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Abstract 

For many years, two toll bridges served commuter demand to cross the strait called Bosporus 

in Istanbul, Turkey. An underground connection called the Eurasian tunnel had been recently launched 

to relieve the strait's traffic. We study a simple transportation model that incorporates the forces that 

have come into play after the opening of the Eurasian tunnel. We find that for welfare maximisation, 

the premium paid for using the tunnel should be fixed in the two directions and not excessive. The 

current toll regime violates these features, and we recommend its amendment in light of our findings. 
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Öz 

Uzun yıllar boyunca, İstanbul Boğazı’nı geçmek isteyen taşıtlara iki ücretli köprü hizmet verdi. 

Yakın bir zaman önce ise, Boğaz’da oluşan trafiği rahatlatmak amacı ile Avrasya tüneli adı verilen bir 

yeraltı bağlantısı hizmete açıldı. Bu çalışmada, Avrasya tünelinin açılmasından sonra devreye giren 

güçleri bünyesinde barındıran basit bir ulaşım modelini ele aldık. Yaptığımız analizler, refahın 

maksimizasyonu için, tünel kullanımı için ödenen primin iki yönde aynı olması ve aşırı olmaması 

gerektiğini ortaya koyuyor. Mevcut geçiş ücret rejimi bu özellikleri ihlal etmekte. Bulgularımızın 

ışığında mevcut geçiş ücret rejiminde iyileştirme yapılmasını öneriyoruz. 

Anahtar Sözcükler : Trafik Sıkışıklığı, Ücretli Köprü, Yarı Kamusal Düopol, Regülasyon, 

Boğaziçi. 
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1. Introduction 

Traffic congestion is a big problem in Istanbul, Turkey. According to TomTom’s 

annually released Traffic Index, Istanbul was the 5th most congested city in the world in 2020 

and the most congested one in 2015 (among over 400 cities). In a recent survey study by 

Aydın et al. (2019), Istanbulites ranked traffic congestion as the gravest problem of the town, 

above unemployment, urban transformation, and the shortcomings in education and urban 

infrastructure. The city’s annual traffic congestion cost is around £2 billion. 

The city’s most congested traffic is probably over the Bosporus, a narrow strait that 

divides the city into its Asian and European sides. Of the city’s 15 million residents, about 

one-third live on the Asian and two-thirds on the European side. As many residents live and 

work on two different sides, there is a high daily commuter demand to cross the strait. Until 

2016, this demand had been served by two bridges. To relieve the strait’s traffic, an 

underground connection was launched in December 2016, called the Eurasian tunnel, 

located in the densely populated south of the city1. But the strait’s traffic problem is far from 

over, especially in rush hours. As a reference for comparison, the average daily number of 

vehicles using the two bridges in both directions was 386,400 in 2015 and 319,710 in 2018; 

for details, see (Kara Yolları Genel Müdürlüğü, 2019; 2016). 

In this paper, we study optimal toll design for Bosporus crossings. Tolling vehicles 

on congested roads is a common practice around the world. It makes economic sense since 

a vehicle’s use of a congested highway leads to negative externalities: for other commuters, 

such as longer waiting hours, mental distress, and more fuel costs, and the rest of the society, 

as air pollution. Therefore, a toll on a congested road is a corrective tax, preventing overuse 

beyond the efficient level. As might be expected, in Istanbul, too, vehicles are tolled on the 

strait since the first bridge’s inception. 

Our research study is spurred by the changes brought in by the opening of the 

Eurasian tunnel. Before then, the commuter demand to cross the strait was served by the two 

bridges, which the government owns and operates via its agency, Turkey’s General 

Directorate of Highways (GDH). The Eurasian tunnel, however, was funded by private 

enterprise under the build-operate-transfer model, and it now has a private operator. This 

does not mean that its private operator has complete control over the tunnel’s toll scheme. It 

has “guaranteed minimum revenue” and “profit-sharing for parts exceeding guaranteed 

revenue” arrangements with the government. Therefore, the tunnel’s terms of operation are 

settled in negotiations between the government and the private operator. 

 
1 In 2016, a third bridge across the strait has become operational, too. But in the rest of this paper, we focus our 

attention on the two bridges and the Eurasian tunnel. We assume away the third bridge for two reasons: Frist, 

the third bridge is located in the sparsely populated north of the city, and it is primarily used for transit traffic 
by buses and long vehicles rather than by Istanbulites. Second, assuming the third bridge helps simplify our 

analysis without losing the main insights. 
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For many years, the government has used a unidirectional toll regime on the two 

bridges, meaning that vehicles are tolled only when they cross Europe to Asia. Indeed, 

tolling vehicles only in one direction made much sense until 2016: When alternative 

crossings were absent, a car crossing the two bridges in one direction had to come back also 

by using the two bridges. Therefore, tolling a vehicle 𝑇 Liras in each direction was 

equivalent in revenue to tolling the vehicle 2𝑇 Liras only from Europe to Asia. But the 

unidirectional toll regime had its advantages: It helped eliminate the need to install and 

operate tolling equipment from Asia to Europe. In this direction, the traffic flow was not 

impeded by tolling. 

But the opening of the Eurasian tunnel now casts doubt on the effectiveness of a 

unidirectional toll regime on the two bridges. Since its inception, in the tunnel, vehicles are 

tolled at a fixed rate in both directions. Furthermore, the tunnel’s toll rate is much higher 

than the toll rate on the two bridges. To put our discussion in perspective, Table 1 below 

presents the toll rates in 2021 for standard automobiles in the tunnel and on the two bridges. 

Table: 1 

Toll Rates for A Standard Automobile on the Two Bridges and in the Tunnel 

 Europe → Asia Asia → Europe Roundtrip 

Two bridges 13.25 Liras toll-free 13.25 Liras 

The Eurasian tunnel 46.00 Liras 46.00 Liras 92.00 Liras 

Premium paid for the Eurasian tunnel 32.75 Liras 46.00 Liras  

As seen in Table 1, commuters face asymmetric incentives under the effective toll 

schemes when they cross from Europe to Asia and from Asia to Europe: The premium paid 

for the tunnel is 32.75 Liras from Europe to Asia and 46.00 Liras from Asia to Europe. 

Public criticism is also that the tunnel’s toll rate is too high. The opening of the Eurasian 

tunnel raises several public policy questions: One question is about the fair distribution of 

toll revenue. Note that under the effective toll schemes, a commuter who crosses from 

Europe to Asia via the tunnel may divert to the two bridges in the opposite direction since 

from Asia to Europe, the bridges are toll-free. But this commuter does not pay a toll to the 

government, although in her roundtrip, she uses both the tunnel and one of the two bridges. 

But the more important question is about the efficiency of the distribution of the strait’s 

traffic load. The premium paid for the tunnel is too high, even in the direction from Europe 

to Asia. Arguably, this situation causes too many vehicles to divert to the bridges, leading 

to overcongestion (congestion beyond the efficient level) and loss in social welfare. 

This paper aims to study the above issues and offer guidance on public policy. To 

this end, we introduce a transportation model. Our model is simple, yet it captures the 

problem’s main ingredients. 

We assume that there are two crossings connecting the two sides of a city, 𝐴 and 𝐸-

as per Asia and Europe. Crossing 1 is privately operated, as per the Eurasian tunnel, and 
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crossing 2 is publicly operated, as per the two bridges2. The two crossings may have different 

capacities. For instance, in Istanbul, in one direction, there are seven lanes on the two bridges 

and two lanes in the tunnel, meaning that the capacity to carry the traffic load is higher on 

the two bridges. 

We assume a continuum of commuters who wish to transport from side A to E. We 

also assume that the model is symmetrically applicable in the opposite direction. Our model 

captures the heterogeneity in commuter preferences by assuming that commuters are of two 

types: type 1 commuters, whose favourite crossing is 1, and type 2 commuters, whose 

favourite crossing is 2. We assume that crossing 1 is “overpreferred” because if each type 

uses its favourite crossing, its traffic density (the mass of commuters divided by capacity) 

becomes higher. In the Bosporus, arguably, the Eurasian tunnel is the preferred crossing 

because its capacity is smaller, and it is located in the densely populated southern part of the 

city. 

