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ABSTRACT Visible light communication (VLC) has recently emerged as an enabling technology for high
capacity underwater wireless sensor networks. Non-orthogonal multiple access (NOMA) has been also
proven capable of handling a massive number of sensor nodes while increasing the sum capacity. In this
paper, we consider a VLC-based underwater sensor network where a clusterhead communicates with several
underwater sensor nodes based on NOMA. We derive a closed-form expression for the NOMA system
capacity over underwater turbulence channels modeled by lognormal distribution. NOMA sum capacity in
the absence of underwater optical turbulence is also considered as a benchmark. Our results reveal that the
overall capacity of NOMA-enabled Underwater VLC networks is significantly affected by the propagation
distance in underwater environments. As a result, effective wireless transmission at high and moderate
spectral efficiency levels can be practically achieved in underwater environments only in the context of
local area networks. Moreover, we compare the achievable capacity of NOMA system with its counterpart,
i.e., orthogonal frequency division multiple access (OFDMA). Our results reveal that NOMA system is
not only characterized by achieving higher sum capacity than the sum capacity of its counterpart, OFDMA
system. It is also shown that the distances between sensor nodes and the clusterhead for achieving the highest
sum capacity in these two multiple access systems are different.

INDEX TERMS Sum capacity, asymptotic sum capacity, non-orthogonal multiple access, orthogonal
frequency divisionmultiple access, lognormal fading, underwater optical turbulence, underwater visible light
communication.

I. INTRODUCTION
The increased use of underwater sensor networks (USNs)
for various applications such as environmental monitoring,
oil exploration, port security, data collection, and tactical
surveillance has prompted researchers to investigate under-
water wireless connectivity solutions [1]. Acoustic commu-
nications have been a common choice for USNs and they can
support transmission distances of up to tens of kilometers,
albeit at low data rates on the order of kbps. Underwater
visible light communication (UVLC) has been proposed as
a complementary connectivity solution with data rates in the
order of tens of Mbps [2]. As light propagates through water,
it suffers from significant attenuation, especially for ultra-
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violet and infrared wavelengths [3]. Blue-green part of the
visible light spectrum is the best wavelength for underwater
transmission. While the green part of the spectrum has less
attenuation in coastal water, the blue part of the spectrum is
more favorable in the open ocean [4].

There has been a growing literature on UVLC where blue
or green colored lasers or LEDs are used as wireless transmit-
ters [5]–[29]. Most of these analyses are, however, limited to
single user and point-to-point links. Yet, practical implemen-
tation of USNs requires the design of multiple access sys-
tems for supporting several sensor nodes. Motivated by this,
some multiple access schemes for UVLC systems have been
further proposed [30]–[39]. For example, in [30], an orthog-
onal frequency division multiplexing (OFDM)-based mul-
tiuser multiple-input multiple-output (MU-MIMO) system
was investigated in the context of UVLC. They considered
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linear pre-coding to serve multiple users at a time. In [32],
a shot noise limited interleaver iterative non-orthogonal mul-
tiple access (NOMA) UVLC system based on a photon
counting receiver is proposed. They have applied repetition
coding in order to improve the performance. An orthogonal
frequency division multiple access (OFDMA) UVLC system
was proposed in [33] where the overall data rate is maximized
subject to two constraints, namely the bit error rate (BER)
for each user does not exceed the predetermined maximum
BER as well as per user data rate is identical for all users.
In [36], experimental validation of NOMA UVLC with blue
Laser source has been demonstrated, where the sum rate
of 4.686 Gbps has been achieved for two users. Another
experimental validation of NOMAUnderwater VLC has been
demonstrated in [37]. They have compared experimentally
the error rate performance of the NOMA system in air and
underwater environments and demonstrated that the NOMA
system works better in underwater environment.1

Unlike OFDMA where nodes are allocated orthogonal
resources in frequency domain, in NOMA schemes, multiple
users simultaneously share the entire available frequency
and time resources, with a controlled interference thresh-
old, leading to low latency and significant gains in spec-
tral efficiency [42]. NOMA controlled interference can be
realized either in power or code domains. In power-domain
NOMA, users are assigned different power levels while, in the
code-domain NOMA, multiplexing can be carried out using
spreading sequences, which is similar to code division multi-
ple access (CDMA) technology. Generally, power allocation
in the commonly adopted NOMA systems is determined
based on the channels condition between the transmitter and
the receiving nodes. In specific, nodes with strong chan-
nel gains are allocated lower power coefficients, while high
power coefficients are assigned to nodes with weak chan-
nel gain. For reliable data detection, each node in the USN
performs successive interference cancellation (SIC) to reduce
the multi-user interference. In particular, nodes successively
cancel out the interference from those signals with higher
power, and then decode their own signals.

