
Common Media Server Data (CMSD) – Update on
Implementations and Validation of Key Use Cases

Stefan Pham★, Will Law+, Ali C. Begen§, Daniel Silhavy★, Bertrand Berthelot†, Stefan Arbanowski★
and Stephan Steglich★

★Fraunhofer FOKUS, +Akamai, §Ozyegin University, †Broadpeak
★Germany, +USA, §Turkiye, †France

ABSTRACT
The CTA-5006 (Common Media Server Data, CMSD) specification
establishes a uniform method for media servers to exchange data
with each media object response. The aim is to enhance distribution
efficiency, performance, and ultimately, the user experience. We
provide an overview of CMSD implementations and focus on
integrating CMSD into the dash.js reference player. Three use
cases are evaluated to demonstrate the advantages of CMSD,
including leveraging edge server throughput estimates to improve
initial bitrate selection and low-latency live streaming, prefetching
manifests and segments to improve startup delay, and allowing an
edge server to suggest a playback bitrate to improve the collective
experience. The outcomes from the initial implementations confirm
the benefits of using CMSD.

CCS CONCEPTS
• Networks → Application layer protocols; • Information
systems → Multimedia streaming.

KEYWORDS
CMSD, CMCD, adaptive streaming, CDN, OTT, DASH, HLS, server
assistance, network assistance, SAND.

ACM Reference Format:
Stefan Pham★, Will Law+, Ali C. Begen§, Daniel Silhavy★, Bertrand
Berthelot†, Stefan Arbanowski★ and Stephan Steglich★. 2023. Common
Media Server Data (CMSD) – Update on Implementations and Validation of
Key Use Cases. In Mile-High Video Conference (MHV ’23), May 7–10, 2023,
Denver, CO, USA. ACM, New York, NY, USA, 2 pages. https://doi.org/10.
1145/3588444.3591031

OVERVIEW
The Consumer Technology Association (CTA)’s Web Application
Video Ecosystem (WAVE) project released CTA-5006 - Common
Media Server Data (CMSD) [10] in Nov. 2022. This specification
defines a standard means by which every media server (origin
and intermediate) can communicate data with each media object
response and have it received and processed consistently by
every intermediary and media player to improve the efficiency

MHV ’23, May 7–10, 2023, Denver, CO, USA
© 2023 Copyright held by the owner/author(s).
ACM ISBN 979-8-4007-0160-3/23/05.
https://doi.org/10.1145/3588444.3591031

and performance of distribution, and ultimately, the quality of
experience (QoE) enjoyed by the users.

This paper presents an overview of CMSD implementations
(media players and servers) and evaluations based on these
implementations. From the media player, dash.js, the reference
player of the DASH Industry Forum [12], has been updated to
support CMSD by interpreting the two HTTP response headers
defined in the specification: CMSD-Static and CMSD-Dynamic.
This follows the already existing implementation of CommonMedia
Client Data (CMCD) [11] in dash.js [5, 7, 14, 16, 18]. The integration
of CMSD into dash.js enables communication from servers to media
players and to evaluate different optimization opportunities [4].

The first use case we evaluate is leveraging edge server
throughput estimates (etp) to improve the selection of the
initial bitrate. A media player’s rate-adaptation algorithm often
conservatively selects lower bitrates at the startup due to the lack
of throughput information. At the startup phase, an estimated
throughput value can hint an appropriate starting bitrate level
allowing the player to experience higher quality sooner. After
the startup phase, the throughput estimates can be combined
with player-side throughput estimations to make rate-adaptation
decisions more accurate.

Server-side throughput estimation can also be used for the
entire playback session to improve the rate-adaptation algorithms,
specifically for low-latency streams based on chunked transfer
encoding [6]. The bandwidth estimation at the server side uses
the transport layer’s congestion control layer, leading to more
precise estimates. The results obtained in [1, 9] illustrate that
the server-side estimated throughput is accurate with respect to
the effective available shaped bandwidth, while the client-side
throughput calculation may overestimate the available bandwidth.

The second use case we evaluate is prefetching of manifests,
playlists and segments between the origin and edge server using
the next object response (nor) key. This potentially reduces the
media player’s startup delay and improves its average quality.

The third use case we investigate is allowing an edge server to
signal a suggested playback bitrate to improve the collective QoE.
This is accomplished using the max suggested bitrate (mb) key. As
a result, all media players receiving this information voluntarily
reduce their total bitrate to the value indicated by this key. We
confirm that an individual dash.js player honors the requested
bitrate level. A cohort of competing dash.js players on a throughput-
constrained network [2] also achieves a better aggregate QoE by
complying with the (mb) instructions. Related research in this area
are [3, 8, 13, 15, 17].

137

This work is licensed under a Creative Commons Attribution International 4.0 License.

https://doi.org/10.1145/3588444.3591031
https://doi.org/10.1145/3588444.3591031
https://doi.org/10.1145/3588444.3591031
https://creativecommons.org/licenses/by/4.0/
http://crossmark.crossref.org/dialog/?doi=10.1145%2F3588444.3591031&domain=pdf&date_stamp=2023-06-16


MHV ’23, May 7–10, 2023, Denver, CO, USA Pham, et al.

