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Abstract We argue that the variational method in Wald type
thought experiments, involves order of magnitude problems
when one imposes the fact that δM is inherently a first order
quantity itself. One observes that the contribution of the sec-
ond order perturbations is actually of the fourth order. There-
fore backreactions have to be explicitly calculated. Here,
we re-consider the overspinning problem for Kerr–Newman
black holes interacting with test fields. We calculate the back-
reaction effects due to the induced increase in the angular
velocity of the event horizon, which brings a partial solu-
tion to the overspinning problem. To bring an ultimate solu-
tion, we argue that the absorption probability should be taken
into account in Wald type problems where black holes inter-
act with test fields. This fundamentally alters the course of
the analysis of the thought experiments. Due to the fact that
a small fraction of the challenging modes is absorbed by
the black holes, overspinning is prevented for both nearly
extremal and extremal cases. Some extreme cases are easily
fixed by backreaction effects. The arguments do not apply to
the generic overspinning by fermionic fields for which the
absorption probability is positive definite.

1 Introduction

One of the main unsolved problems in classical general rela-
tivity is the validity of the cosmic censorship conjecture due
to Penrose [1]. The conjecture aims to circumvent the prob-
lems that could arise if a curvature singularity is allowed to
be in causal contact with distant observers. This is achieved
by forbidding the existence of naked singularities in a phys-
ical universe. The gravitational collapse of a massive object
should end up in a black hole surrounded by an event horizon
rather than a naked singularity, as prescribed by Penrose and
Hawking [2].
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The natural question at this stage is whether the event hori-
zon of a black hole can be destroyed by test bodies or fields
to expose the curvature singularity lurking at the center. The
possibility to destroy an event horizon was first evaluated in
a thought experiment constructed by Wald [3]. Wald started
with an extremal Kerr–Newman black hole and attempted
to increase the charge and angular momentum beyond the
extremal limit by sending in test bodies from infinity. It
turns out that the test bodies that could potentially over-
charge or overspin an extremal Kerr–Newman black hole
are not absorbed by the black hole. The event horizon is
stable and the smooth structure of the space-time is main-
tained excluding the black hole region inside the event hori-
zon. Later, Hubeny adapted an alternative approach to Wald
type problems where one starts with a nearly extremal black
hole instead of an extremal one [4]. She showed that a nearly
extremal Reissner–Nordström black hole can be overcharged
into a naked singularity by a test body. Jacobson and Sotiriou
applied an analogous analysis to show that nearly extremal
Kerr black holes can be overspun by test bodies [5]. Düztaş
and Semiz derived the same result for nearly extremal Kerr
black holes interacting with test fields [6]. In these works
the overspinning and overcharging of nearly extremal black
holes are not quite generic, which suggests that they should
be fixed by employing backreaction effects. It was argued
that the self force effects can prevent the overcharging [7]
and overspinning [8] of nearly extremal black holes by test
bodies. In a very recent work we showed that the absorption
of the test fields that could overspin nearly extremal black
holes is not allowed due to the increase in the angular veloc-
ity of the event horizon before the absorption of the field [9].

In literature there exist various attempts to overspin or
overcharge black holes with test bodies [10–24], and fields
[25–38]. The effect of quantum tunnelling and particle cre-
ation has also been incorporated in Wald type problems [39–
45]. In recent years, the possibility to destroy the event hori-
zon in the asymptotically anti-de Sitter cases has also become

123

http://crossmark.crossref.org/dialog/?doi=10.1140/epjc/s10052-021-08879-2&domain=pdf
http://orcid.org/0000-0003-4119-545X
mailto:duztasko@hotmail.com


49 Page 2 of 14 Eur. Phys. J. C (2021) 81 :49

an active field of research [46–52]. ( For a recent review see
[53].)

In Wald type problems the backreaction effects are diffi-
cult to compute and most of the time the results are restricted
to order of magnitude estimates. Recently Sorce and Wald
designed a new type of gedanken experiment by adapting a
variational approach [54]. They derived an explicit expres-
sion for the second order effects, so one does not have
to explicitly compute self force or finite size effects. Cur-
rently, the Sorce–Wald method is widely accepted among
the researchers working on Wald type problems. Recently
we have also employed Sorce–Wald method to test the sta-
bility of the event horizon for Martinez, Teitelboim, Zanelli
(MTZ) black holes [55]. In our analysis, we have imposed the
fact that δM is inherently a first order quantity. We observed
that, imposing this fact causes order of magnitude problems
to arise in the method developed by Sorce and Wald. In Sect.
2, we further scrutinize the Sorce–Wald method by imposing
the fact that δM is inherently a first order quantity itself, for
test bodies and fields. Unfortunately, it turns out that the order
of magnitude problems do not pertain to the MTZ case. They
are also manifest in the case of Kerr–Newman black holes, for
which the Sorce–Wald method was developed. We present
the details in Sect. 2.1.

