Check for
Updates

Asset Price and Direction Prediction via Deep 2D Transformer
and Convolutional Neural Networks

Tuna Tuncer” Uygar Kaya’ Emre Sefer’
Ozyegin University Ozyegin University Ozyegin University
Istanbul, Turkey Istanbul, Turkey Istanbul, Turkey
tuna.tuncer@ozu.edu.tr uygar.kaya@ozu.edu.tr emre.sefer@ozyegin.edu.tr

Onur Alacam
Ozyegin University
Istanbul, Turkey
onur.alacam@ozu.edu.tr

ABSTRACT

Artificial intelligence-based algorithmic trading has recently started
to attract more attention. Among the techniques, deep learning-
based methods such as transformers, convolutional neural net-
works, and patch embedding approaches have become quite popu-
lar inside the computer vision researchers. In this research, inspired
by the state-of-the-art computer vision methods, we have come
up with 2 approaches: DAPP (Deep Attention-based Price Predic-
tion) and DPPP (Deep Patch-based Price Prediction) that are based
on vision transformers and patch embedding-based convolutional
neural networks respectively to predict asset price and direction
from historical price data by capturing the image properties of the
historical time-series dataset. Before applying attention-based ar-
chitecture, we have transformed historical time series price dataset
into two-dimensional images by using various number of differ-
ent technical indicators. Each indicator creates data for a fixed
number of days. Thus, we construct two-dimensional images of
various dimensions. Then, we use original images valleys and hills
to label each image as Hold, Buy, or Sell. We find our trained
attention-based models to frequently provide better results for
ETFs in comparison to the baseline convolutional architectures
in terms of both accuracy and financial analysis metrics during
longer testing periods. Our code and processed datasets are avail-
able at https://github.com/seferlab/SPDPvCNN
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1 INTRODUCTION

Prediction of asset prices such as stocks via artificial intelligence sys-
tems exists for almost the last 30 years. Nowadays, stocks are not the
only instruments to be traded by traders and institutional investors.
There are many more instruments such as options, Exchange-
Traded Funds (ETFs), etc [1]. In line with such increase in the
number of instruments, artificial intelligence-based trading sys-
tems have become more important and functional in a number of
different global markets [1].

Recently, deep learning methods have outperformed more tradi-
tional machine learning-based models such as SVMs in a variety
of classification or prediction tasks. Image processing tasks such
as image segmentation or image classification appear to be one of
the main domains where deep learning outperforms these more
traditional methods [23]. A number of deep learning techniques
have also started to appear for financial prediction and classification
tasks such as asset price or direction prediction. Some examples
are Long Short Term Memory (LSTM) [10], Convolutional Neu-
ral Network (CNN) [3, 24], Recurrent Neural Network (RNN) [16],
and Transformers [4]. However, application of these deep learning
techniques on financial prediction tasks is not as common as their
applications in computer vision. Among these techniques, CNNs
have achieved one of the best performances [23] even though CNN
architectures have mainly been used to solve computer vision tasks
including image classification so far. On the other hand, Trans-
formers [8, 30] have recently been introduced mainly for sequence
analysis tasks in natural language processing, but since then they
have outperformed CNNs in these vision tasks. For instance, Vi-
sion Transformer (ViT) [8] achieves quite promising results and
outperforms the best-performing convolutional neural networks,
while its cost of training is also remarkably smaller than these
state-of-the-art convolutional networks. Transformers apply the
attention and self-attention mechanisms where attention is useful
in drawing connections among any parts of the sequence or image.
Relatedly, self-attention is an attention mechanism which relates
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different parts of an input while computing a representation of the
same input. As a result, modeling longer range dependencies do not
become a problem since the attention mechanisms introduction.

Here, we come up with two approaches in our algorithmic trad-
ing framework which predict both asset prices and directions:
DAPP (Deep Attention-based Price Prediction) and DPPP (Deep
Patch-based Price Prediction). One of them, DAPP, is a transformer-
based algorithm that fully depends on using the attention and self-
attention mechanisms. DAPP is based on Vision Transformer (ViT)
which is a modified version of traditional transformers for computer
vision tasks. Our second approach, DPPP, does not use the attention
mechanism, but instead it is based on patch embedding-based con-
volutional neural networks. Patch-embedding convolution neural
networks can be considered between transformers and traditional
convolutional neural networks, where they also use the patch em-
beddings observed in transformers but they do not use the attention
mechanism. As the first step, both approaches mainly transform one-
dimensional financial time series dataset into a two-dimensional
dataset similar to image. Via such dimension expanding transform,
we can better incorporate successful vision transformers, CNNs,
and patch-embedding qualities and capabilities into algorithmic
trading. While transforming into such 2D representation, we use
up to 65 technical indicators having various parameter combina-
tions for certain time period to define every column’s values. In
this case, x axis is made up of historical time-series data for every
indicator corresponding to every row. We order the rows of this
2D representation such that indicators exhibiting similar patterns
are clustered so that y-axis changes are smooth and consecutive
patterns can be captured by the deep learning techniques in DAPP
and DPPP.