In our model, the incentives faced by a commuter are captured through three cost 

items: the rates of toll, the cost of diversion, and the cost of congestion. A commuter using 

crossing 𝑖 pays its rate of toll 𝑇𝑖 . If 𝑖 is not her favourite crossing, she also incurs a diversion 

cost since she is diverting from her optimal route. Finally, the commuter incurs a congestion 

cost. We assume that the rate of congestion cost is a convex function of traffic density. This 

assumption is in line with the triangular traffic flow-density curve, commonly used in the 

transportation literature. In our model, each commuter uses the crossing that minimises her 

aggregate cost. For simplicity, we assume that the demand to cross the strait is inelastic (i.e., 

every commuter crosses the strait). 

The focus of our analysis is (social) welfare maximisation. Since tolls are transferred 

payments, welfare is maximised when the sum of the diversion and congestion costs is 

minimised. Let 𝜇𝑤 denote the welfare-maximizing allocation. Let 𝑇1 and 𝑇2 be the rates of 

tolls for crossings 1 and 2. Thus, 𝑇1 − 𝑇2 is the premium paid for using the overpreferred 

crossing. Among our findings, the two results that are of greatest practical value are as 

follows: In Proposition 1, we show that under 𝜇𝑤, the traffic density is higher at the 

overpreferred crossing (crossing 1). In Proposition 2, we show that there is an optimum 

premium level that induces the allocation 𝜇𝑤. 

Simple as they may seem, Propositions 1 and 2 have important implications regarding 

the design of the Bosporus toll schemes. They show that for welfare maximisation, the 

premium paid for the Eurasian tunnel should be the same in the two directions and not be 

set at an excessive rate. The current practice, however, is diametrically opposed to this 

finding. Under the existing toll schemes, the tunnel’s premium rate is very high and is not 

 
2 We do not introduce a separate crossing for each bridge in our model since doing so will complicate our analysis 

without changing the main insights. 
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the same in the two directions. In light of our findings, we recommend lowering the premium 

paid for the tunnel and setting the same in the two directions3. 

In current practice, as explained above, the government tolls vehicles only on the 

bridges when they cross Europe to Asia. It is worth mentioning that the government need 

not abandon this historical practice. The strait’s traffic flow can optimally be distributed 

across the tunnel and the two bridges while continuing with the historical practice of tolling 

vehicles only when they cross Europe to Asia. As an illustration of this point, for the tunnel, 

suppose that the optimum premium rate is 20 Liras. Also, as in Table 1, suppose that the 

government wants to toll vehicles 13.25 Liras for a roundtrip on the bridges. Then, the 

optimal traffic distribution can be achieved in both directions under the following toll 

regime: On the bridges, vehicles are tolled 13.25 Liras from Europe to Asia and not tolled 

from Asia to Europe. In the tunnel, vehicles are tolled 33.25 Liras from Europe to Asia 

(=13.25+20) and 20 Liras from Asia to Europe (=0+20). 

The rest of the paper is organised as follows: Section 2 presents the relevant literature. 

Section 3 introduces our model. Section 4 presents our results: In Section 4.1, we identify 

the welfare-maximizing allocation. Section 4.2 studies the implementation of the welfare-

maximizing allocation as an equilibrium outcome. In Section 4.3, we obtain closed-form 

solutions in our model under the simplifying assumption that the rate of the congestion cost 

function is linear. In Section 5, we conclude with a summary of our findings. In Appendix 

A, we present the triangular traffic flow-density curve and justify our assumption that the 

rate of congestion function is convex. In Appendix B, we present two proofs omitted from 

the main text. 

2. Related Literature 

In the analysis of our model, we consider two equilibrium notions: In a “regulated 

equilibrium,” we assume that the government controls the toll rates for both crossings. In an 

“unregulated equilibrium,” crossing 1’s toll rate is set by its private operator under the profit-

maximization motive. Our analysis based on the unregulated equilibrium notion relates our 

study to the literature on mixed-oligopoly markets. In a mixed-oligopoly market, several 

profit-maximising firms compete against a welfare-maximizing public enterprise, as 

assumed in our model under the unregulated equilibrium notion. 

Mixed-oligopoly markets are prevalent worldwide in various sectors such as 

healthcare, insurance, banking, energy, steel, postal service, and telecommunications. The 

studies in this literature considered the impact on the welfare of the presence of the public 

enterprise (Anderson et al., 1997; de Fraja & Delbono, 1989; Ishibashi & Matsumura, 2006), 

 
3 The first draft of this article was submitted in late 2021. After the submission, in January 2022, the tolling 

regime for Bosporus crossings in Istanbul was amended. In addition to the usual annual inflation adjustments 

in toll rates, just as for the Eurasian tunnel, on the bridges too, vehicles began to be tolled in both directions at 
a fixed rate. Consequently, the premium paid for using the tunnel was fixed in the two directions, which is in 

line with one of the main conclusions of our analysis in this paper. 
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of the partial privatisation of the public enterprise (Fujiwara, 2007; Matsumura & Kanda, 

2005), of the absence of the entry barriers (Anderson et al., 1997; Matsumura & Kanda, 

2005), and collective bargaining by public employees (Ishibashi & Matsumura, 2006). For 

a survey on mixed-oligopoly games, see Bös (2015). For older surveys, see Condon (1994), 

Nett (1993), and De Fraja and Delbono (1989)4. 

The transportation model in our paper is customised and tailored to study optimal toll 

design for Istanbul’s Bosporus crossings. Therefore, in specific dimensions, it differs from 

earlier mixed-oligopoly studies: In our setting, firms (operators of crossings) have zero-cost 

functions, the number of firms is fixed, and the goods are heterogeneous (i.e., commuters 

have varying preferences over the two crossings). Furthermore, in our setting, firms engage 

in a two-way pricing scheme (i.e., they toll vehicles in both directions). However, the most 

characteristic feature in our setting is that the level of demand influences a consumer’s 

payoff: a commuter’s derived utility from using a crossing decrease when its congestion 

level (i.e., its demand level) is higher. 

We should also note that there is a line of research in the game theory literature that 

studies the congestion of resources. Like our model, self-interested agents route traffic 

through a congested network in routing games. The congestion level on the network’s edge 

increases with the number of agents travelling through that edge. For studies on routing 

games, see Chapter 18 in Nisan et al. (2007) and the references therein. Yet, in these studies, 

resources are free for the users, as opposed to in our setting where commuters pay to use the 

resources (i.e., the two crossings). 

3. Model 

Let 𝐴 and 𝐸 be the two sides of a city, as per Asia and Europe in Istanbul. We assume 

that there is a continuum of commuters [0,1), each with an infinitesimal mass, who wish to 

travel from side 𝐴 to 𝐸. Our model is equally applicable when commuters are to travel in the 

opposite direction. 

Let 1 and 2 be the two crossings that connect the two sides. Crossing 1 is intended to 

stand for the Eurasian tunnel in Istanbul. Crossing 2 is intended to stand for the two bridges. 

For commuters, crossings 1 and 2 are imperfect substitutes: Under ceteris paribus 

conditions (i.e., under similar toll rates and congestion levels), some commuters prefer 

crossing 1 over 2, and others prefer crossing 2 over 1. For instance, a commuter will find it 

more convenient to use crossing 1 if her home and workplace on sides 𝐴 and 𝐸 are closely 

 
4 For other mixed-oligopoly studies, see Merrill and Schneider (1966), Harris and Wiens (1980), Estrin and De 

Meza (1995), Cremer et al. (1989), Matsushima and Matsumura (2003), and Casadesus-Masanell and 
Ghemawat (2006). For mixed-oligopoly studies in the transportation literature, see Qin et al. (2017), Czerny et 

al. (2014), Mantin (2012) and Yang and Zhang (2012). 
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located to the endpoints of crossing 1. A route via crossing 2 then takes longer, leading to 

increased travel time and fuel expenses. 