The order of magnitude problems in the Sorce–Wald
method suggest that the backreactions should be explicitly
calculated. Based on this argument, we re-visit the over-
spinning problem for nearly extremal and extremal Kerr–
Newman black holes interacting with test fields, in Sect. 3.
In a recent work we showed that extremal Kerr–Newman
black holes which satisfy J 2/M4 < (1/3) can be overspun
by scalar test fields [56]. We argued that the overspinning
is not quite generic and it is prone to be fixed by backre-
action effects. In Sect. 3.1, we show that nearly extremal
black holes can also be overspun and employ the backreac-
tion effects based on Will’s argument that the angular velocity
of the event horizon increases before the absorption of the
test field [57]. The employment of this backreaction effect
brings a partial solution to the problem. The destruction of the
event horizon can be prevented for certain classes of nearly
extremal and extremal black holes, with a sufficiently large
magnitude of angular momentum. In Sect. 3.2, we show that
the same argument applies to extremal black holes. We ana-
lytically derive the relevant magnitude of the initial value of
angular momentum, for both nearly extremal and extremal
cases.

The interaction of test fields with black holes is actually
a scattering problem. The field is partially absorbed by the
black hole and partially reflected back to infinity. The fact
that only a fraction of the incoming field is absorbed by
the black hole has been ignored in all the thought experi-
ments constructed so far, including the works of this author.
In Sect. 4, we take the absorption probabilities of test fields

into account, which fundamentally changes the course of the
analysis of the problem. We show that a very small fraction
of the challenging test fields are absorbed by the black hole
which has no practical effect on the mass and angular momen-
tum parameters of the space-time. In Sect. 4.1 we evaluate
the optimal perturbations with the lowest possible energy rel-
ative to their angular momentum and charge. We show that
the absorption probability is zero for the optimal perturba-
tions. In that case, the test field is entirely reflected back to
infinity. The space-time parameters remain identically the
same after the interaction with the test field. In Sects. 4.2
and 4.3 we perturb nearly extremal and extremal black holes
with challenging modes with frequencies slightly larger than
the optimal perturbations. We show that the absorption prob-
ability is very low for the challenging modes. It turns out
that most of the energy and angular momentum carried by
the challenging modes is reflected back to infinity. Still there
exists a set of fine-tuned parameters that seem to be capable
of overspinning extremal and nearly extremal Kerr–Newman
black holes. In Sects. 4.2 and 4.3, we also show that, these
anomalies are remedied by backreaction effects due to the
induced increase in the angular velocity of the event horizon.

2 Sorce–Wald method

The Kerr–Newman metric describes a black hole surrounded
by an event horizon provided that the spacetime parameters
satisfy the main inequality

M2 ≥ a2 + Q2 (1)

where M , a ≡ J/M , and Q are respectively the mass, angu-
lar momentum and charge parameters of the spacetime. In
Wald type problems, one starts with an extremal or nearly
extremal black hole satisfying the main criterion (1) and
attempts to increase the angular momentum and/or charge
parameters beyond the extremal limit, by sending in test
bodies or fields from infinity. The main assumption in these
thought experiments is that the interaction of the black hole
with test bodies and fields does not alter the background
geometry of the spacetime, but leads to perturbations in the
mass, angular momentum, and charge parameters. After a
sufficiently long time, the spacetime is supposed to settle
down to a new Kerr–Newman solution with modified param-
eters. Apparently the energy, angular momentum, and the
charge of the test body or field should be very small com-
pared to the initial parameters of the spacetime so that the
assump

tion that the background geometry in the final state is also
a Kerr–Newman solution, is justified. Then, one can check
if the final parameters of the spacetime represent a Kerr–
Newman black hole satisfying the inequality (1) or a naked
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singularity which violates it. For that purpose we prefer to
define

δfin ≡ M2
fin − Q2

fin − J 2
fin

M2
fin

(2)

If the contribution of the second order terms are taken into
account in calculating δfin, one should also incorporate the
effect of backreactions which bring second order corrections
to (2), so that the calculation can be considered consistent.
As we mentioned in the introduction, the overcharging of
Reissner–Nordstro̧m black holes [4], and the overspinning of
Kerr black holes [5,6] can be fixed by backreaction effects
[7–9]. The backreaction effects comprise finite size effects,
self interaction, gravitational radiation, the effect of black
hole radiation, induced increase in the angular velocity of
the horizon and many more possible effects pertaining to the
specific problem. The Sorce–Wald method has been devel-
oped to bring an ultimate solution to the problem of determin-
ing and calculating the backreactions [54]. Sorce and Wald
(SW) attempted obtain an expression for the full second order
correction δ2M without having to calculate the backreaction
effects explicitly. To check whether the event horizon can
be destroyed SW first derive an expression for the minimum
energy of the incoming test body or field so that it is absorbed
by the black hole.

δM − ΩH δ J − ΦH δQ ≥ 0 (3)

where ΩH = a/(r2+ + a2), ΦH = (Qr+)/(r2+ + a2), and r+
is the horizon radius. The condition (3) is well known in black
hole physics. The first derivation without assuming the valid-
ity of cosmic censorship known to this author is by Needham
[58]. The condition (3) determines the lowest possible energy
for a given combination of angular momentum and charge
that would allow the absorption of a test field. The perturba-
tions with the lowest possible energy are referred to as the
optimal perturbations. The perturbations that do not satisfy
the condition (3) are not absorbed by the black hole. If the
absorption of these perturbations was allowed, they would
lead to a generic destruction of the event horizon since they
carry relatively large angular momentum and charge. How-
ever, the condition (3) only applies to the perturbations that
satisfy the null energy condition. For fermionic fields there is
no lower bound on the energy that would prevent the absorp-
tion of the challenging modes. In [56] we argued that the
absence of the lower bound for the energy of the fermionic
fields leads to a generic destruction of the event horizon.

