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ABSTRACT

Streaming clients almost always compete for the available
bandwidth and server capacity. Not every client’s playback buffer
conditions will be the same, though, nor should be the priority with
which the server processes the individual requests coming from
these clients. In an earlier work, we demonstrated that if clients
conveyed their buffer statuses to the server using a Common Media
Client Data (CMCD) query argument, the server could allocate its
output capacity among all the requests more wisely, which could
significantly reduce the rebufferings experienced by the clients.

In this paper, we address the same problem using the Common
Media Server Data (CMSD) standard that is work-in-progress at
the Consumer Technology Association (CTA). In this case, the
incoming requests are scheduled based on their CMCD information.
For example, the response to a request indicating a healthy buffer
status is held/delayed until more urgent requests are handled.
When the delayed response is eventually transmitted, the server
attaches a new CMSD parameter to indicate how long the delay
was. This parameter avoids misinterpretations and subsequent
miscalculations by the client’s rate-adaptation logic.

We implemented the server and client understanding/processing
CMCD and CMSD, respectively. Our experiments show that the
proposed CMSD parameter effectively eliminates unnecessary
downshifting while reducing both the rebuffering rate and duration.
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1 INTRODUCTION

In the early days of HTTP adaptive streaming, the content delivery
network (CDN) providers did not take up the idea of HTTP servers
or other network elements communicating with each other or
streaming clients to improve the overall system’s performance
or the experience delivered to the individual clients. The concept
of server and network assistance in streaming first flourished in
2013 and a few years later became an MPEG standard [3].

While there were many good use cases for this standard, it
has not received sufficient interest from the industry for many
years. Then, in 2019, the participants in the Consumer Technology
Association’s (CTA) WAVE project wanted to specify a solution
to a long-standing problem: how could a streaming client relay
media (e.g., segment type/duration/format, content/session IDs) and
playback (e.g., current buffer length and latency) related information
so that the CDN could tie the individual GET requests to playback
sessions, harmonize its and client’s logs to accurately generate
dashboard metrics such as delivery performance, player software
issues and viewer experience, and react to the time constraints
implicit in media segment requests (e.g., prioritize delivery for
urgent requests).

As a result, CTA published the Common Media Client Data
(CMCD; CTA-5004) [9] specification in Sept. 2020 for use and
implementation without any royalties or additional licensing
requirements. Many early implementations appeared right away.
For example, the dash.js reference client [12] has been fully
compliant with CMCD since v3.2.1 and there exist also open-
source libraries for hls.js and ExoPlayer. The first evaluation results
(e.g., [8]) and capability demonstrations (e.g., [15, 17]) came out
soon after and many other studies are already underway. For the
interested readers, the timeline of the developments in this space is
detailed in [6]. An overview of CMCD and how it can potentially
be used in practice is also provided in [7].

During the development of CMCD, an issue [10] was raised
about the possibility of sending meta information and hints from
the CDN to the streaming clients. The discussions eventually led to
the concept of Common Media Server Data (CMSD), which will be
developed as a companion standard to CTA-5004. As of Jan. 2022,
the working group is on track to finalize the first version of this
standard later in 2022 [11]. Figure 1 illustrates a media distribution
system that uses CMCD and CMSD together.

CMSD can help in many ways. For example:

e A client that would mistakenly downshift due to
misinterpretation of a cache miss can be warned via CMSD.

e Oscillating clients [5] can be assisted and quickly stabilized
via CMSD.
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o Another client that would normally start the session with the
lowest-bitrate segments can be hinted to fetch higher-bitrate
segments.

e Caching storage capacity is limited in practice. Thus, not all
encodings can be cached on every server and rate-adapting
clients can get confused in certain circumstances [14]. CMSD
also helps, in this case, using caching indications to list
what is cached or not cached, letting the clients make more
informed decisions.

e CMSD can let the clients know the latest (live-edge) segment
in low-latency live streaming.

e CMSD can assist in synchronized viewing among the clients
at distinct places.

e CMSD can let the clients know about the server-driven
bandwidth measurements.
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Figure 1: Client-CDN cooperation with CMCD/CMSD
(reused from [6]).

We have three main contributions in this paper:

(1) This is the first attempt to investigate the feasibility of the
still-work-in-progress CMSD specification and demonstrate
its capability to improve viewer experience in one of the
well-known problematic scenarios, i.e., streaming clients
competing for the available bandwidth [4]. To do so, we
designed a buffer-aware response scheduling algorithm
for the server. This algorithm schedules the response for
each incoming segment request based on the reported
(playback) buffer level. More precisely, the responses to the
requests from clients with a healthy buffer level are delayed,
whereas the responses to the requests from clients with a
critical buffer level are delivered right away. This reduces
the chances of rebuffering for the low-buffer clients while
minimizing the impact on the performance of other clients.
While doing this, the delayed responses include a new CMSD
parameter indicating the delay duration. This information
helps the clients avoid picking unnecessarily lower segment
bitrates in their rate-adaptation logic.

