσt = 1, ⟨Xσt, e⟩ < −d(t)} ,

where Xσt is the position of the initial particle at time σt and ⟨·, ·⟩ is the standard inner
product in Rd. Then, since ⟨X·, e⟩ is equal in law to a one-dimensional Brownian motion,
by using the Brownian transition density p(t, 0, x) = (2πt)−1/2e−x2/(2t) in d = 1 to find the
asymptotic behavior as t → ∞ of p(σt, 0, (−∞, −d(t))) = (2πσt)−1/2 ∫−d(t)

−∞ e−x2/(2σt)dx,
and using the independence of branching and motion mechanisms of BBM, this partial
strategy over [0, σt] has probability

P (Ft) = exp

−β

σ +

(√
(1 − σ)2 − (a + kd)(1 − σ) − θ + ε

)2

σ

 t + o(t)

 , (4.7)

where the first term under the exponent comes from suppressing the branching, and the
second term from the linear Brownian displacement. By the Markov property applied at
time σt, it is clear that P (At | Ft) is the same as the probability that a BBM starting
with a single particle at position Xσt contributes a mass of less than eβat to Bt at time
(1 − σ)t. Since the distance between Xσt and the center of Bt is at least

d(t) + θ
√

2βt =
(√

(1 − σ)2 − (a + kd)(1 − σ) + ε

)√
2βt

conditional on the event Ft, the Markov inequality yields

P (Ac
t | Ft) = P

(
Zt(Bt) ≥ eβat | Ft

)
≤ E[Zt(Bt) | Ft]

eβat

≤
exp

[(
β(1 − σ) − 1

2

(√
(1−σ)2−(a+kd)(1−σ)+ε

)2
(
√

2β)2

1−σ − βkd

)
t + o(t)

]
eβat

, (4.8)

where we have used the Markov property and (4.2) in the last inequality. Now since

β(1 − σ) − 1
2

(√
(1 − σ)2 − (a + kd)(1 − σ) + ε

)2
(
√

2β)2

1 − σ
− βkd < βa,
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(4.8) implies that P (At | Ft) = exp[o(t)]. Then, from the estimate P (At) ≥ P (Ft)P (At |
Ft) and (4.7), it follows that

lim inf
t→∞

1
t

log P (At) ≥ −β

σ +

(√
(1 − σ)2 − (a + kd)(1 − σ) − θ + ε

)2

σ

 . (4.9)

Let ε → 0, and optimize the right-hand side of (4.9) over σ ∈ (0, σ̄] to complete the proof
of the lower bound.

4.1.2. Proof of the upper bound. We refer the reader to the proof of the upper
bound of [14, Thm. 1]; simply change the parameter a by a + kd in the equations (19),
(21), (24)-(26) therein. The proof of the upper bound of Theorem 2.1 is otherwise identical
to that of [14, Thm. 1]. We note that in the present work a similar (but not identical)
technique is used later for the proof of the upper bound of Theorem 2.4. Therefore, to
avoid duplication, here we simply refer the reader to the proof of [14, Thm. 1].

5. Density of BBM
In this section, we prove Theorem 2.4. The lower bound is a direct consequence of

Theorem 2.1. The proof of the upper bound uses a method similar to that of [8, Thm. 1]
and [14, Thm. 1], along with some geometric arguments. In the proofs below, 0 < θ < 1,
0 ≤ k < (1 − θ2)/d and r0 > 0 are fixed, and rt = r0 e−βkt for t ≥ 0.

5.1. Theorem 2.4 – Proof of the lower bound
Let 0 < θ′ < θ. Then, 0 ≤ k < (1 − θ′2)/d as well. For t ≥ 0, let Bt := B(xte, rt), where

xt = θ′√2βt, and e = (1, 0, . . . , 0) is the unit vector in the direction of the first coordinate.
Then, by Theorem 2.1,

P (Zt(Bt) = 0) = exp
[
−β I(θ′, k, 0) + o(t)

]
.

Since {Zt(Bt) = 0} ⊆ Ar
t =

{
supp(Z(t)) is not rt-dense in B(0, θ

√
2βt)

}
for all large t, it

follows that

lim inf
t→∞

1
t

log P (Ar
t ) ≥ −βI(θ′, k, 0).

Let θ′ → θ and use the continuity of I(θ′, k, 0) in θ′ to complete the proof.