Sorce and Wald proceed by parametrizing a nearly
extremal black hole as

M2 − Q2 − (J/M)2 = M2ε2 (4)

which is common in Wald type problems. The small parame-
ter ε determines the closeness of the black hole to extremality.
For ε � 1 the black hole is very close to extremality in which
case the effect of the interactions with test bodies and fields
become relevant. Next, Sorce and Wald define the function:

f (λ) = M(λ)2 − Q(λ)2 − J (λ)2/M(λ)2 (5)

If f (λ) < 0 the inequality (1) is violated and the event hori-
zon cannot exist. Next f (λ) is expanded to second order in
λ

f (λ) =
(
M2 − Q2 − J 2

M2

)

+2λ

(
M4 + J 2

2M3 δM − J

M2 δ J − QδQ

)

+λ2
[
M4+ J 2

2M3 δ2M− J

M2 δ2 J−Qδ2Q+4J

M3 δ JδM

− 1

M2 (δ J )2 +
(
M4 − 3J 2

M4

)
(δM)2 − (δQ)2

]

(6)

To avoid any confusion we refer to δM, δ J, δQ as first order
perturbations, and δ2M, (δM)2, . . . terms as second order
perturbations. For the first order perturbations Needham’s
condition (3) implies that

f (λ) ≥ M2ε2+ 2

M4+ J 2

(
(J 2 − M4)QδQ−2JM2δ J )

)
λε

+O(λ2, ε3, ε2λ) (7)

The Eqs. (6) and (7) above, are the equations (119) and (120)
in the relevant paper of Sorce and Wald [54]. To derive (7),
one imposes the condition (3) that the test body or field is
absorbed by the black hole, and expresses δM in terms of δ J
and δQ. At this point Sorce and Wald claim that neglecting
the terms of order O(λ2) it is possible to make f (λ) < 0.
This statement aims to convince the readers that the varia-
tional method reproduces the previous results that the nearly
extremal black holes can be overcharged or overspun when
the second order terms are neglected. The main claim of SW
is that f (λ) becomes positive again by considering the effect
of the terms that are second order in λ. Here we show that
these two results cannot be obtained by the method devel-
oped by Sorce and Wald, when one does not ignore the fact
that δM is inherently a first order quantity, itself.

2.1 Sorce–Wald method with the correct test body/field
approximation

The small parameter λ is introduced in (5) to ensure that
the variation of the function f from its initial value f (0) is
small, in accord with the test body/field approximation. How-
ever, in (6) the parameter λ explicitly multiplies the terms
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δM, δ J, δQ. Since δM is inherently a first order quantity,
the λεδM terms actually contribute to third order to f (λ),
while the λ2δ2M terms contribute to fourth order. One cannot
ignore the fact that δM is a small quantity itself and proceed
as if δM ∼ M , as it was done in the derivation of Sorce and
Wald.

To clarify the fact that δM is a small quantity itself, we let

δM = Mζ (8)

where ζ parametrises the energy of the perturbation and the
fact that ζ � 1 ensures that the test body/field approximation
is not violated. In principle the parameters determining the
magnitude of the perturbations and the closeness to extremal-
ity need not be equal. However, for numerical calculations
one can let ε ∼ ζ . Imposing the fact that the perturbations
are small themselves (7) implies that

f (λ) ∼ O(ε2) − O(λεζ ) (9)

which is valid to first order in λ. (Note that the term (J 2−M4)

is negative.) It is easy to see that when one imposes the fact
that the first order perturbations are of the “first order” them-
selves, it is not possible to make f (λ) – defined by SW – neg-
ative for the first order terms. The variational method does
not reproduce the previous results due Hubeny [4], Jacobson–
Sotiriou [5] and Düztaş–Semiz [6]. For the first order pertur-
bations, the results of SW contradict with the previous results
when the fact that δM is inherently a small quantity is taken
into account.

Though it is manifest in (9) that f (λ) defined by SW,
cannot be made negative for the first order terms, it would
be appropriate to elaborate on this subject considering the
fact that the SW method is widely accepted in black hole
physics. For simplicity let us consider a neutral body or a
field (δQ = 0), incident on a nearly extremal black hole. For
the optimal perturbations (3) implies that

Jδ J = MδM(r2+ + a2)

Imposing the fact that δM = Mζ by the definition (8)

Jδ J = M2ζ

[
M2(1 + ε)2 + J 2

M2

]

= (M4 + J 2)ζ + O(εζ, ε2ζ ) (10)

where we have substituted r+ = M(1 + ε) for a nearly
extremal black hole parametrized as (4). Now we substitute
the expression for Jδ J derived in (10) to the expression for
f (λ). For the optimal perturbations one derives

f (λ) = M2ε2 − 4M2λεζ − O(λε2ζ, λε3ζ ) (11)

Again it is manifest in (11) that f (λ) defined by SW, cannot
be made negative for small λ, ε and ζ . The claim that f (λ)

can be made negative by the terms first order in λ requires
one to assume that δM ∼ M , which apparently contradicts
the test body/field approximation.