The heterogeneity in commuter preferences is embodied in our model: We call the 

commuters in the intervals [0, 𝑥) and [𝑥, 1), in order, type 1 and type 2 commuters. A type 𝑖 
commuter’s favourite crossing is crossing 𝑖, and she incurs a diversion cost if forced to 

“divert” to her non-favourite crossing. We assume that the rate of diversion cost, 𝑐 >  0, is 

constant. Thus, a commuter who diverts to her non-favourite crossing incurs a diversion cost 

equal to her “infinitesimal mass” multiplied by 𝑐. This commuter incurs no diversion cost if 

she uses her favourite crossing. 

A crossing’s capacity helps determine the traffic load it can carry without causing 

much traffic congestion. One way to interpret the capacity of a crossing is as being 

proportional to its number of lanes. Nevertheless, other factors may also play a role in 

determining a crossing's capacity, such as the road quality and the capacities of the road 

networks connected to the crossing’s entry and exit points. We normalise the sum of 

capacities of the two crossings to be 1. Let 𝑘 ∈ (0,1) and 1 − 𝑘 be, in order, the capacities 

of crossings 1 and 2. 

The traffic density at a crossing is the ratio of the total mass of commuters using that 

crossing to its capacity. 

We assume that crossing 1 is overpreferred, and crossing 2 is underpreferred, in the 

sense that 𝑥 >  𝑘. In other words, we assume that if every commuter uses her favourite 

crossing, crossing 1’s traffic density, 
𝑥

𝑘
, will be greater than crossing 2’s traffic density, 

1−𝑥

1−𝑘
. 

Notice that the assumption that crossing 1 is overpreferred is in line with the 

presumption that under ceteris paribus conditions (i.e., if toll rates were similar), the 

Eurasian tunnel would be in high demand by Istanbulites. But the analysis in our paper is 

applicable even if this supposition is wrong: If the Eurasian tunnel is the underpreferred 

crossing, we can interpret crossing 2 as the Eurasian tunnel and crossing 1 as standing for 

the two bridges. 

Congestion means the traffic density is too high. In congested traffic, travel times and 

fuel expenses are higher, and commuters suffer mental distress. We group such expenses 

incurred due to congested traffic under the heading congestion cost. The congestion cost at 

a crossing depends on the crossing’s traffic density. We assume that the rate of congestion 

cost is a function 𝜑 of the traffic density 𝑡. Thus, a commuter incurs a congestion cost equal 

to her “infinitesimal mass” multiplied by 𝜑(𝑡) when the traffic density is 𝑡. 

Our analysis builds on certain assumptions about model parameters and commuter 

behaviour. For expositional ease, we will introduce these assumptions as they are needed. 

Our first assumption is about the rate of congestion function 𝜑. As given below, we assume 

that 𝜑 is convex. 
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Assumption 1: (convexity) 𝜑′(𝑡) > 0 and 𝜑′′(𝑡) ≥ 0 for all 𝑡. 

Assumption 1 can be justified by the “triangular view” commonly held in the 

transportation literature. The triangular view pertains to the traffic flow, defined as the 

number of vehicles per minute crossing a reference point on the road. The traffic flow is a 

function of the traffic density. According to the triangular view, the traffic flow increases at 

a linear rate up to some critical level of traffic density, 𝑡∗, and then it decreases at a linear 

rate above the critical level 𝑡∗. When the traffic density is below 𝑡∗, it is called the “free-

flow phase,” and when it is above 𝑡∗, it is called the “congestion phase.” For the interested 

reader, in Appendix A, we show that in the congestion phase, the time spent on a journey 

increases convex as traffic density increases. This justifies Assumption 1 in the congestion 

phase. In the free-flow phase, however, Assumption 1 would not hold, and the results in our 

paper are not applicable. Nevertheless, Istanbul’s Bosporus traffic is most congested, so our 

analysis is suitable for most of the day (except for the overnight traffic from, say, from 2:00 

am until 6:00 am)5. 

Our second assumption pertains to commuter behaviour. As given below, we carry 

out our analysis under a “covered market” assumption, which states that commuters always 

use one or the other crossing. 

Assumption 2: (covered market) Each commuter uses the crossing for which the 

aggregate cost that she incurs is smaller. In the case of equality, she uses crossing 26. 

Put differently; the covered market assumption assumes that the commuter demand 

to cross the strait is inelastic. It presumes that for each commuter, the willingness to travel 

is sufficiently high, or the aggregate cost rate is low enough so that she never opts out of a 

journey. In the Bosporus setting, Assumption 2 can be justified on two grounds. First, for 

the most part, Istanbulites cross the strait regularly for business purposes rather than for 

pleasure. This type of journey can be seen as a “necessity,” not very sensitive to the costs of 

toll and congestion. Second, for various reasons, the government does not set a prohibitively 

high toll rate on the two bridges-one that would lead to a meaningful fall in demand. 

Therefore, our covered market assumption is arguably a good approximation of the real-life 

situation in Bosporus traffic. We should also note that Assumption 2 helps simplify our 

analysis and obtain closed-form solutions from a modelling perspective. 

The two crossings have separate operators. Let operator 𝑖 be the operator of crossing 

𝑖. We assume that crossing 1’s operator is private (as per the Eurasian tunnel) and crossing 

2’s operator is public (as per the two bridges). 

 
5 For studies on the triangular view, see Saberi and Mahmassani (2012), Geroliminis and Sun (2011), Cassidy et 

al. (2011), and Geroliminis and Daganzo (2008). 
6 In Assumption 2, the presumption that a commuter uses crossing 2 when the aggregate cost is the same is an 

innocuous one, one that brings expositional ease in our analysis. 
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Let 𝑇𝑖  be the rate of the toll that operator 𝑖 charges a commuter using crossing 𝑖. Thus, 

if a commuter uses crossing 𝑖, she incurs a toll equal to her “infinitesimal mass” multiplied 

by 𝑇𝑖 . The amount 𝑇1 − 𝑇2 is the premium that the commuter pays for using the overpreferred 

crossing (crossing 1). 

The rate of the aggregate cost incurred by a commuter is equal to the sum of the rates 

of diversion cost, congestion cost, and the toll that she incurs. For instance, if 𝑑 and 1 − 𝑑 

are, respectively, the total masses of commuters using crossings 1 and 2, then the rate of the 

aggregate cost incurred by a commuter of type 𝑗 using crossing 𝑖 is: 

• 𝑇1 + 𝜑 (
𝑑

𝑘
), for 𝑗 = 1 and 𝑖 = 1 

• 𝑇1 + 𝑐 + 𝜑 (
𝑑

𝑘
), for 𝑗 = 2 and 𝑖 = 1 

• 𝑇2 + 𝑐 + 𝜑 (
1−𝑑

1−𝑘
), for 𝑗 = 1 and 𝑖 = 2 

• 𝑇2 + 𝜑 (
1−𝑑

1−𝑘
), for 𝑗 = 2 and 𝑖 = 2 

The aggregate cost incurred by a commuter is equal to her “infinitesimal mass” 

multiplied by the rate of aggregate cost that she incurs. 

An allocation specifies the crossing used by each commuter. Under optimal 

commuter behaviour (Assumption 2), all type 1 commuters use crossing 1, or all type 2 

commuters use crossing 2. Therefore, we can define an allocation simply as follows: An 

allocation is a number 𝜇 ∈ [0,1], with the interpretation that under 𝜇, the commuters in the 

interval [0, 𝜇) use crossing 1, and the commuters in the interval [𝜇, 1) use crossing 2. Notice 

that if 𝜇 = 0, every commuter uses crossing 2, and for 𝜇 = 1, every commuter uses crossing 

1. 

Let 𝜇(𝑇1, 𝑇2) be the allocation induced under optimal commuter behavior when the 

rates of tolls are 𝑇1 and 𝑇27. Then, operator 1’s toll revenue is 𝑇1𝜇(𝑇1, 𝑇2), and operator 2’s 

toll revenue is 𝑇2(1 − 𝜇(𝑇1, 𝑇2)). We assume that operating costs are negligible, and hence, 

an operator’s profit is equal to its toll revenue. But the results in our paper remain unchanged 

if operating costs were non-negligible but fixed. Because in that case, too, operators would 

be maximising their profits by maximising their revenues. 