In [31], the capacity of multiuser power domain NOMA
was investigated numerically over lognormal fading chan-
nel, which is typically valid for weak turbulence conditions
as experimentally demonstrated in [10], [43]. In [34], the
authors provided a numerical evaluation for the capacity
and outage probability of power domain NOMA-enabled
UVLC system over lognormal fading channels and showed
that NOMA outperforms OFDMA in terms of achievable
capacity. The authors in [35] investigated the error rate
performance and the achievable capacity of power domain
NOMA-based UVLC system over Exponential-Generalized
Gamma (EGG) distribution, which is valid for turbulence in
the presence of air bubbles.

1Although NOMA systems are considered as future of wireless com-
munication technologies, NOMA can also be combined with orthogonal
multiple access (OMA) approaches. See for example hybrid orthogonal/non-
orthogonal experimental indoor works [40], [41].

To the best of our knowledge, power domain NOMA
for UVLC over lognormal turbulence channels was only
addressed in [31], [34]. In [31], the effect of turbulence
strength on the channel capacity in addition to the effect of
targeted rate and number of nodes on coverage probability
have been investigated. In [34], the effect of power allo-
cation coefficient on the achievable capacity and coverage
probability has been studied. Note that the above discussed
contributions are limited to numerical evaluation, and lack the
solid theoretical foundation and derivations.

Motivated by the earlier discussion, the main contributions
of this paper are summarized as follows:

1) We derive a novel closed-form expression for the
capacity of VLC NOMA system over a lognormal tur-
bulence channel.

2) In an effort to gain more insight into the capac-
ity performance of the underlying system model,
we derive asymptotic closed-form capacity expres-
sions, and demonstrate that the asymptotic capacity
of the closest node to the clusterhead is the only
node that is affected by underwater optical turbulence,
i.e., the turbulence is encountered only in the asymp-
totic capacity of the first node. On the other hand, the
asymptotic capacity of other nodes is controlled by the
considered power allocation coefficient scheme.

3) To corroborate the efficiency of NOMA in underwater
VLC systems, we present the achievable capacity of
OFDMA scheme.

4) To further demonstrate the efficiency of NOMA sys-
tem, we compare the achievable capacity in the pres-
ence and absence of underwater optical turbulence.

5) We present numerical and simulation results, with the
aim to verify the derived mathematical framework and
quantify the system performance under different sce-
narios, including different power allocation schemes,
distances, and water types.

The remainder of the paper is organized as follows: In
Section II, we present the considered system and channel
models. In Section III, we present closed-form and asymp-
totic expressions for the system capacity over lognormal
fading channels. In Section IV, we present the numerical
results and finally conclude in Section V.

II. SYSTEM AND CHANNEL MODELS
We consider a NOMA-enabled UVLC where a clusterhead
communicates with K underwater sensor nodes, as depicted
in Fig. 1. Each node is assumed to be at a distance dk ,
k = 1, 2, . . . ,K , from the clusterhead. Let PT , xk and αk
denote the available power budget shared by all nodes, the
transmitted unipolar signal to the kth node, and power allo-
cation coefficient of the k th node, respectively. Therefore,
the allocated power to the k th node is given by Pk = αkPT .
Power allocation coefficients are subject to the constraint of∑K

k=1 αk = 1. It should be noted that splitting the transmit
power with proper coefficients among nodes allows the prac-
tical realization of successive interference cancellation (SIC),
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FIGURE 1. NOMA for downlink UVLC.

i.e., it increases the ability of the receiver to eliminate the
effect of high power signals and perform reliable signal detec-
tion. In other words, the receiver can successively decode the
higher power signals and consider all other signals as inter-
ference, subtract the decoded signal from the superimposed
signal and finally detect the intended signal.