In our models, DAPP and DPPP, we generate images of vari-
ous dimensions via technical indicators and input them into vision
transformer [8] and patch embedding-based convolution neural net-
work respectively. The number of algorithmic trading approaches
via transforming time series dataset into 2D representation is quite
limited [24]. CNN-TA proposed in [24] uses convolutional neural
networks to understand. However, as we will show in the results
as well, convolutional neural networks are not superior to more-
recently introduced architectures such as transformers or patch
embedding-based CNNs. To our best knowledge, algorithmic trad-
ing by transforming time series dataset into 2D representation and
then processing such input via transformers or patch embedding-
based CNNs similar to 2D image classification tasks has not been
used before even for other financial prediction tasks. According to
our detailed experiments, both of our approaches achieve the best
performance across longer time periods compared to well-known
baseline methods and similar method only using simpler CNNs
without the transformer architecture. DAPP and DPPP have out-
performed many trading algorithms over both longer and shorter
testing periods including Buy & Hold strategy (BaH), technical
indicator-based trading approaches, Multilayer Perceptron (MLP)
neural network, LSTM, and enhanced version of CNN-TA which
is an another deep convolutional neural network-based prediction
method over image-like data [24]. In general, transformer-based
DAPP performs slightly better than DPPP across both accuracy and
other financial analysis metrics which again shows the importance
of attention-based mechanisms combined with patch embeddings
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in financial tasks such as stock price and direction prediction. Even
though the performance of our proposed approaches are promis-
ing, we can further enhance their performance via more detailed
hyperparameter optimization and fine-tuning.

The upcoming sections of the paper are organized as follows:
Section 2 describes the related work after this introduction section.
Our proposed solutions are discussed in section 3, which is followed
by discussion on implementation and evaluation in section 4. We
analyze the evaluation of the proposed approaches in section 5.
Lastly, our conclusions are presented in section 6.

2 RELATED WORK

Traditional machine learning methods have been used extensively
to forecast stock markets. Number of studies has focused on ap-
plying time-series prediction approaches directly to the financial
datasets. Another set of studies have applied fundamental or tech-
nical analysis techniques to perform accurately in forecasting stock
markets. [1] has published a survey on the whole set of forecasting
methods including SVM, Artificial Neural Network (ANN), ensem-
ble approaches, etc. [19, 32] have used ANNs to predict stock index
values. [2] has come up with a neural network model to forecast in
Taiwan stock index. [12] has compared MLP and dynamic ANN to
forecast in US stock market. Additionally, [25] has come up with an
ANN model which integrates a number of technical analysis indica-
tors in predicting turning points of stock prices. In another work, [9]
has focused on predicting foreign exchange (FX) via genetic algo-
rithms by correcting the estimation errors. Lastly, a number of
studies have focused on hybrid models to forecast stock prices. For
instance, [31] proposes an approach to combine SVM with Principal
Component Analysis (PCA).

Recently, newer deep learning approaches has started to appear
as the computational capacity has increased. Deep learning is ba-
sically a special case of Artificial Neural Network (ANN) which is
made up of more than one layer where each layer contributes dif-
ferently in way to outperform the shallower neural networks [18].
Various types of deep learning models exist such as Convolutional
Neural Network (CNN), Long Short Term memory (LSTM), Re-
current Neural Networks (RNN), and Transformers. These deep
learning approaches are utilized across various domains. For in-
stance, CNNs are highly utilized in classifying and recognizing the
images [14, 17]. Additionally, CNNs also appear frequently in video
processing as well as natural language processing tasks such as
sentence categorization [13]. LSTMs and RNNs are mainly used to
analyze sequential datasets appearing mostly in speech processing,
natural language processing, and time-series related tasks. Lastly,
more recently-introduced transformers are also used to analyze the
sequential datasets. They have first been applied to NLP tasks [33],
but recently they have also been successfully applied to computer
vision tasks [8, 15].