(2) We extended our earlier proof-of-concept system [15] that
conforms with the client and server-side CMCD specification
to support CMSD functions. Our system comprises the open-
source dash.js reference client [12] and the NGINX [1] server
with a JavaScript module (NJS application) that implements
the buffer-aware response scheduling algorithm. The entire
system is publicly available at [16] to allow the scientific
community and industry to reproduce or extend our results.
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(3) We tested the implemented system in a multi-client scenario
(a mix of on-demand (VoD) and low-latency live (LLL)
streaming clients) via trace-driven network emulation. Our
setup consisted of 10-20 concurrent streaming sessions
sharing an access link with varying network conditions.
The preliminary results show a reduction of 33% - 56% in
rebuffering duration without degrading the video quality.
In the rest of this paper, we discuss our implemented system and
its components in Section 2, followed by performance evaluation
in Section 3. We conclude the paper in Section 4.

2 SYSTEM IMPLEMENTATION

The implemented proof-of-concept system is depicted in Figure 2.
It consists of three main components: dash.js streaming clients,
NGINX HTTP server and NetEm network emulator. The source
code for the entire system is available at [16].
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Figure 2: The implemented CMCD-CMSD system.

2.1 Streaming Clients (dash.js)

We used the CMCD implementation given by the dash.js client
(v3.1.3) [12]. Specifically, the CmcdModeljs class implements
various CMCD functions responsible for collecting the required
values for the set of the CMCD parameters [7, 9] for
other classes. For instance, it returns the buffer length (bl)
and measured throughput (mtp) from BufferController,js and
ThroughputHistory.js classes, respectively. Then, it generates the
CMCD query string to be sent with the HTTP GET request using
HTTPLoader.js. In our scenarios, we need the following CMCD
parameters to be sent from the clients to the server: buffer length
(bl), measured throughput (mtp), encoded bitrate (br), segment
duration (d), maximum buffer threshold (com.example-bmx) and
minimum buffer threshold (com.example-bmn). We note that
maximum and minimum buffer thresholds were custom extensions
introduced by us in [8].

To support the CMSD functions, we extended the HTTPLoader.js
class to parse the CMSD parameters sent by the server in
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the HTTP response headers. We made further changes to
the ThroughputHistory.js class, where we subtracted the delay
introduced by the server from the segment download time so
that the client could compute the throughput accurately. It is
worth mentioning that we used a throughput-based ABR scheme
(abrThroughput.js) in this study.

2.2 HTTP Server (NGINX)

We used NGINX [1] that runs (i) an HTTP server that holds
the source media segments of different representations for our
content and the corresponding manifest files, and (ii) the NGINX
JavaScript (NJS) middleware application. The NJS application
implements the scheduler for the outgoing responses and simplifies
the communication with the dash.js clients.

The NJS application has four essential functions: CMCD
request processing and parsing, response scheduling algorithm,
CMSD response generation and decision execution. NGINX consists
of modules that are controlled by directives specified in the
configuration file (nginx.conf), which enables the HTTP server
and NJS application (cmsd_njs.js) to leverage the required
functionalities. Below, we provide details for the NJS application
(cmsd_njs.js) functions:

(1) CMCD request processing and parsing: This function

processes each HTTP request received by NGINX with a

URL path. It parses the query string to retrieve the values

for the CMCD parameters and stores them in a JavaScript

object (cmcd_params).

Response scheduling algorithm: This function is responsible

for calculating the response delay for each request based on

the buffer length reported by the client. It uses the received

CMCD parameter values (bl, mtp, br, d, com.example-bmx,

com.example-bmn) sent by each client to make appropriate

scheduling decisions. This algorithm protects the clients with
low buffer levels from rebuffering. The main intuition behind
it is to delay the responses proportionately to the reported
buffer levels such that clients with an abundant buffer level
are delayed more, while clients with a low buffer level are
served sooner. This briefly frees up bandwidth that the
abundant-buffer clients would have used, thereby allowing
the low-buffer clients to have access to more bandwidth
so that they can receive their segments sooner and avoid
rebuffering. Our experiments show that we can improve the
overall performance for the competing clients with proper
calibration of the scheduling algorithm and without needing
more network/server capacity. The other CMCD parameters
are used to compute the response delay value (com.example-

dl). We define three groups of clients based on their reported

buffer length:

o Critical client: The buffer length is less than its reported
minimum buffer threshold (i.e., bl < com.example-bmn).
In this case, the response is processed right away (i.e., the
response delay is fixed to zero). Additionally, the response
delay to be applied to the subsequent normal or abundant
clients is calculated using: br X d / mtp (an approximation
of the segment download time).
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o Normal client: The buffer length is between its minimum
and maximum buffer thresholds (i.e., com.example-bmn <
bl < com.example-bmx). In this case, the response delay
is calculated using:

bl — com.example-bmn
P X dleyrrent,

com.example-bmx — com.example-bmn

where dlcyrrent is the response delay computed from the
last critical client minus the time passed since that critical
client was served (dleyrrent = 0).