Mathematically, the transmitted signal from the cluster-
head is given by X =

∑K
k=1
√
Pk xk . The received signal at

the k th node is given by

yk = η r hk Ik X + wk , (1)

where η is the laser diode’s electro-optical conversion effi-
ciency and r is the photodetector’s opto-electrical responsiv-
ity. wk is the additive white Gaussian noise (AWGN) term
at the k th receiver, k = 1, 2, . . . ,K . It has zero mean and
a variance of σ 2

n = N0W where N0 is the noise power
spectral density and W is the system bandwidth. In (1),
Ik , k = 1, 2, . . . ,K are random variables characterizing the
fading induced by the underwater turbulence, whereas hk ,
k = 1, 2, . . . ,K are deterministic terms that characterize the
attenuation loss between the clusterhead and the k th node,
k = 1, 2, . . . ,K .

Under the assumption of semi-collimated laser sources
with Gaussian beam shape, hk is expressed as [11]

hk ≈ D2
Rθ
−2
F d−2k exp

(
−cDρRθ

−ρ
F d1−ρk

)
, (2)

where θF and DR denote full-width transmitter beam diver-
gence angle and receiver aperture diameter, respectively.
In (2), ρ and c represent correction and extinction coeffi-
cients, which are both dependent on water type [11]. Under
the assumption of weak turbulence, the probability density
function (PDF) of the fading coefficient is given by [6]

fIk (Ik) =
1

Ik
√
2π
(
4σ 2

xk

) exp
(
−

(
ln (Ik)− 2µxk

)2
2
(
4σ 2

xk

) )
, (3)

where µxk and σ
2
xk denote the mean and variance of the log-

amplitude coefficient, respectively. To ensure that the fad-
ing coefficient does not change the value of average power,
the fading amplitude is normalized such that E [Ik ] = 1,
which implies µx k = −σ

2
xk [44]. The variance can be

written in terms of the scintillation index (σ 2
Ik ) as σ 2

xk =

0.25 ln
(
σ 2
Ik + 1

)
. Scintillation index for laser sources with

Gaussian beam shape can be calculated by [45, Eq. (7)] and
[46, Eq. (16)].

Power allocation in NOMA systems is determined based
on the channels condition between the transmitter and the
receiving nodes. Specifically, nodes with strong channel
gains (i.e., closest nodes to the clusterhead) are allocated
lower power coefficients, while high power coefficients are
assigned to nodes with weak channel gain. Without loss of
generality, we assume that channel gains are ordered in a
descending form, i.e., h1 > h2 > · · · > hK , hence the power
allocation coefficients are then given asαK > · · · > α2 > α1.
Since the highest transmit power is assigned to the K th node,
this node does not perform SIC. On the other hand, since the
least transmit power is assigned to the first node, this node
will decode the data of K − 1 nodes before decoding its own
signal. The operation at the kth SIC receiver can be described
as follows. The receiver first detects/decodes the signal sent
for the furthest point (i.e.,Kth node). After detection/decoding
it, kth SIC receiver cancels the interference contributed by
the Kth node. kth SIC receiver repeats this processes, respec-
tively, for (K-1)th node, (K-2)th node, . . ., (k+1)th node. kth

SIC receiver will finally decode/detect its own signal after
canceling the effect of k+1, . . ., K nodes.

III. SUM CAPACITY ANALYSIS
The sum capacity of NOMA can be written as RT =∑K

k=1 Rk . Due to the fact that the classical Shannon’s equa-
tion does not work for optical systems, the exact capac-
ity is still unknown for optical channel. Consequently,
different bounds on capacity of optical channels were
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derived [47]–[50]. Based on [50], the gap between the exact
and lower bound on channel capacity can be efficiently
neglected for high SNR and then the tight lower bound on
capacity and assuming perfect SIC, the conditional capacity
of the k th node (conditioned on the fading coefficients Ik ,
k = 1, 2, . . . ,K ) can be written as 2

Rk ≈ W log2

(
1+

exp (1)
2π

γk

(
I2k
))
, (4)

where γk
(
I2k
)
is given as

γk

(
I2k
)
=

Pkη2r2h2k I
2
k

N0W + η2r2h2k I
2
k

k−1∑
i=1

Pi

. (5)