Deep learning methods, especially deep CNNs and transformer-
based architectures are the most commonly-used methods in the last
decade. However, number of deep learning approaches developed
for financial tasks is quite limited. For instance, [7] has come up
with a deep learning-based approach to predict stock markets by
using events data by extracting news and other textual knowledge
from web. In their paper, they have focused on using a neural
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tensor network and deeper CNN to take into account the shorter
and longer horizon effects of events on stock price fluctuations
across US stock market. Another paper [22] has compiled the set
of existing deep learning methods to analyze financial time-series
datasets such as stock market index prices via methods including
convolution and pooling, RNN, autoencoder, etc. [10] has forecasted
the stock trends and directions in S&P 500. Similarly, [16] has
evaluated random forests and deep neural networks in forecasting
the stock prices across S&P 500. Moreover, [34] has developed an
approach to forecast the stock price trends by integrating news
on Japanese exchange, which has outperformed more traditional
machine learning-based method SVM. Lastly, [26] and [24] are more
relevant work to ours. In [26], they integrate technical analysis
indicators into their prediction. They have developed evolutionary
methods to select the optimal technical analysis parameters for
indicators, and afterwards used a feedforward neural network (FNN)
that uses those optimal parameters as the input. Similarly, [24] come
up with an approach called CNN-TA, which combines CNNs with
two-dimensional matrix characterization of the technical analysis
datasets. According to the both relevant papers, deep learning can
learn and generalize quite accurately across buy and sell time points
over longer testing horizons.

Similarly, number of transformer-based approaches for predic-
tion tasks across financial markets is extremely limited. For in-
stance, [36] proposes a novel transformer architecture that is based
on accurate description via smaller sample feature engineering
to capture financial datasets temporal relationships. In another
work, [6] proposes a novel transformer-based method to predict
stock movements. Their approach integrates a multi-scale Gauss-
ian prior to further improve the transformer’s locality. Lastly, [20]
comes up with a capsule network that is based on transformer in
extracting deeper semantic attributes of the social media dataset’s
rich semantics.

The existing studies use CNNs quite frequently for image anal-
ysis and classification tasks, while CNNS are not mainly used for
time-series datasets. CNNs are quite successful on computer vision
tasks and the performance increase achieved by CNNs are signifi-
cant. Deep learning methods, more frequently LSTM and RNN, have
recently been the common implementation options for financial
time-series prediction. On the other hand, the existing algorithmic
trading approaches frequently use technical analysis indicators
together with different input. Nevertheless, there are not many
methods which combined such technical analysis datasets with
deep learning techniques. Furthermore, there are only few studies
in algorithmic trading that combine CNNs with two-dimensional
matrix characterization of the technical analysis datasets [5, 23-25].
In these studies, deeper CNN models are integrated with the tech-
nical analysis datasets. These methods typically convert financial
time-series prediction problem into an image classification task by
generating two-dimensional images of indicators from the prices.

3 OUR PROPOSED METHODS: DAPP AND
DPPP
Following subsections 3.1-3.3 are common for both methods. Sec-

tions 3.4-3.5 provide specific details for DAPP and DPPP respec-
tively.
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3.1 Dataset Preparation

To analyze financial data, fundamental analysis and technical anal-
ysis (TA) are two frequently-used techniques [1]. Fundamental
analysis examines financial data specific to a company such as re-
turn on equity, cash flow, and balance sheet. On the other hand,
technical analysis examines the historical time-series dataset via
mathematical models. Number of available technical indicators to
predict the financial asset prices are quite high.

In our case, Open-High-Low-Close-Volume (OHLCV) data for 9
of the selected Exchange-Traded Funds (ETFs) were collected from
finance.yahoo.com via the yfinance library for training and testing
intention. These ETFs are XLF, XLU, QQQ, SPY, XLP, EWZ, EWH,
XLY, XLE. We chose those ETFSs since they have data trading data
for large number of days with a high volume. For each of these ETF,
65 different technical indicators [21] with different time horizons
based on various categories including overlap studies, momentum,
volume, volatility, price transformation, and statistics, were calcu-
lated by using OHLCV data and TA-Lib (Technical Analysis Library)
in Python. Table 1 shows all technical indicators used in our analy-
sis (See https://mrjbq7.github.io/ta-lib/ for more details for these
indicators). We have used ETF prices over 20 year period, from
1/1/2002 to 1/1/2022 for training and testing our approaches. This
20 year period covers two major crises: 2008 economic crisis and
2020 COVID crisis.