4. Results 

4.1. Welfare Maximisation 

In this subsection, we identify the allocation that maximises social welfare. 

 
7 The allocation 𝜇(𝑇1, 𝑇2) is unique. We leave the easy proof to the interested reader. 
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Welfare maximisation necessitates minimising the costs to society. Note that tolls are 

transferred payments from commuters to the operators of the two crossings. Therefore, the 

social costs include only the total congestion and diversion costs. 

Let 𝑇𝐷𝐶(𝜇), 𝑇𝐶𝐶(𝜇), and 𝑆𝐶(𝜇) denote, respectively, the total diversion cost, the 

total congestion cost, and the social cost under the allocation 𝜇. Then: 

𝑇𝐷𝐶(𝜇) = 𝑐 |𝜇 − 𝑥|  

𝑇𝐶𝐶(𝜇) = 𝜇 𝜑 (
𝜇

𝑘
) + (1 − 𝜇)𝜑 (

1−𝜇

1−𝑘
)  

𝑆𝐶(𝜇) = 𝑇𝐷𝐶(𝜇) + 𝑇𝐶𝐶(𝜇)  

With some algebra, one can show that the first two derivatives of the function 𝑇𝐶𝐶(𝜇) 
are as follows: 

𝑇𝐶𝐶′(𝜇) = [𝜑 (
𝜇

𝑘
) − 𝜑 (

1−𝜇

1−𝑘
)] + [

𝜇

𝑘
𝜑′ (

𝜇

𝑘
) −

1−𝜇

1−𝑘
𝜑′ (

1−𝜇

1−𝑘
)]  

𝑇𝐶𝐶′′(𝜇) = [
2

𝑘
𝜑′ (

𝜇

𝑘
) +

2

1−𝑘
𝜑′ (

1−𝜇

1−𝑘
)] + [

𝜇

𝑘2
𝜑′′ (

𝜇

𝑘
) +

1−𝜇

(1−𝑘)2
𝜑′′ (

1−𝜇

1−𝑘
)]  

By Assumption 1, we have 𝜑′ > 0 and 𝜑′′ ≥ 0. Therefore, we obtain that 𝑇𝐶𝐶′′ >
0. Furthermore, when we plug in 𝜇 = 𝑘, we get 𝑇𝐶𝐶′(𝑘) = 0. We present these findings in 

Lemma 1. 

Lemma 1: Under Assumptions 1 and 2, 𝑇𝐶𝐶′′ > 0 and 𝑇𝐶𝐶′(𝑘) = 0. 

Let 𝜇𝑤 denote the welfare-maximizing allocation: i.e., 𝑆𝐶(𝜇) is minimized for 𝜇 =
𝜇𝑤. Also, let 𝜇𝑑 and 𝜇𝑐 denote, in order, the allocations that minimise the total diversion 

cost and the total congestion cost. Proposition 1 characterises these allocations. 

Proposition 1: Under Assumptions 1 and 2, we have: 

𝜇𝑑 = 𝑥, 𝜇𝑐 = 𝑘  

𝜇𝑤 = 𝑥 if 𝑇𝐶𝐶′(𝑥) ≤ 𝑐  

𝜇𝑤 ∈ (𝑘, 𝑥) and 𝜇 solves 𝑇𝐶𝐶′(𝜇𝑤) = 𝑐 if 𝑇𝐶𝐶′(𝑥) > 𝑐  

Proof 

The total diversion cost is zero and minimised when each commuter uses her 

favourite crossing. Thus, 𝜇𝑑 = 𝑥. Also, by Lemma 1, we get 𝜇𝑐 = 𝑘. 

Let 𝜇 > 𝑥. Then, 𝑇𝐷𝐶′(𝜇) = 𝑐 > 0. Also, since 𝜇 > 𝑘, by Lemma 1, 𝑇𝐶𝐶′(𝜇) > 0. 

Then, 𝑆𝐶′(𝜇) = 𝑇𝐷𝐶′(𝜇) + 𝑇𝐶𝐶′(𝜇) > 0. But then the allocation 𝜇 cannot be welfare-

maximizing. Thus, 𝜇𝑤 ∉ (𝑥, 1]. 
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Suppose that 𝑇𝑇𝐶′(𝑥) ≤ 𝑐. Let 𝜇 < 𝑥. Then, 𝑇𝐷𝐶′(𝜇) = −𝑐. Note that, by Lemma 

1, 𝑇𝐶𝐶′′ > 0. Since 𝑇𝑇𝐶′(𝑥) ≤ 𝑐 and 𝜇 < 𝑥, the fact that 𝑇𝐶𝐶′′ > 0 implies that 

𝑇𝑇𝐶′(𝜇) < 𝑐. Then, 𝑆𝐶′(𝜇) = 𝑇𝐷𝐶′(𝜇) + 𝑇𝐶𝐶′(𝜇) < 0. But then the allocation 𝜇 cannot 

be welfare-maximizing. Thus, we get 𝜇𝑤 = 𝑥. 

Suppose that 𝑇𝐶𝐶′(𝑥) > 𝑐. By Lemma 1, we have 𝑇𝐶𝐶′(𝑘) = 0 and 𝑇𝐶𝐶′′ > 0. 

These facts imply that there exists an allocation 𝜇∗ ∈ (𝑘, 𝑥) such that 𝑇𝐶𝐶′(𝜇∗) = 𝑐. Since 

𝜇∗ < 𝑥, we also get 𝑇𝐷𝐶′(𝜇∗) = −c. Thus, we get 𝑆𝐶′(𝜇
∗) = 𝑇𝐷𝐶′(𝜇∗) + 𝑇𝐶𝐶′(𝜇∗) = 0. 

Thus, 𝑆𝐶(𝜇) is minimized for 𝜇 = 𝜇∗. Thus, we have 𝜇𝑤 = 𝜇∗. This completes our proof. 

Proposition 1 states that the total diversion cost is minimises when each type uses its 

favourite crossing. It also says that the total congestion cost is minimised when the traffic 

distribution is balanced (i.e., when the two crossings have the same traffic density). 

We say that the traffic distribution is balanced if the two crossings have the same 

traffic density (i.e., when they are equally congested). Note that the traffic density is 

balanced for 𝜇 = 𝑘. As given in Proposition 1, the total congestion cost is minimised when 

the traffic distribution is balanced (i.e., 𝜇𝑐 = 𝑘). 

Finally, note that Proposition 1 states that 𝜇𝑤 ∈ (𝑘, 𝑥], meaning that the welfare-

maximizing allocation leads to unbalanced traffic distribution. Proposition 1 says that the 

traffic density should be higher at the overpreferred crossing (i.e., crossing 1) for welfare 

maximisation. Suppose the Eurasian tunnel is the overpreferred crossing. In that case, the 

policy implication is as follows: For social welfare maximisation, the traffic density in the 

Eurasian tunnel should not be less than that on the two bridges. Therefore, it is not optimal 

to set too high a toll rate on the Eurasian tunnel that would divert away too many commuters 

to the two bridges. 

For 𝜇 = 𝑥, each commuter type uses its favourite crossing. Therefore, we call 𝜇 = 𝑥 

a separating allocation. In our model, welfare can indeed be maximised under a separating 

allocation (i.e., 𝜇𝑤 = 𝑥). This situation occurs if the rate of diversion cost is so excessive 

that the diversion cost needs to be eliminated for welfare maximisation. But this situation is 

not in line with the spirit of our analysis since we aim to capture the tradeoff that the social 

planner faces in balancing out the costs of diversion and congestion. Therefore, in the rest 

of the paper, we will proceed under Assumption 3, which guarantees that welfare is not 

maximised under a separating allocation. 

Assumption 3: (c is not excessive) 𝑐 < 𝑇𝐶𝐶′(𝑥). 

4.2. Implementation of the Welfare-Maximizing Allocation 

This section studies how the welfare-maximizing allocation 𝜇𝑤 can be implemented. 