The average capacity can be calculated by averaging (4)
over the PDF of the turbulence in (3) as (6), as shown at the
bottom of the page. To solve the integral in (6), we apply a
variable change x = ln (Ik). It can be noticed that x follows
the normal distribution with mean 2µxk and variance 4σ 2

xk .
Therefore, (6) can be expressed as

Rk ≈ E[g(x)] =

∞∫
−∞

g (x) fx (x) dx . (7)

where E [·] denotes the expectation operator. Here, g (x) and
fx (x) are defined, respectively, as

g (x) = W log2

(
1+

exp (1)
2π

γk (exp (2x))
)
. (8)

fx (x) =
1√

2π
(
4σ 2

xk

) exp
(
−

(
x − 2µx k

)2
2
(
4σ 2

xk

) )
. (9)

2Note: In the absence of underwater optical turbulence,
the SNR for the k th node is deterministic and found as

γk = Pkη2r2h2k

/(
N0W + η2r2h2k

∑k−1
i=1 Pi

)
. Therefore, the capacity

of the k th node, in the absence of turbulence, can be calculated by (4) after
replacing γk

(
I2k

)
by γk .

Utilizing Holtzmann’s Gaussian approximation [51], (7)
can be approximated as weighted sum of g (x) by replacing
x with 2µxk , 2µx k − 2

√
3σxk and 2µx k + 2

√
3σxk as (10), as

shown at the bottom of the page.
In an effort to have further insight into the capacity,

we pursue asymptotic analysis in the following. Applying the
approximation E

[
log2

(
1+ a

/
b
)]
≈ log2

(
1+ E [a]

/
E [b]

)
[52, Eq. (35)], we can write (7) as

Rk ≈ W log2

(
1+

exp (1)
2π

γk
(
E
[
exp (2x)

]))
, (11)

It can be readily verified that E
[
exp (2x)

]
= exp(

8σ 2
xk + 4µx k

)
. Replacing this within (11), we have

Rk ≈ W log2

(
1+

exp (1)
2π

γk

(
exp

(
8σ 2

xk + 4µxk
)))

.

(12)

Noting that the inner argument of the exponential function
in (12) is extremely small (i.e.,

(
8σ 2

xk + 4µxk
)
� 1 ). There-

fore, exp
(
8σ 2

xk + 4µxk
)
can be efficiently replaced by 1.

This implies that the capacity of NOMA system in the pres-
ence of underwater optical turbulence is almost close to the
capacity of NOMA system in the absence of underwater opti-
cal turbulence, i.e., Rk ≈ W log2

(
1+

(
exp (1)

/
2π
)
γk (1)

)
.

In the following, we consider asymptotically high transmit
power, i.e.,PT →∞. It can be readily found that (12) reduces
to (13), as shown at the bottom of the page.

The asymptotic capacity expression in (13) suggests that
as PT approaches∞, the effect of turbulence is encountered
only in the first node, which was demonstrated to have a
low impact on the NOMA capacity. The asymptotic capacity
of other nodes is determined by the power allocation coef-
ficients. Therefore, it can be concluded that the system’s
asymptotic capacity in the presence of underwater optical
turbulence is close to the asymptotic NOMA capacity in the
absence of turbulence. In other words, despite the continuous
changes in turbulence strength, the NOMA capacity remains

Rk =
W√

2π
(
4σ 2

xk

)
∞∫
0

log2

(
1+

exp (1)
2π

γk

(
I2k
))
I−1k exp

(
−

(
ln (Ik)− 2µx k

)2
2
(
4σ 2

xk

) )
dIk (6)

Rk ≈
2
3
W log2

(
1+

exp (1)
2π

γk

(
exp

(
4µxk

)))
+

1
6
W log2

(
1+

exp (1)
2π

γk

(
exp

(
4µxk − 4

√
3σxk

)))
+

1
6
W log2

(
1+

exp (1)
2π

γk

(
exp

(
4µxk + 4

√
3σxk

)))
(10)

Rk
PT→∞

≈



W log2

(
exp (1)
2π

PTα1η2 r2 h21 exp
(
8σ 2

x1 + 4µx 1
)

N0W

)
, k = 1

W log2

1+
exp (1)
2π

αk
k−1∑
i=1

αi

, k = 2, 3, . . . ,K

(13)
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almost constant. This further motivates the employment of
NOMA as an efficient scheme for multi-access in underwater
environments.