Table 1: Technical Analysis Indicators Used in DAPP and
DPPP

Indicators

BBANDSL, BBANDSM, BBANDSU, DEMA,
EMA, HT TRENDLINE, KAMA, MA,
MIDPOINT, MIDPRICE, SMA, TEMA,
TRIMA, WMA

ADX, ADXR, APO, AROONUP,
AROONDOWN, AROONOSC, BOP, CCI,
CMO, DX, FASTD, FASTDRSI, FASTK,
FASTKRSI, MACD, MACDEXT, MACDFIX,
MFI, MINUS_DI, MINUS_DM, MOM,
PLUS DI, PLUS DM, PPO, ROC, ROCP,
ROCR, ROCR100, RSI, SLOWD, SLOWK,
TRIX, ULTOSC, WILLR

AD, ADOSC, OBV

TRANGE

AVGPRICE, MEDPRICE, TYPPRICE, WCL-
PRICE

BETA, CORREL, LINEARREG,
LINEARREG_ANGLE,
LINEARREG_INTERCEPT,
LINEARREG_SLOPE, STD, TSF, VAR

Category

Overlap Studies

Momentum

Volume
Volatility

Price Transfor-
mation

Statistics

3.2 Labeling

In the labeling phase, all daily closing prices of the images are
labeled as Hold, Buy, or Sell according to threshold value, after
extracting the data for the intended period. The portion below the
threshold points are labeled as Buy, the portion above the threshold
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points are labeled as Sell, and the remaining points are labeled as
Hold. The selection of the threshold value is very crucial since the
frequency of the generated datasets (such as high-frequency) de-
pend on the threshold value. In our case, by choosing two specific
threshold values 0.0038 and 0.01, we generate both a balanced and
an imbalanced datasets to be analyzed. We test the financial quality
and the robustness of our proposed solutions by evaluating them
over both balanced and imbalanced datasets. With a threshold of
0.0038, the data is distributed as evenly as possible so that forecasts
are made over the balanced dataset. On the other hand, at a thresh-
old of 0.01, it is a good idea to buy ahead if the asset price increases
by 1% in a day, and sell if it drops by 1%. In this case, generating the
datasets by using a threshold of 0.0038 establishes the framework
for a higher-frequency trading approach. But, threshold of 0.01
makes forecasts that are more hold-centric and are comparable to
a buy-and-hold strategy.

3.3 Technical Indicators to Images

We transformed our time-series datasets into 2D images to utilize
in our methods and some of the baseline approaches. In the image
creation phase, as discussed above, for each day, RSI, WMA, EMA,
SMA, ROC, CMO, CCI, PPO, TEMA, WILLR, MACD, and 54 more
technical indicator values for different horizons are calculated using
the TA-Lib library (These indicator horizons range from 6 to 20
days). These indicators can also be seen as financial time-series
filters which are used mostly for medium term algorithmic trading
which is our main focus in this research. Different set of indicators
with longer horizon parameters can be used for models aiming for
longer term algorithmic trading.

Since we have generated our images using these 65 different
technical indicators for 65 historical days, the size of the images
we obtained is 65 X 65. In addition, each row in the images we
have generated shows 65 different technical indicators, while each
column represents a different previous day. The order of the indica-
tors is important since different orderings will result in different
image formations. The resulting indicator values were sorted by
their categories and correlation values, and images were generated
using that ordering. In addition, after the images were generated,
the standardization process was applied to each image in order to
make each of these images more consistent. As an example, Figure 1
illustrates sample 65 X 65 pixel images that are generated during
the image generation and labeling phases.

SELL
2015-09-25

Figure 1: 65 X 65 Pixel Labeled Sample Images
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3.4 Deep Attention-based Price Prediction:
DAPP

Once data collection, labeling, and image conversion steps are ac-
complished, DAPP applies Vision Transformer (ViT) [8] by training
with the generated images and constructed labels. During the adap-
tation and development of transformers with self-attention-based
architectures for computer vision tasks over images, one of the
main challenges is that the run time of the model becomes qua-
dratic with respect to the number of pixels, as each pixel will attend
to one another. Vision Transformer solved this problem by dividing
the image into patches and applying self-attention to each patch
separately. Meanwhile, Vision Transformer flattens each patch and
applies positional embedding on top, before feeding the patches
into the transformer encoder structure, thus aiming to preserve the
positional information in the images. The Transformer encoder [30]
is made up of multi-head self-attention and MLP blocks. Layer nor-
malization is applied before every block, and residual connections
are applied after every block. Finally, a single hidden layer MLP is
connected to the end of the transformer encoder for classification.