In other words, we study how the social planner can induce 𝜇𝑤 as an equilibrium outcome. 

We consider two notions of equilibrium notions, which we introduce next. 
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Let 𝑏𝑟(𝑇2) = argmax 𝑇1𝜇(𝑇1, 𝑇2) be operator 1’s best response function (possibly 

multi-valued). That is, given 𝑇2, operator 1 maximizes its profit by setting 𝑇1 ∈ 𝑏𝑟(𝑇2). The 

two equilibrium notions that we consider are as follows. 

Definition: A triplet 〈𝑇1, 𝑇2, 𝜇(𝑇1, 𝑇2)〉 is called a “regulated equilibrium.” A triplet 
〈𝑇1, 𝑇2, 𝜇(𝑇1, 𝑇2)〉 is called an “unregulated equilibrium” if 𝑇1 ∈ 𝑏𝑟(𝑇2). 

A few words are in place to give insight into our above definitions. Crossing 2 is 

publicly operated, so we presume that the social planner sets its rate. But the social planner 

may or may not have the power to regulate the toll rate for crossing 1, which is privately 

operated. Above, our regulated equilibrium notion presumes this prerogative for the social 

planner, and our unregulated equilibrium notion does not. Under our unregulated 

equilibrium notion, we assume that crossing 1’s toll rate is set by its private operator under 

the profit-maximization motive. 

The above two equilibrium notions correspond to two different perspectives 

regarding the operation of the Bosporus crossings in Istanbul. Since the bridges are under 

public operation (as per crossing 2 in our model), the government directly sets their toll rate. 

The Eurasian tunnel, however, is privately operated (as per crossing 1 in our model). The 

tunnel’s terms of operation are negotiated between the government and its private operator. 

While the government has some influence regarding the tunnel’s toll scheme, the extent of 

this influence is contestable. Therefore, in our analysis, we consider both scenarios. 

The following two propositions identify what toll schemes induce the welfare-

maximizing allocation as the outcome of a regulated and an unregulated equilibrium. The 

proofs are easy and left to the reader. 

Proposition 2: Under Assumptions 1-3, 〈𝑇1, 𝑇2, 𝜇(𝑇1, 𝑇2)〉 is a regulated equilibrium 

such that 𝜇(𝑇1, 𝑇2) = 𝜇𝑤 if: 

𝑇1 − 𝑇2 = 𝑐 − [𝜑 (
𝜇𝑤

𝑘
) − 𝜑 (

1−𝜇𝑤

1−𝑘
)]  

Since 𝜇𝑤 ∈ (𝑘, 𝑥), we also get 𝑇1 − 𝑇2 < 𝑐. 

Proposition 3: Under Assumptions 1-3, 〈𝑇1, 𝑇2, 𝜇(𝑇1, 𝑇2)〉 is an unregulated 

equilibrium such that 𝜇(𝑇1, 𝑇2) = 𝜇𝑤 if: 

𝑇1 − 𝑇2 = 𝑐 − [𝜑 (
𝜇𝑤

𝑘
) − 𝜑 (

1−𝜇𝑤

1−𝑘
)]  and 𝑇1 ∈ 𝑏𝑟(𝑇2).  

Since 𝜇𝑤 ∈ (𝑘, 𝑥), we also get 𝑇1 − 𝑇2 < 𝑐. 

Simple as they may be, Propositions 2 and 3 have important implications for our 

Bosporus setting. To emphasise these implications, we present below Corollaries 1 and 2. 

But before that, we need to introduce some new terminology and present Assumption 4. 
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One question pursued in our analysis is how the toll schemes should be set in two 

directions in our Bosporus setting: i.e., when crossing from Asia to Europe and from Europe 

to Asia. In current practice, in the Eurasian tunnel, vehicles are tolled in both directions and 

at the same rate, and on the two bridges, only when they cross from Europe to Asia. For two-

directional toll schemes, we introduce below the term “toll regime” and its special cases. 

Definition: A “toll regime” is a four-tuple 〈𝑇1, 𝑇2, 𝑇1
′, 𝑇2

′〉, with the interpretation that 

the rates of tolls for crossings 1 and 2 are, in order, 𝑇1 and 𝑇2 from side 𝐴 to 𝐸, and 𝑇1
′  and 

𝑇2
′  from side 𝐸 to 𝐴. We call 〈𝑇1, 𝑇2, 𝑇1

′, 𝑇2
′〉 a “unidirectional toll regime” if 𝑇2 = 0. We call 

〈𝑇1, 𝑇2, 𝑇1
′, 𝑇2

′〉 a “simple unidirectional toll regime” if 𝑇2 = 0 and 𝑇1 = 𝑇1
′. 

Note that under a “unidirectional toll regime,” at crossing 2, vehicles are tolled only 

in one direction (from side 𝐸 to 𝐴). Under a “simple unidirectional toll regime,” additionally, 

crossing 1’s toll rate is set the same in both directions. In current practice, a simple 

unidirectional toll regime is used for Bosporus crossings. 

We are concerned with the “implementation” of the welfare-maximizing allocation. 

In other words, we inquire when the welfare-maximizing allocation is obtained as an 

equilibrium outcome. Below, we introduce these notions formally. 

Definition: A toll regime 〈𝑇1, 𝑇2, 𝑇1
′, 𝑇2

′〉: 

• implements the welfare-maximizing allocation in regulated equilibria if 
〈𝑇1, 𝑇2, 𝜇

𝑤〉 and 〈𝑇1′, 𝑇2
′, 𝜇𝑤〉 are regulated equilibria 

• implements the welfare-maximizing allocation in unregulated equilibria if 
〈𝑇1, 𝑇2, 𝜇

𝑤〉 and 〈𝑇1′, 𝑇2
′, 𝜇𝑤〉 are unregulated equilibria 

Note that we introduced our transportation model assuming that commuters wish to 

travel from side 𝐴 to 𝐸. Our following assumption thinks that our transportation model is 

symmetrically applicable in the opposite direction-i.e., when commuters travel from side 𝐸 

to 𝐴. 

Assumption 4: (symmetry) The same transportation model is applicable in the two 

directions: i.e., when commuters are to travel from side 𝐴 to 𝐸 and from side 𝐸 to 𝐴. 

Assumption 4 is not unrealistic when considered in our Bosporus setting. In Istanbul, 

absent alternative means, each commuter who crosses from Asia to Europe (or from Europe 

to Asia) eventually crosses back in the reverse direction. And most often, in their reverse 

journeys, commuters use the exact opposite route, such as when they travel between home 

and workplace on the two sides. Therefore, our symmetry assumption arguably holds in our 

Bosporus setting. But we should caution that while the commuters’ transportation needs in 

the two directions may be the same in the aggregate, they may not be the same at a given 

point in time. For instance, in Istanbul, there are more workplaces on the European side. 

Consequently, the traffic flow is heavier from Asia to Europe in the morning and from 
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Europe to Asia in the evening. Arguably, a dynamic toll regime can more effectively 

distribute the traffic flow over time, under which toll rates increase with traffic density. But 

the authorities prefer to use a static toll regime in Istanbul, where toll rates are the same 

throughout the day. Therefore, in this paper, we abstract from dynamic considerations. And 

when attention is restricted to static toll regimes, our assumption that the city’s transportation 

needs are symmetric in the two directions is realistic. 

Corollaries 1 and 2 below follow Propositions 2 and 3 in order. They present the 

limitations regarding welfare maximisation if attention is restricted to unidirectional or 

simple unidirectional toll regimes. 

Corollary 1: Under Assumption 1-4, there exists no simple unidirectional toll regime 

that implements 𝜇𝑤 in regulated equilibria. A unidirectional toll regime 〈𝑇1, 𝑇2 = 0, 𝑇1
′, 𝑇2

′〉 
implements 𝜇𝑤 in regulated equilibria if 

𝑇1 = 𝑇1
′ − 𝑇2

′ = 𝑐 − [𝜑 (
𝜇𝑤

𝑘
) − 𝜑 (

1−𝜇𝑤

1−𝑘
)].  