The main claim of SW is that the negativeness of f (λ)

can be fixed by the contribution of the terms that are second
order in λ. Though the fact that f (λ) cannot be made negative
by the first order terms renders this claim irrelevant, it is
necessary to evaluate the contribution of the second order
terms when the derivation is corrected by imposing δM =
Mζ . To second order in λ we have

f (λ) ∼ O(ε2) − O(λεζ ) + O(λ2ζ 2) (12)

It is manifest in (12) that the contribution of the second order
perturbations vanishes in (6), as it becomes fourth order when
multiplied by the square of the small parameter λ. (Note that
the leading term in (12) – which is zeroth order in λ – is actu-
ally second order in ε.) In that respect it is not possible to
incorporate the effect of the second order perturbations into
the analysis using the SW method. Moreover, when the anal-
ysis is corrected by imposing the fact that δM is a first order
quantity, even the first order perturbations (δM, δ J, δQ) do
not contribute to f (λ) as one can observe in (11) and (12).

In the previous works by Hubeny, Jacobson–Sotiriou, and
Düztaş–Semiz, δfin defined in (2) is made negative for nearly
extremal black holes which corresponds to making f (λ) neg-
ative in the derivation of SW [4–6]. The numerical value of
δfin turns out to be of the order −M2ε2 which suggests that
the destruction of the event horizon can be fixed by the sec-
ond order corrections due to the backreaction effects. Later,
these corrections were indeed achieved by employing back-
reaction effects [7–9]. The SW method does not reproduce
any of these results when one imposes the fact that δM is a
first order quantity for test bodies and fields. One observes
that the terms first order in λ, contribute to f (λ) to third
order so they cannot make f (λ) negative. The terms that are
second order in λ, cannot fix anything since their contribu-
tion is of the fourth order. Therefore the SW method cannot
be used to evaluate the effect of second order perturbations.
Backreactions have to be explicitly calculated.

3 Re-visiting the over-spinning problem

In this section we re-visit the over-spinning problem for Kerr–
Newman black holes and explicitly calculate the backreac-
tion effects, which supervenes on the argument that they can-
not be calculated using the SW method. We start by attempt-
ing to overspin a nearly extremal Kerr–Newman black hole
parametrised as (4), by a neutral, scalar test field with fre-
quency ω and azimuthal wave number m. We adapt the
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parametrization (8) so that the field carries energy δM =
Mζ , in accord with the test field approximation. At the end
of the interaction, the final parameters of the space-time sat-
isfy:

Mfin = M + Mζ

Jfin = J + m

ω
Mζ

Qfin = Q (13)

where M, J, Q are the initial parameters which satisfy (4).
Now, we demand that the black hole is overspun at the end
of the interaction; i.e. δfin < 0

δfin = (M + Mζ )2 − Q2 − (J + m
ω
Mζ )2

(M + Mζ )2 < 0 (14)

We can substitute Q2 = M2 − J 2/M2 − M2ε2 by using (4).
Re-arranging (14), we get

M2
(

ζ 2 + 2ζ + ε2 + J 2

M4

)
<

J + m
ω
Mζ )2

M2(1 + ζ )2 (15)

We define the dimensionless parameter

α ≡ J/M2 (16)

Note that for a nearly extremal Kerr–Newman black hole
parametrised as (4), the sum J 2/M2 + Q2 has a fixed value
which is equal to M2(1 − ε2) for a fixed mass M . However
nearly extremal black holes satisfying (4) may have different
values of angular momentum and charge keeping the sum
J 2/M2 + Q2 fixed. We use the dimensionless parameter
α to identify different Kerr–Newman black holes –with a
fixed mass M– that all satisfy (4). Also note that, substituting
α ≡ J/M2 the parametrisation (4) can be re-written in terms
of the dimensionless variable α.

1 − α2 − Q2

M2 = ε2 (17)

We proceed by taking the square root of both sides of (15).
The condition δfin < 0 reduces to

ω < ωmax = mζ

M
[
(1 + ζ )

√
ζ 2 + 2ζ + ε2 + α2 − α

] (18)

We have considered the interaction of a nearly extremal
black hole parametrised as (4) with a test field carrying
energy δM = Mζ and angular momentum δ J = (m/ω)δM .
Note that δ J is inversely proportional to the frequency ω.
The equation (18) implies that a test field with a frequency
ω < ωmax, will contribute to the angular momentum param-
eter of the black hole with a magnitude sufficiently larger
than its contribution to the energy parameter so that the final

parameters of the black hole describe a naked singularity
with δfin < 0. In that case we could conclude that the nearly
extremal Kerr–Newman black hole is overspun into a naked
singularity. However, we should also demand that the test
field is absorbed by the black hole, i.e. ω is larger than the
limiting frequency for superradiance, which we denote by
ωsl. For a nearly extremal black hole parametrised as (4),
which is perturbed by a neutral test field (δQ = 0), the
superradiance limit is given by

ωsl = ma

r2+ + a2
= m

M
[

(1+ε)2

α
+ α

] (19)