IV. NUMERICAL RESULTS
In this section, we present the capacity of wireless nodes in
NOMA UVLC system. We also validate our derived closed-
form expression in (10), closed-form approximate capac-
ity expression in (12) and asymptotic capacity expression
in (13). Unless mentioned otherwise, we consider a two
sensor nodes scenario,K = 2, which is commonly adopted in
the literature in order to ensure limited inter-user interference,
e.g., [53]–[56]. We further consider receiver aperture diam-
eter of DR = 5 cm, full-width transmitter beam diver-
gence angle of θF = 6◦, noise power spectral density
of N0 = 10−22W/Hz, a bandwidth of W = 200MHz
and total transmit power of PT = 1W. Assuming
clear ocean and coastal water, the extinction and cor-
rection coefficients are given, respectively, as (c , ρ) =
(0.15 , 0.05) and (0.305 , 0.13) [11]. Electro-optical effi-
ciency of η = 0.5 W/A and opto-electrical responsivity of
r = 0.28 A/W are considered. We further calculate the scin-
tillation index (σ 2

I )
3 based on [45, Eq. (7)] in conjunctionwith

[46, Eq. (16)] assuming salinity of 35 PPT and temperature
of 20 ◦C.

In Fig. 2, we present the capacity of NOMA and dis-
cuss the effect of power allocation coefficient considering
dT = d1 + d2 = 20m. Since d1 is assumed to be shorter than
d2, we consider the range of d1 < dT /2. Since the received
power at k th node is proportional to h2k and given the fact
that power allocation coefficient is performed such that low
transmits powers are assigned to the nodes with less severe
channels and vice versa, we consider αk ∝ 1/h2k , k =
1, 2, . . . ,K . Utilizing this and

∑K
k=1 αk = 1, we consider

in simulation αk =
(
1/h2k

)
/
∑K

i=1
(
1/h2i

)
, i.e., for two-node

case α1 = h22/
(
h21 + h

2
2

)
and α2 = h21/

(
h21 + h

2
2

)
. In order to

demonstrate the efficiency of NOMA in underwater VLC net-
works, the sum capacity of NOMA in the absence of under-
water optical turbulence is further included as a benchmark.

It can be observed from Fig. 2 that the derived expression
in (10) provides excellent match to the analytical calcula-
tion based on (6). It can be noted that when α1 = 0,
i.e., no power is allocated to the first node, its achievable
capacity is zero. In this case, the second node achieves capac-
ity of R2 = 9.57 bps/Hz and R2 = 5.95 bps/Hz for clear
ocean and coastal water, respectively. This also indicates that
the highest capacity for the second node in clear ocean is
higher than its highest capacity in coastal water. This is due
to the fact that the extinction coefficient of coastal water
is higher than that of clear ocean, which results in weaker
channel coefficient. It can be further observed that, when α1

3For computing σ 2I , we assume a dissipation rate of mean-squared tem-
perature of 1 × 10−3 K2s-3, a dissipation rate of turbulent kinetic energy
per unit mass of fluid of 1 × 10−2 m2s-3, relative strength of temperature,
salinity fluctuation of ω = −3 and wavelength of λ = 530 nm in [46].

FIGURE 2. Capacity of downlink NOMA system with two nodes: (a) clear
ocean and (b) coastal water.

increases (i.e., α2 = 1−α1 decreases), the capacity of the first
node increases and the capacity of the second node decreases.
It is also noted that the capacity of the first node (i.e., R1)
approaches the NOMA overall capacity while the capacity of
the second node (i.e., R2) approaches zero as α1 increases.

On the other hand, the highest sum capacity is achieved
for clear ocean when α1 = 7.1901 × 10−05 as RT =
23.28 bps/Hz. This corresponds to distances of d1 = 3.43 m
and d2 = 16.57 m. For coastal water, the highest sum capac-
ity is achieved when α1 = 3.93 × 10−04 as RT =

19.46 bps/Hz. This corresponds to distances of d1 = 5.084m
and d2 = 14.916m. This indicates that the highest sum
capacity in different water types requires different distances
from the cluster head.