Corollary 2: Under Assumption 1-4, there exists a unidirectional toll regime that 

implements 𝜇𝑤 in unregulated equilibria only if 

𝑐 − [𝜑 (
𝜇𝑤

𝑘
) − 𝜑 (

1−𝜇𝑤

1−𝑘
)] ∈ 𝑏𝑟(0).  

The current toll regime for Bosporus crossings is a simple unidirectional one. 

Corollary 1 states that this toll regime cannot be welfare-maximizing. Under the current toll 

regime, commuters pay different premiums for the Eurasian tunnel in the two directions. But 

Corollary 1 states that there is a unique optimal premium, meaning that the current toll 

regime does not implement the welfare-maximizing allocation at least in one direction. 

According to Corollary 1, the authorities must give up using a simple unidirectional 

toll regime for welfare maximisation. But note that they do not need to give up using a 

unidirectional toll regime. According to Corollary 1, on the bridges, vehicles can be tolled 

only from Europe to Asia, as in current practice, as long as the premium paid for the Eurasian 

tunnel is set the same and equal to its optimal level in both directions. For instance, if the 

optimal level of the premium is ₺20, and if the authorities want a toll rate of ₺10 for a 

roundtrip on the two bridges, this can be achieved under the following unidirectional toll 

regime as follows: 

𝑇1 = 20, 𝑇2 = 0, 𝑇1
′ = 30, 𝑇2

′ = 10  

Corollary 1, studying regulated equilibria, identifies the optimal toll regime under the 

assumption that the authorities control all toll rates. However, if the Eurasian tunnel’s toll 

rate is set by its private operator under the profit-maximization motive, we need to turn our 

attention to unregulated equilibria. Unfortunately, in an unregulated equilibrium, welfare is 

unlikely to be maximised under a unidirectional toll regime. Given the bridge’s toll rate, its 
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private operator sets the Eurasian tunnel’s toll rate at its profit-maximising level in an 

unregulated equilibrium. This premium level need not be welfare-maximizing. The 

government can finetune the toll rate for the bridges so that the induced premium level 

becomes optimal. But this “finetuned” toll rate is unlikely to be zero, as emphasised in 

Corollary 2. Therefore, if the tunnel’s operator acts under the profit-maximization motive 

for welfare maximisation, the authorities may have to abandon using a unidirectional toll 

scheme and begin to toll vehicles in both directions. 

4.3. Reduced Model 

In this section, to get closed-form solutions, we simplify the assumption that the rate 

of congestion cost function 𝜑 is linear. 

Assumption 5: (𝜑 is linear)𝜑(𝑡) = 𝜋𝑡, 𝜋 > 0. 

Under Assumption 5, note that: 

𝑇𝐷𝐶(𝜇) = 𝑐 |𝜇 − 𝑥|  

𝑇𝐶𝐶(𝜇) =
𝜋

𝑘
𝜇2 +

𝜋

1−𝑘
(1 − 𝜇)2  

𝑆𝐶(𝜇) = 𝑇𝐷𝐶(𝜇) + 𝑇𝐶𝐶(𝜇)  

First, we solve for the allocation that maximizes welfare. 

Proposition 4: Under Assumptions 1-3 and 5, we have 

𝜇𝑤 = 𝑘 +
𝑐

2𝑘
𝑘(1 − 𝑘)  

Therefore, under 𝜇𝑤, the traffic densities at crossings 1 and 2 are, respectively, 1 +
𝑐

2𝑘
(1 − 𝑘) and 1 −

𝑐

2𝜋
𝑘. 

Proof 

By Proposition 1, we should solve for 𝑇𝐶𝐶′(𝜇) = 𝑐 to find 𝜇 = 𝜇𝑤. Then: 

2
𝜋

𝑘
𝜇𝑤 − 2

𝜋

1−𝑘
(1 − 𝜇𝑤) = 𝑐  

⇒ 𝜇𝑤 = 𝑘 +
𝑐

2𝜋
𝑘(1 − 𝑘)  

Note that the welfare-maximizing allocation induces an unbalanced traffic 

distribution. According to Proposition 4, under 𝜇𝑤, the overpreferred crossing’s traffic 

density is higher, and the unbalance grows as the ratio 𝑐/𝑘 increases. This result is expected: 

Under 𝜇𝑐 = 𝑘, the total congestion cost is minimised. Under 𝜇𝑑 = 𝑥, the total diversion cost 

is minimized. As the ratio 𝑐/𝑘 increases, the diversion cost’s weight in the social cost 
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increases, bringing 𝜇𝑤 closer to 𝜇𝑑. Therefore, as the ratio 𝑐/𝑘 increases, the overpreferred 

crossing’s traffic density increases under the welfare-maximizing allocation. 

In our next result, we identify the regulated equilibria. 

Proposition 5: Under Assumptions 1-3 and 5, in a regulated equilibrium 
〈𝑇1, 𝑇2, 𝜇(𝑇1, 𝑇2)〉, we have 

𝜇(𝑇1, 𝑇2) =

{
  
 

  
 
1 for 𝑇1 ≤ 𝐵1

𝑘 − (𝑇1 − 𝑇2 + 𝑐)
𝑘(1−𝑘)

𝜋
 for 𝐵1 < 𝑇1 < 𝐵2

𝑥 for 𝐵2 ≤ 𝑇1 ≤ 𝐵3

𝑘 − (𝑇1 − 𝑇2 − 𝑐)
𝑘(1−𝑘)

𝜋
for 𝐵3 < 𝑇1 < 𝐵4

0 for 𝐵4 ≤ 𝑇1

  

where: 

𝐵1 = 𝑇2 − 𝑐 − 𝜋
1

𝑘
, 𝐵2 = 𝑇2 − 𝑐 − 𝜋 

𝑥−𝑘

𝑘(1−𝑘)
  

𝐵3 = 𝑇2 + 𝑐 − 𝜋 
𝑥−𝑘

𝑘(1−𝑘)
,  𝐵4 = 𝑇2 + 𝑐 + 𝜋

1

1−𝑘
  

Proof 

See Appendix B. 

Note that for fixed 𝑇2, the function 𝜇(𝑇1, 𝑇2), given in Proposition 5, is continuous in 

𝑇1. (The reader may verify this by checking the value of the function at corner points.) 

Our following two results show how the social planner can induce the welfare-

maximizing allocation as the outcome of a regulated and an unregulated equilibrium. 

Proposition 6: Under Assumptions 1-3 and 5, 〈𝑇1, 𝑇2, 𝜇(𝑇1, 𝑇2)〉 is a regulated 

equilibrium such that 𝜇(𝑇1, 𝑇2) = 𝜇𝑤 if the premium 𝑇1 − 𝑇2 is equal to 
𝑐

2
. 

Proof 

Using Proposition 2 and Assumption 5, we get: 

𝑇1 − 𝑇2 = 𝑐 − [𝜋
𝜇𝑤

𝑘
− 𝜋

1−𝜇𝑤

1−𝑘
]  

⇒ 𝜇𝑤 = 𝑘 −
1

𝜋
(𝑇1 − 𝑇2 − 𝑐)𝑘(1 − 𝑘)  

When we substitute for 𝜇𝑤 using Proposition 4, we get 𝑇1 − 𝑇2 =
𝑐

2
. 
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Proposition 7: Under Assumptions 1-3 and 5, 〈𝑇1, 𝑇2, 𝜇(𝑇1, 𝑇2)〉 is an unregulated 

equilibrium such that 𝜇(𝑇1, 𝑇2) = 𝜇𝑤 if: 

𝑇2 =
𝜋

1−𝑘
 and 𝑇1 =

𝑐

2
+ 𝑇2  

Proof 

See Appendix B. 

Corollaries 3 and 4 below follow Propositions 6 and 7. Under Assumption 5, they 

present the limitations regarding welfare maximisation if attention is restricted to 

unidirectional or simple unidirectional toll regimes. 

Corollary 3: Under Assumptions 1-5, a unidirectional toll regime implements 𝜇𝑤 in 

regulated equilibria if 𝑇1 − 𝑇2 = 𝑇1
′ − 𝑇2

′ =
𝑐

2
. 