Kerr–Newman black holes with different values of α defined
in (16), have different superradiance limits. For lower values
of α which describe black holes with relatively low angu-
lar momentum, the superradiance limit will also be low.
In that case the absorption of the modes with relatively
low frequencies will be allowed. The test fields with fre-
quency in the range ωsl < ω < ωmax simultaneously satisfy
the two conditions that the field is absorbed by the black
hole and it contributes to the angular momentum parame-
ter with a sufficiently large magnitude to overspin the black
hole into a naked singularity. We can conclude that the test
fields with energy δM = Mζ and frequency in the range
ωsl < ω < ωmax can be used to overspin a nearly extremal
Kerr–Newman black hole into a naked singularity, provided
that ωsl < ωmax. Comparing (18) and (19) one observes that
the upper limit for the frequency of the incident field ωmax

derived in (18), is larger than the superradiance limit ωsl for
any value of α, in the relevant range (0, 1). It turns out that
every nearly extremal Kerr–Newman black hole satisfying
(4) can be overspun by neutral test fields, regardless of the
specific value of α defined in (16). The validity of this conclu-
sion is limited to the case, where one ignores the backreaction
effects.

3.1 Backreactions for nearly extremal black holes

In this derivation we have not ignored the contribution of the
second order terms (δM)2 and (δ J )2. Therefore we have to
employ the backreaction effects to test whether the destruc-
tion of the event horizon can be fixed. Since, the Sorce–Wald
method is invalid we have to explicitly determine and calcu-
late the backreaction effects. Backreaction effects will bring
second order corrections to δfin which can in principle restore
the event horizon. The most legitimate type of backreaction
effect for an overspinning problem is the induced increase in
the angular velocity of the event horizon before the absorp-
tion of the test body/field occurs, which was suggested by
Will [57]. The induced increase in the angular velocity of the
event horizon leads to an increase in the superradiance limit.
This implies that the absorption of the challenging modes
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with relatively low frequencies can be prevented. In a recent
paper we have employed this backreaction effect for the over-
spinning problem of Kerr-MOG black holes [9].

We envisage a test field with angular momentum δ J inci-
dent on a black hole with mass M . According to the estimate
in [57], the angular velocity of the event horizon increases
by an amount

Δω = δ J

4M3 (20)

The increase in the angular velocity of the event horizon
results in an increase in the superradiance limit, which will
be modified as

ω′
sl = ωsl + Δω (21)

In (18) we have derived the maximum value for the fre-
quency of a test field that could overspin a nearly extremal
Kerr–Newman black hole parametrised as (4). We noted that
the fields with frequency in the range ωsl < ω < ωmax can
lead to overspinning. However as the test field is incident on
the black hole the angular velocity of the event horizon will
increase, which will lead to a modification in the superradi-
ance limit given derived in (21). If the modified value of the
superradiance limit exceeds the frequency of the incoming
field, the absorption of the test field is prevented and the event
horizon cannot be destroyed. The test field will be scattered
back to infinity with a larger magnitude. Note that δ J and
Δω given in (20) are inversely proportional to the frequency
ω. For that reason, if the modified value of the superradiance
limit exceeds the incoming frequency for ω � ωmax, it will
exceed the incoming frequency even further for smaller val-
ues in the range ωsl < ω < ωmax, as we have argued in [9].
Therefore it is critical to calculate Δω for the frequencies
arbitrarily close to ωmax.

To calculate backreactions, we first envisage a test field
with frequency arbitrarily close to but slightly less than
ωmax, incident on a nearly extremal Kerr–Newman black hole
parametrised as (4). The test field carries energy δM = Mζ

and angular momentum δ J = (m/ω)δM , where ω � ωmax.
According to the derivation in the previous section, this test
field will lead to the overspinning of the nearly extremal
Kerr–Newman black hole. Now we incorporate the back-
reaction effects due to the induced increase in the angular
velocity of the event horizon. We check if the modified value
of the superradiance limit derived in (21), exceeds the fre-
quency of the incoming field. For simplicity we let ε � ζ

and substitute ω = ωmax in (20) to calculate Δω.

Δω =
(m

ω

)
Mε

4M3 =
[
(1 + ε)

√
2ε2 + 2ε + α2 − α

]
4M

(22)

For ω � ωmax, the increase in the superradiance limit is
given by Δω in (22), which leads to the modified value of
the superradiance limit denoted by ω′

sl derived in (21). Then,
we need to compare ω′

sl and ωmax. If ω′
sl is larger than ωmax,

no net absorption of the test field will occur and overspinning
will be prevented.

It turns out that ω′
sl defined in (21) is indeed larger than

ωmax provided that

α � 0.50 (23)

Note that the parameter α ≡ J/M2 defined in (16) is used
to distinguish different nearly extremal Kerr–Newman black
holes that all satisfy (4). These black holes may have differ-
ent angular momentum and charge parameters keeping the
sum (J 2/M2 + Q2) fixed. Without employing bakreaction
effects, one derives that every nearly extremal Kerr–Newman
black hole can be overspun by test fields, regardless of the
specific value of α. This includes the Kerr limit Q → 0,
α2 → (1 − ε2). When one employs backreaction effects due
to the induced increase in the superradiance limit, it turns out
that there are two there are two possibilities depending on
the specific value of α. If α < 0.5, the modified value of the
superradiance limit (ω′

sl), will still be smaller than ωmax. The
absorption of the modes in the range ω′

sl < ω < ωmax will
lead to overspinning. However if α > 0.5, the increase in the
superradiance limit will be sufficient to prevent the absorp-
tion of all challenging modes. Since ω′

sl is larger than ωmax

for this class of nearly extremal Kerr–Newman black holes,
all the modes with ω < ωmax that could potentially overspin
the black hole will be reflected back to infinity without any
net absorption. Thus, the backreaction effects will prevent
overspinning. The argument is also valid in the Kerr limit
Q → 0. For nearly extremal Kerr black holes, the parameter
α has a unique value which is equal to

√
1 − ε2. Manifestly,

α > 0.5 for nearly extremal Kerr black holes and the over-
spinning problem is fixed by employing backreaction effects.