More formally, let C be the number of channels and (H, W) be
the resolution of the original image, DAPP reshapes the generated
image x € REXWXC into a series of flattened two-dimensional
patches xp € RN*P*C ywhere (P, P) is the resolution of each image
patch, and N = I% is the resulting number of patches, which also
serves as the effective input sequence length for the transformer.
The transformer utilizes constant hidden vector size D through all
of its layers, so we flatten the patches and map to D dimensions
with a trainable linear projection. The output of this projection is
referred as patch embeddings.

As indicated in [8], especially with large scale datasets and
pre-training, the vision transformer approaches frequently sur-
pass state-of-the-art performing CNNs. However, they also point
out that when trained on medium-sized datasets without a strong
regularization, Vision Transformer falls a few percentages below
state-of-the-art CNN architectures like ResNet. This is thought
to be because Vision Transformer lacks the inductive bias that is
common in CNNs.

Since our vision transformer-based architecture DAPP is trained
on medium-sized datasets (approximately 45000 images), we have
also employed Sharpness-Aware Minimization (SAM) technique [11]
to enhance the quality of our results and make them more robust.
Number of heads in Vision Transformer part of DAPP is 4, patch
size is 8, projection dimension is 64, and there are 8 transformer
layers in DAPP. Unless stated otherwise, batch size for DAPP train-
ing is 128, training is run for 100 epochs, and AdaDelta [35] is
used as the optimizer which is a stochastic optimizer allowing for
per-dimension learning rate for stochastic gradient descent.

3.5 Deep Patch-based Price Prediction: DPPP

Once data collection, labeling, and image conversion steps are ac-
complished, DPPP applies patch embedding-based ConvMixer [29]

by training with the generated images and constructed labels. Recently-

proposed ConvMixer architecture has claimed that the main reason
for the Vision Transformer’s success might be the use of patches
in the input representation, rather than the transformer architec-
ture (i.e. the self-attention mechanism). As a result, ConvMixer
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basically replaces the encoder architecture in Vision Transformer
with convolutional neural networks. ConvMixer divides the im-
ages into patches, flattens them, applies positional embedding, as
in Vision Transformer, and then employs standard convolutions
instead of inserting patch embeddings into the transformer encoder.
Additionally, the concept of mixing introduced in [28] is another
significant component utilized in ConvMixer. Concept of mixing is
applied to incorporate the self-attention mechanism’s characteristic
of mixing distant spatial locations in the ConvMixer architecture
by employing significantly larger kernel sizes than usual. In other
words, ConvMixer aims to replicate the effects of self-attention
even if it does not implement self-attention.

In DPPP, ConvMixer architecture utilizes "tensor layout” patch
embeddings with patch size 2 for locality preservation, and then
keeps applying d = 8 copies of a simple fully-convolutional block
which mainly consists of large-kernel with size 7 depthwise convo-
lution, Gaussian Error Linear Unit (GELU) activation, and batch nor-
malization. This repeated fully-convolutional blocks are followed by
pointwise convolution, before finishing with global pooling and a
simple linear classifier. Unless stated otherwise, batch size for DPPP
training is 32, training is run for 200 epochs, and AdaDelta [35] is
used as the optimizer.

4 EXPERIMENTAL SETUP
4.1 Data Preparation

As we have performed a financial evaluation on the trained models,
we have chosen the test dataset in a continuous interval. We have
used ETF prices over 20 year period between 1/1/2002 to 1/1/2022
for training and testing our approaches. We have implemented
a sliding window with retraining technique where we choose a
consecutive 5 year interval as the training period and choose the
following one year as the testing period. Afterwards, train and test
periods are shifted one year forward, trained our models again, and
tested with the next year. Therefore, we test each year between
2007 and 2021 once via our repeated retraining approach.

The resulting indicator values were sorted by their categories and
correlation values, and images were generated using that ordering.
In addition, after the images were generated, the standardization
process was applied to each image in order to make each of our
images more consistent. Given that the images are generated at
daily intervals, a total of 45090 images, or 5010 images for each
ETF, were generated. All generated images were gathered under
a single dataset to train a single model because we didn’t have a
large enough dataset to build a separate model for each ETF.