Corollary 4: Under Assumptions 1-5, the following toll regime implements 𝜇𝑤 in 

unregulated equilibria: 〈𝑇1, 𝑇2, 𝑇1
′, 𝑇2

′〉 such that 𝑇2 = 𝑇2
′ =

𝜋

1−𝑘
 and 𝑇1 = 𝑇1

′ =
𝑐

2
+ 𝑇2. 

Above, thanks to our simplifying assumption, we obtained closed-form solutions for 

optimal toll regimes. But otherwise, our findings are similar to the one in the preceding 

subsection: Corollary 3 states that a multiplicity of unidirectional toll regimes implement 𝜇𝑤 

in regulated equilibria. But note that no simple unidirectional toll regime implements 𝜇𝑤 in 

a regulated equilibrium. Corollary 4 states that this conclusion is foregone if crossing 1’s 

toll scheme is set by its private operator under the profit-maximization motive. Because there 

is a unique toll regime that implements 𝜇𝑤 in an unregulated equilibrium, which is not a 

unidirectional toll regime. 

5. Summary 

Divided by a narrow strait called the Bosporus, Turkey’s megacity Istanbul is located 

half in Asia and half in Europe. Commuter demand to cross the strait is naturally high, which 

has recently been served by two toll bridges. To relieve the traffic on the strait, an 

underground connection has been recently launched, the so-called Eurasian tunnel, which 

has a private operator. In current practice, on the bridges, vehicles are tolled at a low rate 

and only from Europe to Asia, and in the tunnel, at a much higher rate and in both directions. 

Arguably, the high premium paid for using the tunnel leads to its underutilisation. And the 

fact that the premium paid for the tunnel is not the same in the two directions leads to 

commuters facing asymmetric incentives when they cross from Asia to Europe and Europe 

to Asia. For instance, a commuter crossing Europe to Asia using the tunnel may opt for using 

a toll-free bridge in the opposite direction. The tunnel’s opening raises several questions on 

public policy: It may be that the toll revenue sharing may not be fair. But more importantly, 

the strait’s traffic load may not be distributed efficiently under the current toll schemes. 
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In this paper, we introduced a simple transportation model to explore these issues and 

offer guidance on public policy. Our model embeds in it the forces that have come into play 

after the opening of the Eurasian tunnel in Istanbul. In our model, two crossings connect the 

two sides of a city, one crossing standing for the Eurasian tunnel and the other for the two 

bridges. Commuters choose the crossings they use by minimising the total costs they incur, 

including the rate of toll, the cost of congestion, and the cost of diversion. The costs of 

congestion and diversion comprise such cost items as the excess time and fuel expended and 

the mental distress endured for waiting in congested traffic or taking a longer route. 

The results of our analysis have several important implications for optimal toll design 

for Bosporus crossings. We find that an optimal premium rate for the tunnel induces the 

welfare-maximizing allocation. Therefore, the tunnel’s premium rate, not its toll rate, should 

be fixed in the two directions for welfare maximisation. Under a fixed premium rate, 

commuters will have no systematic motive to change the crossings they use when travelling 

in the two directions. This will also help eliminate suspicions about the fairness of the 

distribution of toll revenue. We also point out the premium rate can be fixed without 

compromising the government’s historical practice of tolling vehicles on the bridges only 

from Europe to Asia. The bridges can remain toll-free from Asia to Europe if the tunnel’s 

toll rate is reduced proportionately in this direction. 

Our theoretical analysis cannot provide a numerical answer to the empirical question 

of the magnitude of the tunnel’s optimal premium rate. Yet, our results shed some light on 

this question. We call a crossing “overpreferred” if it would be relatively in high demand 

under ceteris paribus conditions (i.e., under similar toll rates and congestion levels). We find 

that under the welfare-maximizing allocation, the congestion level cannot be lower in the 

overpreferred crossing. This result hints that in our Bosporus setting, the Eurasian tunnel’s 

toll rate should not be set so high as to divert away too many commuters leading to 

overcongestion on the two bridges. This is, however, in contradiction with the current 

practice. Therefore, in light of our findings, we recommend an amendment to the current toll 

schemes. In a nutshell, we recommend lowering the Eurasian tunnel’s premium rate and 

setting the same in the two directions. 
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Appendix A: The Triangular Flow-Density Curve 

In Assumption 1, we assume that the rate of congestion function 𝜑 is convex. Since 

Assumption 1 is critical for our results, we devote this part to its justification. First, we need 

to recall a few concepts from the transportation literature. 

Take a reference point on the road. The velocity is the speed at which vehicles pass 

through this reference point. Velocity is a function of the traffic density, 𝑡. Let 𝑣𝑒𝑙𝑜𝑐𝑖𝑡𝑦(𝑡) 
be the velocity function. 

Let 𝑡𝑖𝑚𝑒(𝑡) be the function that shows how much time it takes to traverse a given 

road segment. Obviously, 𝑡𝑖𝑚𝑒(𝑡) is inversely proportional to the velocity of vehicles. Thus, 

we can write 

𝑡𝑖𝑚𝑒(𝑡) = 𝐴 ⋅
1

𝑣𝑒𝑙𝑜𝑐𝑖𝑡𝑦(𝑡)
  

where 𝐴 is a constant. 

In the transportation literature, flow is defined as the number of vehicles passing a 

reference point in one unit of time. The flow is proportional to the multiplication of traffic 

density and velocity. Thus, we can write 

𝑓𝑙𝑜𝑤(𝑡) = 𝐵 ⋅ 𝑡 ⋅ 𝑣𝑒𝑙𝑜𝑐𝑖𝑡𝑦(𝑡),  

where 𝐵 is a constant. 

Using the above two equations, we get 

𝑡𝑖𝑚𝑒(𝑡) = 𝐴 ⋅ 𝐵 ⋅
𝑡

𝑓𝑙𝑜𝑤(𝑡)
  

There is no direct relationship between flow and traffic density. On the one hand, the 

high traffic density means more vehicles are on the road, increasing the flow. On the other 

hand, when the traffic density is high, there is congestion, and the velocity is low, which 

tends to decrease the flow. The most common view of transportation literature about the 

relationship between flow and traffic density is that a triangular flow-density curve is the 

most accurate representation of real-world events. The triangular view is illustrated below 

in Figure 1. 
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Figure: 1 

Triangular Flow-Density Curve 

 

According to the triangular view, as shown in Figure 1, the flow increases linearly in 

traffic density 𝑡 up to some level 𝑡∗. This interval is called the free-flow phase. Arguably, 

there is little traffic congestion in the free-flow phase; therefore, the flow increases linearly 

in traffic density. 

It is called the congestion phase when traffic density exceeds the critical level 𝑡∗. 
According to the triangular view, in the congestion phase, as traffic density increases, the 

velocity declines fast. Consequently, the flow decreases at a constant rate, as shown in Figure 

1. We can write this relationship as 

𝑓𝑙𝑜𝑤(𝑡) = 𝐷 − 𝜆𝑡,  

where 𝐷, 𝜆 > 0 are constants. 