It would be appropriate to give a numerical example to
elucidate the subject. For that purpose, let us consider a
nearly extremal Kerr–Newman black hole with α = 0.5 and
ε = 0.01. Initially the parameters of this black hole satisfy

M2 − (J 2/M2) − Q2 = (0.0001)M2

or equivalently

1 − α2 − (Q2/M2) = 0.0001

For α = 0.5 the initial parameters of the black hole are given
by J = 0.5M2 and Q2 = 0.7499M2. Now we perturb this
black hole with a test field with energy δM = Mζ and angu-
lar momentum δ J = (m/ω)δM . To choose the frequency
of the test field we calculate the critical values. We choose
m = 1 which is the mode with the highest probability of
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absorption. We use Eq. (19) to calculate the superradiance
limit.

ωsl = 0.39366(1/M)

Letting ζ = ε = 0.01, we can find the maximum value for
the frequency of the test field that could overspin the black
hole, which is analytically derived in (18)

ωmax = 0.399908(1/M)

If we choose the frequency of the incoming field in the range
ωsl < ω < ωmax, the test field with energy δM = 0.01M will
be absorbed by the black hole and it will lead to overspinning.
For example let us choose

ω = 0.395(1/M)

Using δM = 0.01M and we can calculate δ J

δ J = (m/ω)δM = 0.025316M2

The final parameters of the black hole satisfy

δfin = (M + δM)2 − (J + δ J )2

(M + δM)2 − Q2 = − 000319M2

Note that Q2 = 0.7499M2 for α = 0.5. The fact that δfin

is negative imply that the final parameters of the black hole
describe a naked singularity. One can choose any value in the
range ωsl < ω < ωmax, and verify that δfin is negative.

Now we employ the backreaction effects due to the
induced increase in the angular velocity of the horizon. We
have argued that the increase in the angular velocity of the
horizon leads to an increase in the superradiance limit, which
will prevent the absorption of the challenging modes for
a class of nearly extremal Kerr–Newman black holes with
α � 0.5. The increase in the superradiance limit (Δω) is ana-
lytically derived in (22). Note that (Δω) is inversely propor-
tional to the frequency of the incoming field so the minimum
increase occurs for ω � ωmax considering the challenging
modes. Using (22) we calculate the minimum increase in the
superradiance limit for this black hole

Δω = 0.00625(1/M)

With this increase the superradiance limit is modified as

ω′
sl = 0.39991(1/M)

which implies that the modes with ω < 0.39991(1/M) will
not be absorbed by the black hole. Since this value is larger
than ωmax, none of the challenging modes will be absorbed by
the black hole. Thus, the increase in the superradiance limit
prevents overspinning as no net absorption of the challenging
modes occur.

However for smaller values of α, ω′
sl will still be less than

ωmax. Then, the frequencies in the range ω′
sl < ω < ωmax

can be used to overspin the nearly extremal black hole. The
increase in the angular velocity of the event horizon does

not bring an ultimate solution to the overspinning problem
for Kerr–Newman black holes. However, backreactions is
an open problem. Various different forms of backreactions
can be considered which can possibly fix the overspinning
problem.

3.2 Backreactions for extremal black holes

By definition, the initial parameters of extremal Kerr–
Newman black holes satisfy:

M2 − Q2 − (J 2)/(M2) = 0 (24)

or equivalently

1 − α2 − (Q2/M2) = 0 (25)

If an extremal Kerr–Newman black hole is perturbed by a
neutral test field, the limiting frequency for superradiance is

ωsl−ex = ma

r2+ + a2
= m

M
( 1

α
+ α

) (26)

In a recent paper we have shown that δfin becomes negative
for an extremal Kerr–Newman black hole if the frequency of
the test field is less than the maximum value [56]

ω < ωmax−ex = mζ

M
[
(1 + ζ )

√
ζ 2 + 2ζ + α2 − α

] (27)

which is the ε → 0 limit of the value derived for nearly
extremal black holes in (18). Again the two conditions should
be satisfied simultaneously for overspinning to occur. The test
field should be absorbed by the black hole and its contribution
to the angular momentum parameter should be larger that the
contribution to the mass parameter. In [56] we have shown
that ωsl−ex is less than ωmax−ex for a class of extremal Kerr–
Newman black holes which satisfy

α2 ≡ J 2

M4 <
1

3
⇒ α � 0.577 (28)

This implies that the test fields with frequency in the range
ωsl−ex < ω < ωmax−ex can be used to overspin the extremal
Kerr–Newman black holes which satisfy (28). The derivation
is incomplete as it ignores the contribution of the backreac-
tion effects. As in the case of nearly extremal black holes we
calculate the induced increase in the angular velocity of the
event horizon before the absorption of the test field.