4.2 Baseline Approaches: Buy & Hold and
Enhanced CNN-TA

One of our basic baseline is Buy & Hold Strategy (BaH) which
buys the asset when the test period starts and sells it once the test
period is over. We have also employed CNN-TA [24] as our next
baseline after enhancing it further. CNN-TA is a deep convolutional
neural network-based prediction method over image-like data [24].
It consists of an input layer, two convolutional layers with 3 X 3
filters, a max pooling layer, two dropout layers with rates 0, 25 and
0.5, a fully connected layer, and finally an output layer. CNN-TA is
a fully convolutional structure without any patch embeddings and
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attention mechanisms. The adapted CNN structure of CNN-TA is
similar to deep convolutional neural networks utilized in MNIST
algorithm, where 28 x 28 images have been used in MNIST as input.
In our case, we do not directly apply CNN-TA, but instead increase
the number of used indicators further enhancing its performance.
So, that is why we name the method as Enhanced CNN-TA. We have
re-implemented CNN-TA by enhancing it in the following way:
We have used 65 X 65 images instead of 15 X 15 image as input,
increasing the number of technical indicators used as well as the
used data history.

4.3 Performance Evaluation

We evaluate the performance of our methods DAPP and DPPP,
baselines enhanced CNN-TA and Buy & Hold strategy by both
traditional prediction metrics as well as financial metrics. In terms
of computational prediction, we report the performance by using
Accuracy, Recall, Precision, and F1 score which assess how well
the methods perform the Buy, Hold, and Sell classification. On the
other hand, for financial evaluation, daily trading transactions have
been simulated according to the models predictions, using the test
dataset. The model’s annualized return as well as the annualized
risk of the returns during the test period are used to calculate Sharpe
Ratio [27], which is one of the most common metric to financially
evaluate the performance of a strategy. Sharpe ratio is calculated as
the ratio of annualized portfolio return relative to risk free return
divided by annualized standard deviation, where we use 3-month
US treasury bill return for risk free rate.

Once algorithmic trading is executed for the test periods, we ana-
lyze the generated transactions via financial evaluation techniques.
We buy, sell, and hold each asset depending on the predicted label.
If the predicted label for an asset is Buy and we have not bought the
asset previously, we buy the asset with all of the existing capital.
We do not take any action if the predicted label is Hold. Lastly, if
the predicted label is Sell, we sell the asset at that price if it has been
already bought. We ignore the consecutively repeating labels until
predicted label becomes different. We assume a trading commission
of $1 for each transaction since the traded ETFs are quite liquid,
and have $10000 capital at the beginning. Our code and processed
datasets are available at https://github.com/seferlab/SPDPvCNN.

5 RESULTS AND DISCUSSION

We use two different evaluation criterion to evaluate the general
performance of our models DAPP and DPPP with respect to the
baselines: Machine Learning (ML)-based Evaluation and Financial
Evaluation. With the ML-based evaluation, metrics such as Accu-
racy, Recall, Precision, and F1 score were utilized to assess how
well the neural network performs the Buy, Hold, and Sell classifi-
cation, while for Financial Evaluation, daily trading transactions
were simulated according to the model’s predictions, using the test
dataset with a different time intervals which include the recent
COVID-19 pandemic period as well. The return produced by the
model’s choices, as well as the risk involved, are assessed as a result
of the simulation.
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5.1 Machine Learning-based Evaluation

We analyze the prediction abilities of our models DAPP and DPPP
in terms of multiple metrics as seen in Tables 2-3 respectively.
Basically, these tables report the classification performances over
imbalanced dataset formed by using threshold 0.01. Results are
reported in terms of recall, precision, F1 for each price direction
category. We also report the overall precision, F1 and accuracy.
According to tables, DPPP and DAPP perform almost similarly, and
obtain an overall near 0.62 — 0.63 accuracy. When we analyze the
performance of both methods in detail for predicting each class
Buy, Sell, and Hold, both methods also perform similarly. In our
case, our financial image dataset is still relatively smaller compared
to the datasets in other deep learning applications. So, due to such
relatively smaller dataset, we believe attention-based transformer
architecture DAPP does not fully reach its best performance. We
believe the difference between DAPP and DPPP will become more
apparent when we train our methods with more data. Additionally,
DPPP’s performance being almost as good as DAPP across many
metrics shows that efficient and careful design of an architecture
using patch embedding together with convolutional structures may
unexpectedly perform as good as transformer structure. Moreover,
due to the imbalanced dataset, it becomes very difficult for the
models to distinguish between Buy and Sell labeled images from
Hold labeled images. As a result, in most cases across imbalanced
dataset, this results in our models predicting Hold for most images.

Table 2: Classification performance of DAPP over imbalanced
dataset formed by using threshold 0.01. Results are reported
in terms of recall, precision, F1 for each price direction cate-
gory. We also report the overall precision, F1 and accuracy.