Therefore, in the congestion phase, we obtain: 

𝑡𝑖𝑚𝑒(𝑡) = 𝐴 ⋅ 𝐵 ⋅
𝑡

𝑓𝑙𝑜𝑤(𝑡)
=

𝐴𝐵𝑡

𝐷−𝜆𝑡
  

The first two derivatives of the function 𝑡𝑖𝑚𝑒(𝑡) are as follows: 

𝑑𝑡𝑖𝑚𝑒(𝑡)

𝑑𝑡
=

𝐴𝐵𝐷

(𝐷−𝜆𝑡)2
> 0,

𝑑2𝑡𝑖𝑚𝑒(𝑡)

𝑑𝑡2
=

2𝜆𝐴𝐵𝐷

(𝐷−𝜆𝑡)3
> 0  

Therefore, according to the widely-held triangular view, in the congestion phase, a 

commuter’s travel time increases convexly as traffic density increases. Consequently, if 

congestion cost is proportional to the travel time, the triangular view justifies our 

Assumption 1, that the rate of the congestion cost function is convex. Indeed, certain cost 

items will increase in time even faster than the linear rate, such as the costs of tardiness and 

commuter discomfort, which lends additional support to our Assumption 1. 

flow(t) 

t* 

congestion phase free-flow phase 

t 
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Appendix B: Omitted Proofs 

Proof of Proposition 5 

• If 𝜇(𝑇1, 𝑇2) = 1, it must be that under 𝜇(𝑇1, 𝑇2), type 2 commuters find it optimal 

to use crossing 1. (Type 1 commuters' choice is non-binding.) Then, we get: 

𝑇1 + 𝑐 + 𝜋
1

𝑘
≤ 𝑇2 ⇒ 𝑇1 ≤ 𝑇2 − 𝑐 − 𝜋

1

𝑘
  

• If 𝜇(𝑇1, 𝑇2) ∈ (𝑥, 1), it must be that under 𝜇(𝑇1, 𝑇2), type 2 commuters face the 

same rate of aggregate cost at crossings 1 and 2. (Type 1 commuters' choice is 

non-binding.) Then, we get: 

𝑇1 + 𝑐 + 𝜋
𝜇(𝑇1,𝑇2)

𝑘
= 𝑇2 + 𝜋

1−𝜇(𝑇1,𝑇2)

1−𝑘
  

⇒ 𝜇(𝑇1, 𝑇2) = 𝑘 − (𝑇1 − 𝑇2 + 𝑐)
𝑘(1−𝑘)

𝜋
  

Also, for consistency, we must have: 

𝜇(𝑇1, 𝑇2) ∈ (𝑥, 1) ⇒ 𝑥 < 𝑘 − (𝑇1 − 𝑇2 + 𝑐)
𝑘(1−𝑘)

𝜋
< 1  

⇒ 𝑇2 − 𝑐 − 𝜋
1

𝑘
< 𝑇1 < 𝑇2 − 𝑐 − 𝜋

𝑥−𝑘

𝑘(1−𝑘)
   

• If 𝜇(𝑇1, 𝑇2) = 𝑥, it must be that under 𝜇(𝑇1, 𝑇2), type 1 commuters find it optimal 

to use crossing 1, and type 2 commuters find it optimal to use crossing 2. Then, 

we get: 

𝑇1 + 𝜋
𝑥

𝑘
≤ 𝑇2 + 𝑐 + 𝜋

1−𝑥

1−𝑘
 and 𝑇2 + 𝜋

1−𝑥

1−𝑘
≤ 𝑇1 + 𝑐 + 𝜋

𝑥

𝑘
  

⇒ 𝑇2 − 𝑐 − 𝜋
𝑥−𝑘

𝑘(1−𝑘)
≤ 𝑇1 ≤ 𝑇2 + 𝑐 − 𝜋

𝑥−𝑘

𝑘(1−𝑘)
  

• If 𝜇(𝑇1, 𝑇2) ∈ (0, 𝑥), it must be that under 𝜇(𝑇1, 𝑇2), type 1 commuters face the 

same rate of aggregate cost at crossings 1 and 2. Then, we get: 

𝑇1 + 𝜋
𝜇(𝑇1,𝑇2)

𝑘
= 𝑇2 + 𝑐 + 𝜋

1−𝜇(𝑇1,𝑇2)

1−𝑘
  

⇒ 𝜇(𝑇1, 𝑇2) = 𝑘 − (𝑇1 − 𝑇2 − 𝑐)
𝑘(1−𝑘)

𝜋
  

Also, for consistency, we must have: 

𝜇(𝑇1, 𝑇2) ∈ (0, 𝑥) ⇒ 0 < 𝑘 − (𝑇1 − 𝑇2 − 𝑐)
𝑘(1−𝑘)

𝜋
< 𝑥  

⇒ 𝑇2 + 𝑐 − 𝜋
𝑥−𝑘

𝑘(1−𝑘)
< 𝑇1 < 𝑇2 + 𝑐 + 𝜋

1

1−𝑘
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• If 𝜇(𝑇1, 𝑇2) = 0, it must be that under 𝜇(𝑇1, 𝑇2), type 1 commuters find it optimal 

to use crossing 1. (Type 2 commuters' choice is non-binding.) Then, we get: 

𝑇2 + 𝑐 + 𝜋
1

1−𝑘
≤ 𝑇1  

This concludes our proof. 

Proof of Proposition 7 

Let Π(𝑇1, 𝑇2) = 𝑇1 𝜇(𝑇1, 𝑇2), where Π is operator 1’s profit function. Note that for 

fixed 𝑇2, the function 𝜇(𝑇1, 𝑇2) is continuous in 𝑇1. Therefore, for fixed 𝑇2, the function 

Π(𝑇1, 𝑇2) is also continuous in 𝑇1. 

Excluding the corner points of 𝑇1 from our analysis, note that: 

𝑑Π(𝑇1,𝑇2)

𝑑𝑇1
= 𝜇(𝑇1, 𝑇2) + 𝑇1

𝑑𝜇(𝑇1,𝑇2)

𝑑𝑇1
  

Hence, by Proposition 5, we get: 

𝑑Π(𝑇1,𝑇2)

𝑑𝑇1
=

{
  
 

  
 
1 for 𝑇1 < 𝐵1

𝑘 − (2𝑇1 − 𝑇2 + 𝑐)
𝑘(1−𝑘)

𝜋
 for 𝐵1 < 𝑇1 < 𝐵2

𝑥 for 𝐵2 < 𝑇1 < 𝐵3

𝑘 − (2𝑇1 − 𝑇2 − 𝑐)
𝑘(1−𝑘)

𝜋
for 𝐵3 < 𝑇1 < 𝐵4

0 for 𝐵4 < 𝑇1

  

Above, the values of 𝐵1, 𝐵2, 𝐵3 , 𝐵4 are as specified in Proposition 5. If we set 𝑇2 =
𝜋

1−𝑘
, we find the following: 

• For 𝑇1 ∈ (𝐵1 , 𝐵2), we get: 

𝑑Π(𝑇1,𝑇2)

𝑑𝑇1
|
𝑇2=

𝜋

1−𝑘

= 𝑘 − (2𝑇1 −
𝜋

1−𝑘
+ 𝑐)

𝑘(1−𝑘)

𝜋
> 2(𝑥 − 𝑘) + 𝑐

𝑘(1−𝑘)

𝜋
  

Note that in the derivation of the above inequality, we used the fact that 𝑇1 < 𝐵2 =

−𝑐 + 𝜋
2𝑘−𝑥

𝑘(1−𝑘)
. 

• For 𝑇1 ∈ (𝐵3, 𝐵4), note that: 

𝑑Π(𝑇1,𝑇2)

𝑑𝑇1
|
𝑇2=

𝜋

1−𝑘

= 0 ⇒ 𝑇1 =
𝑐

2
+

𝜋

1−𝑘
  

𝑑2Π(𝑇1,𝑇2)

𝑑𝑇1
2 |

𝑇2=
𝜋

1−𝑘

= −2
𝑘(1−𝑘)

𝜋
< 0  
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One can verify that 𝑇1 =
𝑐

2
+

𝜋

1−𝑘
∈ (𝐵3, 𝐵4) by using Assumptions 3 and 5. (We 

leave this to the interested reader.) 

Therefore, we obtain that for 𝑇2 =
𝜋

1−𝑘
, as 𝑇1 increases, the function Π(𝑇1, 𝑇2), which 

is continuous, increases up to 𝑇1 =
𝑐

2
+

𝜋

1−𝑘
, and then it first declines and then remains 

constant. Therefore, we obtain that for 𝑇2 =
𝜋

1−𝑘
, operator 1 maximizes its profit by setting 

𝑇1 =
𝑐

2
+

𝜋

1−𝑘
. Since the premium 𝑇1 − 𝑇2 is equal to 

𝑐

2
, by Proposition 6, we also get 

𝜇(𝑇1, 𝑇2) = 𝜇𝑤. This concludes our proof. 