Δω = δ J

4M3 = (m/ω)Mζ

4M3 (29)
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By substituting ω = ωmax−ex in (29) we derive that

Δω = 1

4M

[
(1 + ζ )

√
ζ 2 + 2ζ + α2 − α

]
(30)

We should add the induced increase in the angular momentum
of the extremal Kerr–Newman black hole derived in (30)
to the superradiance limit (26). This gives us the modified
value of the superradiance limit. As we have argued in the
previous section, we demand that the modified value of the
superradiance limit is larger than ωmax−ex derived in (27), so
that the absorption of all the challenging modes with ω <

ωmax−ex is prevented. For that purpose we let ζ = 0.01, and
demand that

ωsl−ex + Δω > ωmax−ex (31)

One derives that (31) is satisfied, i.e. the modified value
of superradiance will exceed the maximum value of the fre-
quency of the test field ωmax−ex, provided that

α � 0.31 (32)

The dimensionless parameter α was introduced to distinguish
extremal Kerr–Newman black holes with different angular
momentum and charge parameters that all satisfy (24) and its
dimensionless equivalent (25). In a recent paper we derived
that extremal Kerr–Newman black holes which satisfy α �
0.57 can be overspun by test fields [56]. The employment
of backreaction effects bring a further restriction to the class
of extremal Kerr–Newman black holes that can be overspun
by test fields. The result (32) implies that the absorption of
all the challenging test fields will be prevented due to the
induced increase in the superradiance limit, provided that
α ≡ (J )/(M2) � 0.31. Let us elucidate the subject with
a numerical example. For that purpose let us consider an
extremal Kerr–Newman black hole withα = 0.32. The initial
parameters of this black hole satisfy J = 0.32M2 and Q2 =
0.8976M2 so that the black hole is extremal. Our first claim
is that the black hole can be overspun by test fields if one
ignores the backreaction effects. To verify this claim let us
first calculate the critical values ωsl−ex and ωmax−ex which
were analytically derived in (26) and (27).

ωmax−ex = 0.298507(m/M)

ωsl−ex = 0.290276(m/M) (33)

We claim that if we choose a test field with frequency in the
range ωsl−ex < ω < ωmax−ex and energy δM = Mζ , it will
be absorbed by the extremal black hole and overspin it into
a naked singularity. Let us choose a test field with

ω = 0.295(m/M); δM = Mζ = 0.01M

δ J = m

ω
δM = 0.033898M2

By definition δin = 0 for an extremal black hole. Let us
calculate δfin.

δfin = (M + δM)2 − (J + δ J )2

(M + δM)2 − Q2 = − 0.000276M2

The negative value of δfin implies that the black hole is over-
spun. However the fact that δfin ∼ ζ 2 indicates that the over-
spinning can be fixed by backreaction effects.

Our second claim is that the overspinning of this extremal
Kerr–Newman black hole should be fixed by the induced
increase in the superradiance limit since α > 0.31. Using
the analytical result (30), we calculate that, the limiting fre-
quency for superradiance to occur will increase by an amount

Δω = 0.008375(1/M) (34)

Then, for m = 1 the modified value of the superradiance
limit will be

ω′
sl−ex = ωsl−ex + Δω = 0.298651(1/M) (35)

Since the modified value of the superradiant limit exceeds
ωmax−ex, the test fields which could overspin the black hole
will not be absorbed by the black hole. In particular the test
field that we have chosen for our numerical example will not
be absorbed, since ω = 0.295(1/M) < 0.298651(1/M).
However for smaller values of α the modified value of
the superradiance limit will still be less than ωmax−ex. The
induced increase in the angular velocity of the event hori-
zon brings further restrictions to the class of extremal Kerr–
Newman black holes which can be overspun by test fields,
though it does not completely fix the problem. As in the case
of nearly extremal black holes, we note that different type of
backreaction effects can be employed to fix the problem.

4 Absorption probabilities in Wald type problems

As we stated in the introduction, the interaction of black
holes with test fields is actually a scattering problem. The test
fields are partially absorbed by the black hole, and partially
reflected back to infinity. For classical fields, t he transmis-
sion and reflection coefficients represent the ratios of energies
that are respectively, absorbed by the black hole and scattered
back to infinity. The conservation of energy implies that the
sum of the coefficients should be unity.

Φreflected

Φincident
+ Φtransmitted

Φincident
= 1 (36)

Conventionally the relative flux (Φtransmitted)/(Φincident) is
interpreted as the absorption probability of the incident field.
This notion would be improper for the cases of superradiant
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scattering. If the frequency of the incoming field is lower
than the superradiance limit (ω < ωsl), the wave carries
energy out of the black hole and the absorption probability
will be negative. The conservation of energy described by
the Eq. (36) continues to hold. Though the notion of a nega-
tive probability can be improper, we shall continue adapt the
conventional term “absorption probability” for the relative
flux (Φtransmitted)/(Φincident), throughout this paper.