5.2. Theorem 2.4 – Proof of the upper bound
Throughout this proof, we use

Bt := B(θ
√

2βte, r0), Bt := B(0, θ
√

2βt).

The proof is broken into three parts for better readability. The first two parts are on
the rt-density of BBM only within Bt. The last part extends the rt-density of BBM to
the entire subcritical ball Bt. The first part is a suitable modification of the argument
that was used to prove [14, Thm. 1], whereas the other two parts are based on Euclidean
geometry. In the rest of the proof, fix the dimension d, and let

nt := 2d
⌈√

d eβkt
⌉d

. (5.1)
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5.2.1. Part I: Any nt-collection of balls within Bt. Let (xj : 1 ≤ j ≤ nt) be any
collection of nt points in Bt, where we suppress the t-dependence of xj for ease of notation.
For each j, define

Bj
t := B(xj , rt/(2

√
d))

so that each Bj
t is a ball with center lying in Bt. For t > 0 and 1 ≤ j ≤ nt, define the

events
Aj

t := {Zt(Bj
t ) = 0}, At :=

⋃
1≤j≤nt

Aj
t .

Observe that At is the event that at least one Bj
t is empty at time t. Recall that Nt =

Zt(Rd), and for t > 1 define the random variable

ϕt = sup {σ ∈ [0, 1] : Nσt ≤ ⌊t⌋} .

Observe that for x ∈ [0, 1], we have {ϕt ≥ x} ⊆ {Nxt ≤ ⌊t⌋ + 1}. We start by conditioning
on ϕt. Recall the definition of σ̄ from (2.3), and set

σ̄ := σ̄(θ, k, 0) = 1 − (kd)/2 −
√

(kd/2)2 + θ2. (5.2)

Note that σ̄ > 0 since kd < 1 − θ2. Choose n0 ∈ N large enough so that ⌊σ̄n0 − 1⌋ − 1 ≥ 0.
Then, for every n ≥ n0,

P (At) =
⌊σ̄n−1⌋−1∑

i=0
P

(
At ∩

{
i

n
≤ ϕt <

i + 1
n

})
+ P

(
At ∩

{
ϕt ≥ ⌊σ̄n − 1⌋

n

})

≤
⌊σ̄n−1⌋−1∑

i=0
exp

[
−β

i

n
t + o(t)

]
P

(i,n)
t (At) + exp

[
−β

(
σ̄ − 2

n

)
t + o(t)

]
, (5.3)

where we use (3.4), which implies P (N(i/n)t ≤ ⌊t⌋ + 1) = exp[−β(i/n)t + o(t)], to control
P ( i

n ≤ ϕt < i+1
n ), and introduce the conditional probabilities

P
(i,n)
t (·) = P

(
·
∣∣∣∣ i

n
≤ ϕt <

i + 1
n

)
, i = 0, 1, . . . , ⌊σ̄n − 1⌋ − 1.

For each pair (i, n), where n ≥ n0 and i = 0, 1, . . . , ⌊σ̄n − 1⌋ − 1, define the interval

I(i,n) := [i/n, (i + 1)/n),

and the radius

R
(i,n)
t :=

√
2β

√(1 − i + 1
n

)2
− kd

(
1 − i + 1

n

)
− θ − ε

 t, (5.4)

where ε = ε(n) > 0 is chosen small enough so that (5.4) is positive for each i =
0, 1, . . . , ⌊σ̄n − 1⌋ − 1.† By definition of ϕt, conditional on {ϕt ∈ I(i,n)}, there exists
an instant in [ti/n, t(i + 1)/n), namely ϕtt, at which there are exactly ⌊t⌋ + 1 particles in
the system. Let E

(i,n)
t be the event that among the ⌊t⌋ + 1 particles alive at ϕtt, there is

at least one outside B
(i,n)
t := B

(
0, R

(i,n)
t

)
. Estimate

P
(i,n)
t (At) ≤ P

(i,n)
t

(
E

(i,n)
t

)
+ P

(i,n)
t

(
At | [E(i,n)

t ]c
)

. (5.5)