It can be further observed that the capacity of the NOMA
system in the absence of underwater optical turbulence is
slightly higher than the NOMA capacity in the presence of
turbulence. This gives great importance to the deployment of
NOMA system in an underwater environment. For example:
While the highest sum capacity is achieved for clear ocean
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FIGURE 3. Capacity comparison between NOMA and OFDMA systems
with two nodes.

as RT = 23.28 bps/Hz in the presence of under water
optical turbulence, it is obtained as RT = 23.49 bps/Hz
in the absence of turbulence. Moreover, the distribution of
sensor nodes for achieving the best performance (i.e., highest
capacity) of the NOMA system in the presence of under water
optical turbulence and in the absence of it is almost the same if
we consider the same water type. For example, if we consider
clear ocean, the highest capacity that can be obtained in the
presence of turbulence is achieved when the first node is
placed at a distance of d1 = 3.43 m and the second node
at a distance of d2 = 16.57 m meters. The distances for
achieving the highest performance in the same water type
and in the absence of turbulence are found as d1 = 3.37 m
and d2 = 16.63 m. This in turn suggests that it is possible
to use the NOMA system in an underwater environment by
choosing fixed locations for user nodes, as long as the system
is used in the same water type.

In order to demonstrate the superiority of NOMA
underwater VLC communication, we consider two sen-
sor nodes in a clear ocean and compare the capacity
of NOMA system with OFDMA counterpart considering
dT = d1 + d2 = 20m. It can be seen from Fig. 3 that, in most
cases, the capacity of the NOMA system exceeds that of
the OFDMA system. The capacity of the OFDMA system
slightly exceeds the capacity of the NOMA system in cases
where the user nodes are very close to each other. This is due
to the high interference experienced in NOMA systems as
users have almost the same channel coefficient and accord-
ingly, close power coefficients are assigned to all nodes. It can
be further observed that, while the highest capacity of NOMA
system is obtained as RT = 23.28 bps/Hz when d1 = 3.43 m
and d2 = 16.57 m, the highest capacity of OFDMA system
is obtained as RT = 17.31 bps/Hz when d1 = d2 = 10 m.

In the following, we study the effect of distance difference
on NOMA capacity considering coastal water. We assume
that dT = d1+d2 is fixed and consider two cases: dT = 15 m
and dT = 20 m in Figs. 4.a and 4.b, respectively. It can

FIGURE 4. Effect of distance on the capacity of downlink NOMA with two
nodes assuming coastal water: (a) d1 +d2 = 15 m and (b) d1 +d2 = 20 m.

be observed from Fig. 4 that, generally, the overall capac-
ity increases as distance difference increases (i.e., d2 − d1
increases). This is because the power allocation coefficient
for the farthest point is much larger than the power allocation
coefficient for the nearest point (i.e., α2 � α1 ). Therefore,
node 1 has a good capacity due to small propagation distance
and node 2 has a good capacity due to very small interference
from node 1. On the contrary, we observe a decrease in
the overall capacity as d1 increases, d2 decreases and hence
d2 − d1 decreases. This is due to the fact that the closer the
nodes to each other the higher the interference.

The general observation of that the overall capacity
increases as distance difference increases does not always
hold as it can be observed from Figs. 4.a and 4.b that the
maximum capacity is obtained when d1 = 2.59m and 5.07m,
respectively, for d1 + d2 = 15m and 20m. This is due to
the fact that while assigning most of the power to the farthest
point and very low amount of available power to the nearest
point, the received power levels at both nodes are low. The
nearest node to clusterhead receives a low power signal due
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FIGURE 5. Effect of transceiver parameters on the capacity of downlink
NOMA with two nodes assuming coastal water: (a) Effect of receiver
aperture diameter and (b) Effect of transmitter beam divergence angle.

to assigning low power to it. At the same time, the furthest
point receives a low signal power due to very weak channel
coefficient.

It can also be observed in Fig. 4 that, although the transmit
power is just 1 W, the asymptotic capacity expression in (12)
which is derived assuming high transmit power (i.e., high
SNR) provides goodmatchwith the exact capacity expression
for some ranges of distances. These expressions deviate from
the actual capacity for smaller d1. because both nodes will
have a low SNR. The first node will have low SNR since most
of the power is assigned to the farthest node and the second
node will have a low SNR due to very low channel gain that
is strongly decaying with propagation distance. It can also
be observed that the capacity of the first node increases with
increasing d1, This is due to the considered power allocation
strategy. In other words, P1η2 r2 h21 increases with distance.