o Abundant client: The buffer length exceeds its maximum
buffer threshold (i.e., bl > com.example-bmx). In this case,
the response delay is fixed to dleyrrent-

CMSD response generation: This function generates the HT TP

response header (CMSD-Dynamic) to convey the delay applied

(with the newly defined CMSD parameter: com.example-dl)

to the corresponding client. The client parses the response

header to extract the delay, which is then subtracted from the
segment download time when calculating the throughput.

The client then performs rate adaptation as usual.

Decision execution: This function applies the delay decisions

to the corresponding client requests. As configured in

nginx.conf, it uses the echo_sleep directive of the HTTP

Echo Module for NGINX [2] to apply the per-request

response delay.

2.3 Network Emulation (NetEm)

For network emulation, we used the Cascade bandwidth profile
that is publicly available in our repository [16]. The bandwidth
throttling between the clients and server is performed using the
NetEm tool [13] through the tc command.

3 PERFORMANCE EVALUATION

3.1 Scenarios and Setup

We implemented a proof-of-concept CMCD-CMSD system that
incorporates our proposed scheduling algorithm. We also designed
test cases to evaluate our system in a multi-client environment
where multiple clients concurrently streamed over a shared
network. The two test cases contained: (i) 10 VoD streaming
clients, and (ii) 10 VoD streaming and 10 LLL streaming clients,
respectively. The concurrent streaming sessions shared an access
link with varying network conditions enabled via trace-driven
network emulation.

Our test machine used Ubuntu 18.04.6 LTS, AMD Ryzen 7
3700X 8-Core CPU and 32 GB memory. The dash.js clients ran
in Google Chrome browser (v96.0.4664.110) with headless mode,
which was enabled by Puppeteer (v5.5.0) and Node.js (v15.14.0), and
used the default throughput-based ABR scheme (abrThroughput.js).
The network emulation was performed using tc NetEm, which
varied the bandwidth as specified in the Cascade bandwidth
profiles. Table 1 summarizes the bandwidth values used in our
tests (CascadeX10 was used for the first test case with 10 clients
and CascadeX20 was used for the second test case with 20 clients).
Each profile changed the throttled bandwidth every 30 seconds and
looped for the video duration of 10 minutes (which equates to the
duration of one test).
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H Profile Name Values (Mbps) ‘ # of Clients H
CascadeX10 100, 40, 20, 10, 20, 40 10
CascadeX20 200, 80, 40, 20, 40, 80 20

Table 1: The bandwidth profiles applied in both test cases.
Bandwidth values were updated at 30-second intervals and
the profiles looped for the test duration of 10 minutes.

We used two dash.js-compliant video datasets that were encoded,
per Akamai’s encoding recommendations, with H.264 codec at
30 fps and a bitrate ladder of five representations: 180p@0.4 Mbps,
360p@0.8 Mbps, 432p@1.5 Mbps, 576p@2.5 Mbps, 720p@4.0 Mbps.
Both datasets used the Big Buck Bunny video with a duration of
10 minutes, however, they varied by segment duration: the first
dataset used a segment duration of four seconds to simulate VoD
streaming sessions while the second dataset used one second to
simulate LLL streaming sessions. The videos were then stored on
our NGINX HTTP server. The clients and NJS application used
minimum and maximum buffer thresholds of [Bmin = 4 s | Bmax
= 20 s] for VoD and [Bjmin = 2 s | Bmax = 6 s] for LLL streaming
sessions.

3.2 Results and Analysis

The primary goal in our evaluation is to show how we can

potentially use a scheduling algorithm with CMCD and CMSD to

reduce rebuffering without degrading video quality when multiple

clients compete for the available bandwidth. We ran each test case

five times and averaged the results. We compared using CMSD

with scheduling against using no CMSD or scheduling using the

following metrics:

e Avg. BR: Average video bitrate across all clients (Mbps).

e Min. BR: Average video bitrate for the client with the lowest
average bitrate (Mbps).

e Avg. RD: Average total rebuffering duration across all clients (s).

o Max. RD: Total rebuffering duration for the client with the longest
rebuffering duration (s).

e Avg. RC: Average rebuffering count across all clients.