†Indeed, (1−(i+1)/n)2 −kd(1−(i+1)/n) ≥ (1−σ̄+(1/n))2 −kd(1−σ̄+(1/n)), where the inequality comes
from the ‘worst case,’ where i = ⌊σ̄n − 1⌋ − 1. On the other hand, observe that (1 − σ̄)2 − kd(1 − σ̄) = θ2

by the choice of σ̄ (see (5.2)).
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Since the ancestral line of each particle is identically distributed as a Brownian trajectory,
by the independence of branching and motion mechanisms, Proposition B and the union
bound, we have

P
(i,n)
t

(
E

(i,n)
t

)
≤ (⌊t⌋+1) exp

−

(
R

(i,n)
t

)2

2t(i + 1)/n
+ o(t)

 = exp

−

(
R

(i,n)
t

)2

2t(i + 1)/n
+ o(t)

 . (5.6)

Now consider the second term on the right-hand side of (5.5). Recall that Aj
t = {Zt(Bj

t ) =
0} and At =

⋃
1≤j≤nt

Aj
t , and the center of each Bj

t = B(xj , rt/(2
√

d)) lies in Bt. The
union bound gives

P
(i,n)
t

(
At | [E(i,n)

t ]c
)

≤
nt∑

j=1
P

(i,n)
t

(
Aj

t | [E(i,n)
t ]c

)
. (5.7)

We now find a uniform bound on P
(i,n)
t (Aj

t | [E(i,n)
t ]c) over 1 ≤ j ≤ nt. Observe that

d
(i,n)
t := max

x∈Bt, y∈B
(i,n)
t

|x − y| = θ
√

2βt + r0 + R
(i,n)
t

=
√

2β

(√
(1 − (i + 1)/n)2 − kd(1 − (i + 1)/n) − ε

)
t + r0.

(5.8)

Let p
(y,j)
t be the probability that a BBM starting with a single particle at y ∈ Rd con-

tributes no particles to Bj
t at time t. Recall that by Lemma 3.1, the probability of absence

in a ball is monotone increasing in the distance between the center of the ball and the
starting point of the BBM. Hence, since Bj

t = B(xj , rt/(2
√

d)) with xj ∈ Bt for each j,
Lemma 3.1 implies that uniformly over 1 ≤ j ≤ nt and y ∈ B

(i,n)
t ,

p
(y,j)
t(1−(i+1)/n) ≤ P

(
Zt(1−(i+1)/n)

(
B(d(i,n)

t e, rt/(2
√

d))
)

= 0
)

, (5.9)

where e denotes any unit vector in Rd. We now estimate the probability on the right-hand
side of (5.9). Due to (5.8), the mass inside B(d(i,n)

t e, rt/(2
√

d)) at time t(1 − (i + 1)/n) is
typically (see the remark following Lemma 4.3)

exp

β

(1 − i + 1
n

)
−

(√
(1 − (i + 1)/n)2 − kd(1 − (i + 1)/n) − ε

)2

1 − i+1
n

− kd

 t + o(t)

 .

(5.10)
Observe that the exponent in (5.10) is positive, which means 0 is an atypically small expo-
nent for the mass considered above. Hence, with the choice of a = 0 and by substituting
t(1 − (i + 1)/n) for t, Lemma 4.3 implies that there exist c > 0 and t0 such that

P
(
Zt(1−(i+1)/n)

(
B(d(i,n)

t e, rt/(2
√

d))
)

= 0
)

≤ e−ct for all t ≥ t0. (5.11)

Note that in applying Lemma 4.3 above, the parameters θ and k in Lemma 4.3 were taken
as √

(1 − (i + 1)/n)2 − kd(1 − (i + 1)/n) − ε

1 − (i + 1)/n
and k

1 − (i + 1)/n
,

respectively. Now, by (5.11), for t ≥ t0 and s > t,

P
(
Zs(1−(i+1)/n)

(
B(d(i,n)

s e, rs/(2
√

d))
)

= 0
)

≤ e−cs. (5.12)

Then, since d
(i,n)
s > d

(i,n)
t and rs < rt, using Lemma 1, and then the containment

B(d(i,n)
t e, rs/(2

√
d)) ⊆ B(d(i,n)

t e, rt/(2
√

d)),
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we may continue (5.12) with

P
(
Zs(1−(i+1)/n)

(
B(d(i,n)

t e, rt/(2
√

d))
)

= 0
)

≤ e−ct. (5.13)