In the following, we investigate the effect of transceiver
parameters on NOMA capacity considering coastal water
and dT = 20 m. Particularly, the effect of receiver aper-
ture diameters and transmitter beam divergence angle on the

achievable NOMA capacity have been investigated, respec-
tively, in Figs. 5.a and 5.b.

For investigating the effect of receiver aperture diame-
ters,DR = 5 cm, 10 cm and 20 cm are assumed. The corre-
sponding extinction coefficients are ρ = 0.13, 0.16 and 0.21,
respectively [11, Table 1]. It is observed from Fig. 5.a that
as receiver aperture size increases, the achievable NOMA
capacity increases since larger receiver aperture sizes col-
lect more energy. Furthermore, the larger aperture size, the
less turbulence strength, yielding higher SNR. For example,
at distance of d1 = 5 m, aperture diameter of 10 cm and
20 cm provides, respectively, 25.33% and 45.22% improve-
ment over aperture diameters of 5 cm. The important point
is how aperture diameters affect on the optimal distance
where maximum sum capacity is achieved. It can be observed
from Fig. 5.a that the maximum sum capacity is obtained for
DR = 5 cm, 10 cm and 20 cm, respectively, at distance of
d1 = 5.07 m, 3.80 m, and = 2.63 m. Indicating that, the
smaller the aperture diameter, the closer the nodes to each
other which are found as d2 − d1 = 9.86 m, 12.4 m and
14.74 m, respectively. This is due to the need to reduce the
distance of the second node from the clusterhead (i.e., d2)
when the receiving area is small in order to be able to receive
a suitable power, given that the power received on the small
area in the large distance is very little, and therefore the
second point will have a very small SNR.

For investigating the effect of transmitter’s beam diver-
gence angle, θF = 6◦, 12◦ and 18◦ are assumed. The cor-
responding extinction coefficients are ρ = 0.21, 0.24 and
0.25, respectively [11, Table 1]. It can be observed from
Fig. 5.b that as divergence angle increases, the achievable
NOMA capacity decreases. This is due to the fact that the
focused beam (i.e., more collimated angle) experiences less
attenuation and less geometric loss through the propagation
medium. For example, the achievable NOMA capacity in
coastal water at distance of d1 = 5 m and beam divergence
angle of θF = 6◦ provides 8.83% and 23.57% higher
capacity over beam divergence angle of θF = 12◦ and
θF = 18◦, respectively. The important point is how transmit-
ter’s beam divergence angles affect on the optimal distance
where maximum sum capacity is achieved. It can be observed
from Fig. 5. b that the maximum sum capacity is obtained
for θF = 6◦, 12◦ and 18◦, respectively, at distance of d1 =
2.63 m, 2.69 m, and = 2.87 m. Indicating that, the larger the
transmitter’s beam divergence angles, the closer the nodes to
each other which are found as d2−d1 = 14.74m, 14.62m and
14.26 m, respectively. Unlike the effect of aperture diameter
on the optimal locations of nodes, the effect of transmitter’s
beam divergence angles is quite negligible.

In all of the above results, we considered the scenario of
two sensor nodes. In the following, we study the presence
of a number of sensor nodes on the NOMA sum capacity
assuming coastal water and dT =

∑K
k=1 dk = 20m. Particu-

larly, we have tabulated the maximum sum capacity that can
be achieved in each case, as well as the distances of sensor
nodes from the clusterhead and power allocation coefficients
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TABLE 1. Maximum sum capacity of NOMA downlink with K nodes (dT = 20 m and Coastal water are assumed).

TABLE 2. Comparing the highest sum capacity of NOMA system with two
hypothetical cases (dT = 20 m and Coastal water are assumed).

in Table 1. It can be seen that the sum capacity increases as
the number of sensor nodes increases. It may be intuitive that
increasing the number of sensor nodes increases the capacity.
But the capacity does not increase if a new sensor node
is added randomly. Rather, all sensor nodes must be redis-
tributed with new distances from the clusterhead and with
new power allocation coefficients. Otherwise, adding a new
sensor node without re-allocating the old sensor nodes may
increase the interference and hence decrease the sum capac-
ity. In other words, adding additional sensor node requires
changing the location of other sensor nodes and accordingly
the power allocation coefficients. For example, while the
maximum sum capacity for the case of two sensor nodes
(i.e., K = 2) is obtained for d1 = 5.048 m and d2 =
14.916 m, the maximum sum capacity for four sensor nodes
is achieved when d1 = 0.0226 m, d2 = 0.9575 m, d3 =
9.1513 m and d4 = 9.8686 m.