From the results shown in Table 2, we see that enabling CMSD
with the scheduling algorithm reduces Avg. RD by 33% and 56%,
and Avg. RC by 30% and 27% for test cases (i) and (ii), respectively.
The Avg. BR remains more or less unchanged with an average
reduction of only 2%. CMSD helps preserve the average bitrate
(quality) even as we introduce a delay on the server side, since the
delay is made known to the client via CMSD and accounted for in
the client-side mtp calculations. We believe that this is a promising
start for investigations on practical CMSD usage and we hope to
continue exploring this and other use cases.

4 CONCLUSIONS

Both CMCD and CMSD specifications have been developed to
promote better cooperation between adaptive streaming clients
and CDN servers to improve streaming performance. Beyond
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defining the specification, designing and validating the use cases are

equally important to ensure adoption. In this work, we conducted
a preliminary study to design and evaluate a proof-of-concept

system that applied CMCD, CMSD and a buffer-aware response
scheduling algorithm to manage a multi-client shared network
scenario. The results show that the system reduces the average
rebuffering duration and average rebuffering count without any
noticeable degradation in the video quality.

REFERENCES

[1] High Performance Load Balancer Web Server. [Online] Available: https://www.
nginx.com/. Accessed on Jan. 10, 2022.

[2] HTTP Echo Module. [Online] Available: https://www.nginx.com/resources/wiki/
modules/echo/. Accessed on Jan. 10, 2022.

[3] ISO/IEC 23009-5:2017 Information technology — Dynamic adaptive streaming
over HTTP (DASH) — Part 5: Server and network assisted DASH (SAND).
[Online] Available: https://www.iso.org/standard/69079.html. Accessed on Jan.
10, 2022.

[4] S. Akhshabi, L. Anantakrishnan, A. C. Begen, and C. Dovrolis. What happens
when HTTP adaptive streaming players compete for bandwidth? In ACM
NOSSDAYV, 2012 (DOI: 10.1145/2229087.2229092).

[5] S. Akhshabi, L. Anantakrishnan, C. Dovrolis, and A. C. Begen. Server-based
traffic shaping for stabilizing oscillating adaptive streaming players. In ACM
NOSSDAV, 2013 (DOI: 10.1145/2460782.2460786).

[6] A.C.Begen. Manus manum lavat: media clients and servers cooperating with
common media client/server data. In ACM Applied Networking Research Wksp.
(ANRW), 2021 (DOI: 10.1145/3472305.3472886).

[7] A. C. Begen, A. Bentaleb, D. Silhavy, S. Pham, R. Zimmermann, and
W. Law. Road to salvation: streaming clients and content delivery networks
working together. IEEE Communications Magazine, 59(11):123-128, 2021 (DOI:
10.1109/MCOM.121.2100137).

[8] A.Bentaleb, M. Lim, M. N. Akcay, A. C. Begen, and R. Zimmermann. Common
media client data (CMCD): Initial findings. In ACM NOSSDAV, 2021 (DOI:
10.1145/3458306.3461444).

[9] Consumer Technology Association. CTA-5004: Web Application Video

Ecosystem-Common Media Client Data, Sept. 2020.

cta-wave/common-media-client data. No common-media-server-data? [Online]

Available: https://github.com/cta-wave/common-media-client-data/issues/19.

Accessed on Jan. 10, 2022.

cta-wave/common-media-server data. [Online] Available: https://github.com/cta-

wave/common-media-server-data. Accessed on Jan. 10, 2022.

DASH-IF. DASH Reference Client. [Online] Available: https://reference.dashif.

org/dash.js/. Accessed on Jan. 10, 2022.

S. Hemminger et al. Network emulation with netem. In Linux conf au, volume 5,

page 2005. Citeseer, 2005.

D. H. Lee, C. Dovrolis, and A. C. Begen. Caching in HTTP adaptive streaming:

friend or foe? In ACM NOSSDAV, 2014 (DOI: 10.1145/2597176.2578270).

NUS-OzU. CMCD-DASH. [Online] Available: https://github.com/NUStreaming/

CMCD-DASH. Accessed on Jan. 10, 2022.

NUS-OzU. CMSD-DASH. [Online] Available: https://github.com/NUStreaming/

CMSD-DASH. Accessed on Jan. 10, 2022.

S. Pham, M. Avelino, D. Silhavy, T.-S. An, and S. Arbanowski. Standards-based

streaming analytics and its visualization. In ACM MMSys, 2021.

(11]

=
)

CascadeX10 CascadeX20
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Avg. RC 1.52 2.18 0.40 0.55

Table 2: Results for the test cases (i) 10 VoD streaming clients
(CascadeX10), and (ii) 10 VoD and 10 LLL streaming clients
(CascadeX20).
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