By the strong Markov property applied at time ϕtt and the independence of particles
present at that time, each particle alive at time ϕtt initiates a BBM in its own right,
independently of others. Moreover, recall that t(1 − ϕt) ≥ t(1 − (i + 1)/n) conditional on
the event ϕt ∈ I(i,n), and there are ⌊t⌋ + 1 particles in B

(i,n)
t at time ϕtt conditional on

the event [E(i,n)
t ]c. Then, applying the strong Markov property at time ϕtt, (5.9), (5.11)

and (5.13) imply that for all large t and 1 ≤ j ≤ nt,

P
(i,n)
t

(
Aj

t | [E(i,n)
t ]c

)
≤
(
e−ct

)⌊t⌋+1
≤ e−ct2

, (5.14)

which is SES in t. It follows from (5.7) and (5.14) that

P
(i,n)
t

(
At | [E(i,n)

t ]c
)

≤ nt e−ct2 =
⌈
2
√

d eβkt
⌉d

e−ct2 = e−ct2+o(t2). (5.15)

This means, given [E(i,n)
t ]c, it is extremely likely (to the extent that the complement event

has SES probability in t) that for each 1 ≤ j ≤ nt there is at least one particle in B
(i,n)
t at

time ϕtt such that the sub-BBM it initiates contributes a particle to Bj
t at time t. From

(5.4), (5.5), (5.6) and (5.15), we obtain

P
(i,n)
t (At) ≤ exp

−β

(√
(1− i+1

n )2−kd(1− i+1
n )−θ−ε

)2

(i+1)/n t + o(t)

+ exp
[
−ct2 + o

(
t2)] . (5.16)

Substituting (5.16) into (5.3), and optimizing over i ∈ {0, 1, . . . , ⌊σ̄n − 1⌋ − 1} gives

lim sup
t→∞

1
t

log P (At) ≤

− β

 min
i∈{0,1,...,⌊σ̄n−1⌋−1}


i

n
+

(√(
1 − i+1

n

)2
− kd

(
1 − i+1

n

)
− θ − ε

)2

(i + 1)/n


∧
(

σ̄ − 2
n

)
 ,

(5.17)

where we use a ∧ b to denote the minimum of a and b. Now first let ε → 0, and set
σ = (i + 1)/n to obtain

lim sup
t→∞

1
t

log P (At) ≤ −β min
σ∈
{

1
n

, 2
n

,...,
⌊σ̄n−1⌋

n

}
[
σ + (

√
(1 − σ)2 − kd(1 − σ) − θ)2

σ
− 1

n

]
.

Then, let n → ∞ to expand the set over which the minimum is taken to (0, σ̄) ∩ Q, and
use the continuity of the functional form from which the minimum is taken to obtain

lim sup
t→∞

1
t

log P (At) ≤ −β inf
σ∈(0,σ̄]

[
σ + (

√
(1 − σ)2 − kd(1 − σ) − θ)2

σ

]
= −βI(θ, k, 0).

(5.18)
(Note that we have not written the last term on the right-hand side of (5.17) explicitly
in (5.18), because once n → ∞, this term becomes σ̄, which is attained by the function
inside the infimum on the right-hand side of (5.18) if we set σ = σ̄.)
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Remark 5.1. We note that applying a rough union bound on P
(
∪1≤j≤ntA

j
t

)
naively

along with Theorem 2.1 gives

P (At) = P
(
∪1≤j≤ntA

j
t

)
≤ nt max

1≤j≤nt

P (Aj
t ) = exp[−βt(I(θ, k, 0) − kd) + o(t)],

which is not the desired upper bound. Indeed, this is not surprising, because the optimal
strategy to keep a small ball Bj

t empty at time t is the same for all small balls (so, it is a
strategy that works jointly for all Bj

t , 1 ≤ j ≤ nt) contained in the ball of fixed radius r0.
That is, no branching and moving at a linear distance from the origin in the first interval
[0, σt].

5.2.2. Part II: Choosing the nt-collection of balls within Bt. We now choose the
collection of points (xj : 1 ≤ j ≤ nt) in Bt = B(θ

√
2βte, r0) in a useful way. Let C(0, r0)

be the cube centered at the origin with side length 2r0 so that B(0, r0) is inscribed in
C(0, r0). Recall that for t > 0,

nt := 2d
⌈√

d eβkt
⌉d

, rt = r0e−βkt.