‘ ‘ Buy ‘ Hold ‘ Sell ‘

| Recall | 0.04 | 0.98 | o0.01 |
| Precision | 039 | 0.63 | 023 |
| F1Score | 0.07 | 0.77 | 0.03 |
‘ Weighted Precision ‘ 0.5131 ‘
| Weighted F1 \ 0.4995 \
‘ Accuracy ‘ 0.6235 ‘

Prediction results are slightly lower over the balanced dataset
which is formed by using threshold 0.0038, even though we do
not show these results due to space limitations. While DAPP and
DPPP have better test accuracy in the imbalanced dataset, both
methods give worse results for the Buy and Sell labels than in the
balanced dataset. We think that this issue arises because the number
of Buy and Sell labels in the imbalanced training dataset are lower
than in the balanced dataset. In general, when compared to the
performance of other studies focusing on stocks rather than ETFs,
overall accuracy of our ETF results are better. Such results can be
mainly because ETFs are less sensitive to market events, political
changes, and economic crisis compared to stocks. As a result, ETFs
are more stable and less volatile. This lower volatility results in a
better environment for algorithmic trading methods to learn the
trading model more easily.

84

Tuna Tuncer, Uygar Kaya, Emre Sefer, Onur Alacam, and Tugcan Hoser

Table 3: Classification performance of DPPP over imbalanced
dataset formed by using threshold 0.01. Results are reported
in terms of recall, precision, F1 for each price direction cate-
gory. We also report the overall precision, F1 and accuracy.

‘ ‘ Buy ‘ Hold ‘ Sell ‘

| Recall | 0.07 | 0.98 | 0.02 |
| Precision | 043 | 0.64 | 028 |
| F1Score | 0.12 | 078 | 0.04 |
‘ Weighted Precision ‘ 0.5362 ‘
| Weighted F1 \ 05163 \
‘ Accuracy ‘ 0.6299 ‘

5.2 Financial Evaluation

We have also evaluated the performance more realistically by fi-
nancial analysis. We mainly analyze annualized returns for each
ETF, as well as Sharpe ratio [27] for equal-weighted portfolio of all
these ETFs over different methods. As discussed in Section 4.3, we
have simulated financial analysis for each ETF by simulating the
transactions over the test set period.

Even though Buy & Hold (BaH) strategy looks like a simpler
strategy, it is still a challenging task to beat Buy & Hold strategy in
a longer test period. In our case, DAPP’s and DPPP’s annualized
returns have outperformed BaH strategy in 8 out of 9 ETFs dur-
ing the test period in imbalanced dataset as seen in Table 4 where
the highest annualized returns are shown in bold. For instance,
DAPP’s annualized return is 18.04% for XLF whereas BaH’s annu-
alized return for the same ETF is 8.71%, where the difference is
more than 2 folds. For some ETFs such as EWH, BaH can result
in negative annualized returns whereas adapting a better architec-
ture results in positive returns, and makes the performance even
more robust. When BaH strategy has beaten our methods in QQQ,
the performance difference between DAPP and BaH is less than
1%. In general, DAPP is the top performer across almost all ETFs.
Even though we have used the enhanced version of CNN-TA as our
baseline, integrating the transformer architecture as well as patch
embeddings have remarkably outperformed Enhanced CNN-TA as
seen in Table 4. Enhanced CNN-TA results show the importance
of convolutional architectures, but also show that their results can
be further enhanced by adapting more recent better-performing
techniques. In terms of Sharpe Ratio of the equal-weighted port-
folio among these ETFs, our attention-based approach DAPP still
performs better than DPPP and the other competing approaches.
In this imbalanced dataset, DAPP achieves a Sharpe Ratio of 2.74
which is reasonably high for a strategy that trades equity indices.

Similarly, the annualized returns of DAPP and DPPP have outper-
formed BaH strategy in 8 out of 9 ETFs during the test period in the
balanced dataset as seen in Table 5 where the highest annualized
returns are shown in bold. In general, DAPP is the top performing
method over almost all ETFs. Integrating transformer architecture
as well as patch embeddings into asset price prediction have again
remarkably outperformed Enhanced CNN-TA as seen in Table 5
for most ETFs. Even though the annualized returns of individual
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Table 4: Financial performance comparison of our methods
DAPP and DPPP with respect to Enhanced CNN-TA approach
and baseline Boy & Hold strategy for each ETF in imbalanced
dataset that is generated at threshold 0.01. Performance is
measured in terms of annualized return for each ETF.