In the following, we assume coastal water and dT =∑K
k=1 dk = 20m and compare the highest sum capacity of

NOMA systemwith two hypothetical cases, namely when the
sensor nodes are separated from each other by the same dis-
tance (i.e., dk+1 − dk = Constant, k = 1, . . . ,K ) and when
all sensor nodes are equidistant from the clusterhead
(i.e., di = dk , k = 1, . . . ,K and, i = 1, . . . ,K ).
It is noted that, regardless of the number of sensor nodes,

the achieved sum capacity in the optimal placement of sensor
nodes, given in Table 1, is the highest, while the lowest sum
capacity is experienced when all nodes are equidistant from
the clusterhead. This is due to the fact that, when sensor

nodes are separated from each other by the same distance,
the distances of the sensor nodes from the clusterhead are
not the same; therefore it can achieve higher sum capacity
than second hypothetical case, in which sensor nodes have
the same distance from the clusterhead. For example, assume
the presence of 5 sensor nodes, the sum capacity of the
optimal case is evaluated to 55.02 bps/Hz. This value drops
to 27.76 bps/Hz and 22.51 bps/Hz, respectively, for case I
in which the sensor nodes are separated from each other by
the same distance and case II in which all sensor nodes are
equidistant from the clusterhead.

V. CONCLUSION
In this paper, we considered NOMA in the context of under-
water sensor networks. To this end, we derived a simple
closed-form expression for the NOMA capacity as well as a
simple and accurate asymptotic representation. The derived
closed-form expressions are in agreement with the corre-
sponding analytic results, while they are insightful and easy
to compute.

Analyzing the performance of the considered underwater
network set up, we considered various scenarios where we
studied the effect of different link distances on the overall
NOMA capacity. We observed that the overall capacity is
severely worsening with propagation distance which is due
to the fact that the VLC channel gain severely drops with
propagation distance. Therefore, the considered configura-
tion can exhibit particularly high rates in the context of a
local area network. We also compared the performance of the
NOMA system with and without the presence of underwater
optical disturbance. The results, as well as the theoretical
study, proved that the NOMA system exhibits robust capacity
performance in the presence and absence of an optical turbu-
lence. This is because the capacity of most nodes depends
mainly on the power allocation coefficient.

We further investigated the effect of system parameters on
the optimal N nodes’ distances, where maximum sum capac-
ity is achieved. It is observed that while aperture diameters
hugely influence the optimal distances where maximum sum
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capacity is achieved, the transmitter’s beam divergence angle
has almost negligible effect on the optimal nodes’ distances.
Additionally, one of the valuable observations that must be
taken into account is that, for asymptotic analysis, the tur-
bulence is encountered only in the first node and does not
affect other nodes. The asymptotic capacity of other nodes is
controlled by the power allocation coefficients.

APPENDIX
In order to demonstrate the superiority of NOMA system
for achieving the highest capacity as a multiple access tech-
nique in an underwater environment, as benchmark, we need
to compare it with the well-known multiple access tech-
nique of OFDMA. Since in OFDMA rather than sharing the
whole bandwidth with all users/sensor nodes similar to the
NOMA system, part of the bandwidth is assigned to each user
(i.e., users are assigned to a group of subcarriers), we assume
that bandwidth is shared among all users equally. For fair
comparison with NOMA system counterpart, the same power
allocation coefficient is assumed and hence the conditional
capacity of the k th, k = 1, 2, . . . ,K node in OFDMA system
can be written as

RkOFDMA ≈ Wk log2

(
1+

exp (1)
2π

γkOFDMA

(
I2k
))
, (A1)

whereWk is the assigned bandwidth for the k th user and given
as Wk = W/k . In (A1), γkOFDMA

(
I2k
)
is given as

γkOFDMA

(
I2k
)
=
Pkη2r2h2k I

2
k

N0Wk
. (A2)

Similar to the average capacity of NOMA system over log-
normal turbulence channel, Holtzmann’s Gaussian approxi-
mation in [51] is used. The average capacity per user is then
found as (A3), as shown at the top of the page.
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