Consider the simple cubic packing of C(0, r0) with balls of radius rt/(2
√

d). That is, for
m ∈

[
−
⌈√

deβkt
⌉

,
⌈√

deβkt
⌉

− 1
]d

∩ Zd =: S, introduce the cubes

Cm :=
{

z ∈ Rd : mi
rt√
d

≤ zi ≤ (mi + 1) rt√
d

}
,

where we use x = (x1, . . . , xd) ∈ Rd to denote the coordinates of a point, and inscribe a
ball of radius rt/(2

√
d) inside each of these cubes. Then,⋃

m∈S
Cm ⊃ C(0, r0),

and hence |S| = nt cubes are sufficient to completely pack C(0, r0), say with centers
(yj : 1 ≤ j ≤ nt). For each j, let B̂j = B(yj , rt/(2

√
d)). (We suppress the t-dependence

in yj and B̂j for ease of notation.) Now consider a simple cubic packing of Rd by balls
(Bj : j ∈ Z+) of radius R > 0. That is, for n ∈ Zd and any fixed y ∈ Rd, introduce the
cubes

Cn :=
{

z ∈ Rd : ni(2R) ≤ zi − yi ≤ (ni + 1)(2R)
}

,

so that ∪n∈ZdCn = Rd, and inscribe a ball of radius R inside each of these cubes. Let
x ∈ Rd be any point. Then,

min
j

max
z∈Bj

|x − z| < max
x,y∈[0,2R]d

|x − y| = 2R max
x,y∈[0,1]d

|x − y| = 2R
√

d.

Since the packing ball radius is rt/(2
√

d) in our case, it follows that
for all x ∈ B(0, r0), min

1≤j≤nt

max
z∈B̂j

|x − z| < rt.

For 1 ≤ j ≤ nt, let xj = yj + θ
√

2βte, and set as before Bj
t = B(xj , rt/(2

√
d)). Then, by

translation invariance,
for all x ∈ Bt, min

1≤j≤nt

max
z∈Bj

t

|x − z| < rt. (5.19)

(We take the distance between a point in space and the farthest point of the packing
ball that is closest to it to cover the ‘worst’ case, corresponding to Z hitting the farthest
point of the closest Bj

t .) Define Ât := {supp(Z(t)) is not rt-dense in Bt} . Then, with the
choice of the collection (xj : 1 ≤ j ≤ nt), the event At from part I of the proof satisfies
Ât ⊆ At. Indeed, if (At)c occurs, then by the definition of the event At, Zt(Bj

t ) > 0 for
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each 1 ≤ j ≤ nt, which, by (5.19), implies that each point in Bt has a particle of Z(t)
within distance less than rt. Then, (5.18) implies that

lim sup
t→∞

1
t

log P
(
Ât

)
≤ −βI(θ, k, 0). (5.20)

5.2.3. Part III: Extension from Bt to the entire subcritical ball. By a geometric
argument similar to the one in part II of this proof, we extend the result on the density of
BBM in Bt to the density in the entire subcritical ball Bt. Recall that ρt = θ

√
2βt, and

define

mt := 2d
⌈√

d ρt
1
r0

⌉d

.

Let (x̄j : 1 ≤ j ≤ mt) be any collection of mt points in Bt := B(0, ρt). For each j, define
B

j
t := B(x̄j , r0). Next, for t > 0 and 1 ≤ j ≤ mt, define the events

Ej
t := {supp(Z(t)) is not rt-dense in B

j
t }, Et :=

⋃
1≤j≤mt

Ej
t .

Recall that Bt = B(ρte, r0), and |x̄j | ≤ ρt for all j. Then, since the function I = I(θ, k, a)
is decreasing in parameter θ when the other two parameters are fixed, it follows from
(5.20) that for each j ∈ {1, . . . , mt},

lim sup
t→∞

1
t

log P
(
Ej

t

)
≤ −βI(θ, k, 0).