ETFs DAPP DPPP Enhanced BaH
CNN-TA

XLF 18.04%. 16.98% 16.95% 8.71%
XLU 8.45% 7.96% 6.67% 4.52 %
000 1873% 1738%  1617%  19.64%
SPY 12.67% 10.81% 11.45% 7.14%
XLP 19.78% 16.59% 18.61% 14.34%
EWZ 17.74% 12.99% 14.53% -2.83%
EWH 3.92% 3.44% 5.35% -3.27%
XLY 10.68% 9.41% 9.98% 9.53%
XLE 10.27% 15.14% 14.37% 2.27%

Sharpe Ratio 2.74 2.47 2.27 1.07

ETFs are still reasonably high, Sharpe ratios become smaller mainly
due to increasing return volatility as measured by the standard
deviation. For instance, in this balanced dataset, DAPP achieves a
Sharpe ratio of 1.82 which is lower than 2.74 ratio obtained over
the imbalanced dataset. According to our machine learning-based
and financial evaluations so far, both DAPP and DPPP seem like
safer strategies than only convolutional architectures in terms of
investing into ETFs.

Table 5: Financial performance comparison of our methods
DAPP and DPPP with respect to Enhanced CNN-TA approach
and baseline Boy & Hold strategy for each ETF in balanced
dataset that is generated at threshold 0.0038. Performance is
measured in terms of annualized return for each ETF.

ETFs DAPP DPPP Enhanced BaH
CNN-TA
XLF 7.99% 4.57% 9.64% 3.71%
XLU 19.65% 16.18% 14.83% 12.52 %
000 27.28% 2434%  2060%  16.64%
SPY 18.24% 10.18% 11.59% 7.14%
XLP 19.84% 9.02% 10.51% 14.34%
EWZ 4.81% -1.85% -2.58% -2.83%
EWH 3.59% 6.42% 0.29% -3.27%
XLY 12.95% 15.15% 12.90% 10.53%
XLE 17.25% 13.40% 13.92% 12.27%
Sharpe Ratio 1.82 1.52 1.35 1.07

Figure 2 shows our proposed methods capital allocation for XLP
and XLE ETFs respectively over imbalanced dataset during shorter
test period between 2018 and middle of 2022. As discussed in Section,
we start our analysis with $10000 capital and simulate transaction-
based financial analysis. In each figure, DAPP and DPPP perfor-
mances are compared against the other methods during the selected
period. Capital allocation results for remaining ETFs are also simi-
lar. For most of the test period intervals, trades generated via our
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proposed methods are quite successful. We have observed different
market conditions during our lengthy test period which includes
stationary market condition, bull markets, bear markets, etc. How-
ever, these different market conditions and fluctuations associated
with them have not impacted the trading performance of the pro-
posed methods. As a result, both DAPP and DPPP could lead to
high profits even under bear market conditions.
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Figure 2: Comparison of our proposed methods DAPP and
DPPP with respect to Enhanced CNN-TA and Buy & Hold
strategies for XLP and XLE ETFs respectively over the imbal-
anced dataset.

6 CONCLUSION

In our study, we have developed two methods that uses two-dimensional

deep attention-based neural networks and two-dimensional deep
patch embedding based convolutional neural networks in predicting
financial asset prices. Our approaches utilize a number of technical
analysis indicators, and develop algorithmic trading strategies as
the end product. By analyzing financial time-series ETF datasets,
we have first transformed such data into 2D images as input to our
methods DAPP and DPPP. To generate profitable trades, we have fo-
cused on forecasting entry and exit points of the time-series values
in terms of three categories: Buy, Sell, and Hold. According to our
machine learning-based and financial results, our methods perform
quite better than Buy & Hold baseline and enhanced version of
the only convolutional CNN-TA method over longer out-of-sample
test periods. Both the attention mechanism and patch embeddings
are useful in increasing the asset price and direction prediction
performance.
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Even though our methods performance is reasonable, we can
still achieve more improvements. In terms of future work, we will
first integrate more stocks and ETFs to generate significantly larger
amount of data for training our proposed deep learning models. Ad-
ditionally, we will focus on better analyzing the relationships among
technical indicators so that we will generate better 2D representa-
tions for prediction tasks. As a result, such better representation
will possibly lead to trading models with higher profitability. We
will also focus more on optimizing DAPP and DPPP parameters
which was not our main focus in this paper. Lastly, we have eval-
uated the performance by using a long-only strategy. Instead, we
may adapt a long-short strategy to remarkably increase the profit
as such long-short strategy will decrease the number of times our
method will be holding a cash while waiting for a buy or sell signal.
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