REFERENCES
[1] Testing Low Latency: S4Streaming Against Client-Side Algorithms. [Online]

Available: https://marketing.broadpeak.tv/l/310951/2022-07-27/34fqqc2/310951/
1658924402tjch5li4/WhitePaper_Testing_Low_Latency_S4Streaming.pdf.
Accessed on Apr. 1, 2023.

[2] S. Akhshabi, L. Anantakrishnan, A. C. Begen, and C. Dovrolis. What happens
when HTTP adaptive streaming players compete for bandwidth? In ACM
NOSSDAV, 2012 (DOI: 10.1145/2229087.2229092).

[3] S. Akhshabi, L. Anantakrishnan, C. Dovrolis, and A. C. Begen. Server-based
traffic shaping for stabilizing oscillating adaptive streaming players. In ACM
NOSSDAV, 2013 (DOI: 10.1145/2460782.2460786).

[4] A. C. Begen. Manus manum lavat: media clients and servers cooperating with
common media client/server data. In ACM Applied Networking Research Wksp.
(ANRW), 2021 (DOI: 10.1145/3472305.3472886).

[5] A. C. Begen, A. Bentaleb, D. Silhavy, S. Pham, R. Zimmermann, and W. Law. Road
to salvation: streaming clients and content delivery networks working together.
IEEE Commun. Mag., 59(11):123–128, 2021 (DOI: 10.1109/MCOM.121.2100137).

[6] A. Bentaleb, M. N. Akcay, M. Lim, A. C. Begen, and R. Zimmermann. Catching
the moment with LoL+ in Twitch-like low-latency live streaming platforms. IEEE
Trans. Multimedia, 24:2300–2314, 2022 (DOI: 10.1109/TMM.2021.3079288).

[7] A. Bentaleb, M. Lim, M. N. Akcay, A. C. Begen, and R. Zimmermann. Common
media client data (CMCD): Initial findings. In ACM NOSSDAV, 2021 (DOI:
10.1145/3458306.3461444).

[8] A. Bentaleb, M. Lim, M. N. Akcay, A. C. Begen, and R. Zimmermann. Meta
reinforcement learning for rate adaptation. In IEEE INFOCOM, 2023.

[9] G. Bichot and N. L. Scouarnec. Server-side segment selection for low-latency
streaming—S4S. SMPTE Motion Imaging Jour., 130(10):50–56, 2021.

[10] Consumer Technology Association. CTA-5006: Web application video
ecosystem–common media server data, Nov. 2022.

[11] Consumer Technology Association. CTA-5004: Web application video
ecosystem–common media client data, Sept. 2020.

[12] DASH-IF. DASH Reference Client. [Online] Available: https://reference.dashif.
org/dash.js/. Accessed on Apr. 1, 2023.

[13] M. Lim, M. N. Akcay, A. Bentaleb, A. C. Begen, and R. Zimmermann. The
benefits of server hinting when DASHing or HLSing. In ACM MHV, 2022 (DOI:
10.1145/3510450.3517317).

[14] NUS-OzU. CMCD-DASH. [Online] Available: https://github.com/NUStreaming/
CMCD-DASH. Accessed on Apr. 1, 2023.

[15] NUS-OzU. CMSD-DASH. [Online] Available: https://github.com/NUStreaming/
CMSD-DASH. Accessed on Apr. 1, 2023.

[16] S. Pham, M. Avelino, D. Silhavy, T.-S. An, and S. Arbanowski. Standards-based
streaming analytics and its visualization. In ACM MMSys, 2021.

[17] S. Pham, P. Heeren, C. Schmidt, D. Silhavy, and S. Arbanowski. Evaluation
of shared resource allocation using SAND for ABR streaming. ACM Trans.
Multimedia Comput. Commun. Appl., 16(2s), July 2020.

[18] D. Silhavy. dash.js - Common-Media-Client-Data. [Online] Available: https:
//websites.fraunhofer.de/video-dev/dash-js-common-media-client-data-cmcd/.
Accessed on Apr. 1, 2023.

138

https://marketing.broadpeak.tv/l/310951/2022-07-27/34fqqc2/310951/1658924402tjch5li4/WhitePaper_Testing_Low_Latency_S4Streaming.pdf
https://marketing.broadpeak.tv/l/310951/2022-07-27/34fqqc2/310951/1658924402tjch5li4/WhitePaper_Testing_Low_Latency_S4Streaming.pdf
https://reference.dashif.org/dash.js/
https://reference.dashif.org/dash.js/
https://github.com/NUStreaming/CMCD-DASH
https://github.com/NUStreaming/CMCD-DASH
https://github.com/NUStreaming/CMSD-DASH
https://github.com/NUStreaming/CMSD-DASH
https://websites.fraunhofer.de/video-dev/dash-js-common-media-client-data-cmcd/
https://websites.fraunhofer.de/video-dev/dash-js-common-media-client-data-cmcd/

	Abstract
	References