Then, using the union bound and that mt is only a polynomial factor, we obtain

lim sup
t→∞

1
t

log P (Et) ≤ lim sup
t→∞

1
t

log
[
mt max

1≤j≤mt

P
(
Ej

t

)]
≤ −βI(θ, k, 0). (5.21)

We now choose the collection (x̄j : 1 ≤ j ≤ mt) in a useful way. Let C(0, ρt) be the cube
centered at the origin with side length 2ρt. The simple cubic packing of C(0, ρt) requires
at most mt balls of radius r0/(2

√
d), say with centers (ȳj : 1 ≤ j ≤ mt). By an argument

similar to the one in part II of this proof, one can show that

∀ x ∈ B(0, ρt), min
1≤j≤mt

|x − x̄j | < r0,

which implies that
B(0, ρt) ⊆

⋃
1≤j≤mt

B(x̄j , r0).

Here, we are enlarging the packing ball radius from r0/(2
√

d) to r0 so that every point
in B(0, ρt) falls inside at least one enlarged ball B(x̄j , r0). Then, with the choice of the
collection (x̄j : 1 ≤ j ≤ mt), the event Et from above satisfies

Ar
t = {supp(Z(t)) is not rt-dense in B(0, ρt)} ⊆

⋃
1≤j≤mt

Ej
t = Et,

and (5.21) implies that

lim sup
t→∞

1
t

log P (Ar
t ) ≤ −βI(θ, k, 0).

This completes the proof of the upper bound of Theorem 2.4.

6. Enlargement of BBM
For a BBM Z = (Z(t))t≥0, recall the definition of its r-enlargement at time t as

Zr
t :=

⋃
x ∈ supp(Z(t))

B(x, r).
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6.1. Proof of Theorem 2.8
We will show that for every ε > 0 there exist c1 > 0 and c2 > 0 such that for all large t,

P

(vol (Zrt
t )

td
≤ [2β(1 − kd − ε)]d/2ωd

)
≤ e−c1t, (6.1)

and
P

(vol (Zrt
t )

td
≥ [2β(1 − kd + ε)]d/2ωd

)
≤ e−c2t. (6.2)

Let ε > 0 and set θ = θ1 =
√

1 − kd − ε/2 in Theorem 2.4, which gives ρt = θ1
√

2βt =√
2β(1 − kd − ε/2)t. Then, 0 ≤ k < (1 − θ2

1)/d = k + ε/(2d) so that Theorem 2.4 applies,
and gives

P (Ar
t ) = exp[−β I(θ1, k, 0)t + o(t)].

This proves (6.1) since for all large t,
{

vol (Zrt
t ) /td ≤ [2β(1 − kd − ε)]d/2ωd

}
⊆ Ar

t . In-
deed, if (Ar

t )c = {supp(Z(t)) is rt-dense in B(0, ρt)} occurs, then
⋃

x∈supp(Z(t)) B(x, rt) ⊇
B(0, ρt), which implies that vol(Zrt

t ) ≥ vol(B(0, ρt)) = [2β(1 − kd − ε/2)]d/2tdωd.
To prove (6.2), for θ ≥ 0 and t ≥ 0, let Nθ

t be the set of particles outside B(0, θ
√

2βt)
at time t. Set θ2 =

√
1 − kd + ε/2. Then,

E(|Nθ2
t |) = exp[βt(1 − θ2

2) + o(t)] = exp[βt(kd − ε/2) + o(t)],
and the Markov inequality yields

P
(
|Nθ2

t | ≥ exp[βt(kd − ε/4) + o(t)]
)

≤ exp[−βtε/4 + o(t)]. (6.3)

For an upper bound on vol (Zrt
t ), suppose that B(0, θ2

√
2βt) ⊆ Zrt

t and that the balls
of radius rt centered at the positions of the particles at time t are all disjoint from one
another. Since the volume of a ball of radius rt is ωd(r0e−βkt)d, by choosing ε with ε/4 < k,
it then follows from (6.3) that

P
(
vol
(
Zrt

t ∩ (B(0, θ2
√

2βt))c
)

≥ ωdrd
0 exp[−βtε/4]

)
≤ P

(
|Nθ2

t |vol(B(0, rt)) + ωd

[
(rt + θ2

√
2βt)d − (θ2

√
2βt)d

]
≥ ωdrd

0 exp[−βtε/4]
)

= P
(
|Nθ2

t | ≥ exp[βt(kd − ε/4) + o(t)]
)

≤ exp[−βtε/4 + o(t)],

where we used that (rt + θ2
√

2βt)d − (θ2
√

2βt)d ≤ rte
o(t), and used Ac to denote the com-

plement of a set A in Rd. This implies (6.2), and completes the proof of Theorem 2.8.
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