In all the previous Wald type problems to test the stability
of event horizons, the effect of the absorption probability of
the test fields has been ignored. The works of this author are
not exceptions to this general attitude. Ignoring the absorp-
tion probability corresponds to assuming that the probabil-
ity is of the order of unity if the field is absorbed by the
black hole. However the test fields are partially absorbed
by the black hole and partially reflected back to infinity.
Only the transmitted part of the test field contributes to
the mass, angular momentum, and charge parameters of
the black hole. In this sense, the magnitude of the con-
tribution is directly proportional to the absorption proba-
bility (Φtransmitted)/(Φincident). For the challenging modes,
the absorption probability approaches zero as the frequency
becomes close to the superradiance limit. This fundamen-
tally alters the course of the analysis for the interaction of
test fields with extremal and nearly extremal black holes.

In this work we incorporate the effect of absorption proba-
bilities into Wald type problems. For that purpose, we modify
the contributions of a test field to the mass, angular momen-
tum, and charge parameters of the black hole taking the
absorption probabilities into consideration. If a test field car-
ries energy Mζ and the absorption probability of the field is
Γ , the energy absorbed by the black hole will be

Eabs = Γ (Mζ ) (37)

while the energy reflected back to infinity is

Eref = (1 − Γ )(Mζ ) (38)

The expressions (37) and (38) are direct consequences of the
fact that only the transmitted part of the test field contribute
to the parameters of the black hole. As we have mentioned
above, in all the previous problems, the field is assumed to
be entirely absorbed by the black hole (the absorption prob-
ability of the field is Γ is assumed to be of the order of unity)
so that δM = Mζ . After a sufficiently long time, the mass
and angular momentum parameters of the black hole will be
modified as:

Mfinal = M + Eabs = M + Γ (Mζ )

Jfinal = J + Jabs = J + m

ω
Γ (Mζ ) (39)

where Eabs and Jabs are the energy and the angular momen-
tum absorbed by the black hole. The absorption probability
Γ can be positive, negative or zero. The absorption proba-
bility Γ appearing in (39) should not be confused with the
small parameter λ introduced by Sorce and Wald. Γ is not
necessarily a small parameter. It can be of the order of unity
for test fields with frequency ω � ωsl. It is identically zero
for the optimal perturbations with ω = ωsl, and it is negative
for the test fields in the superradiant range ω < ωsl

The absorption probabilities Γsωlm for the wave modes
with spin s, frequencyω, spheroidal harmonic l and azimuthal
wave number m, were first calculated by Page [59]. The
absorption probability of the wave depends on the param-
eters of the black hole such as the mass M , the charge Q,
the angular momentum J , the area of the event horizon A,
the surface gravity κ , the angular velocity of the event hori-
zon Ω and the electrostatic potential of the event horizon
Φ. The parameters of the black hole are not independent. In
particular The area and the surface gravity satisfy

κA = 4π(r+ − M)

where (r+ − M) = √
M2 − a2 − Q2 for a Kerr–Newman

black hole. In this work we are interested in the absorption
probability of scalar fields (s = 0) incident on Kerr–Newman
black holes. The modes with m = 0 do not contribute to
angular momentum, therefore we should consider the modes
with m ≥ 1. For l = 1 Page’s results imply that

Γ0ω1m = 1

9

A

π
[M2 − (m2 − 1)a2 − Q2](ω − mΩ)ω3 (40)

The factor (ω − mΩ) implies that the absorption probabil-
ity will be negative if the incident field is in a superradiant
mode (ω < ωsl). In that case the mass of the black hole will
decrease. However, the angular momentum will decrease by
a much larger magnitude and δfin will be positive. Therefore
the modes in the superradiant range (ω < ωsl) do not lead to
overspinning.

4.1 Optimal perturbations

Optimal perturbations satisfy the inequality (3) at the lower
limit so that

δM = Ωδ J + φδQ (41)

This constitutes the lower limit to allow the absorption of a
test body or field. For neutral test fields with energy δM and
angular momentum δ J = (m/ω)δM , (41) implies that the
frequency of the test field is equal to the superradiance limit
(ω = ωsl = mΩ) for the optimal perturbations. Since the test
bodies and fields with lower energies than the optimal pertur-
bations are not absorbed by the black holes, they need not be
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considered for the overspinning and overcharging problems.
The optimal perturbations carry the lowest possible energy
relative to their angular momentum and charge. Thus, when
one ignores absorption probabilities, these modes appear to
be more likely to lead to overspinning or overcharging than
any other mode that is absorbed by the black hole.

However when one incorporates the absorption proba-
bilities into the problem, the course of the analysis is fun-
damentally altered. It is manifest in (40) that the absorp-
tion probability is zero for the optimal perturbations with
ω = ωsl = mΩ . In that case the field is entirely reflected
back to infinity, with the same amplitude. No net absorption
of the field occurs. The final parameters of the spacetime
given by (39) are identically equal to the initial parameters.

Mfinal = M + Γ (Mζ ) = M

Jfinal = J + m

ω
Γ (Mζ ) = J (42)

Therefore the optimal perturbations do not challenge the sta-
bility of the event horizon. Whether we start with an extremal
or a nearly extremal black hole, we end up with the same
black hole surrounded by an event horizon. The parameters
of the black hole remain invariant after the interaction. The
black hole maintains its initial state. When absorption proba-
bility is taken into account, the optimal perturbations become
irrelevant for the overspinning and overcharging problems.

4.2 Nearly extremal black holes and challenging modes

The modes that could potentially overspin black holes have
frequencies close to the superradiance limit. The absorp-
tion probabilities of these modes are approach zero as one
approaches the superradiance limit. By definition, a test field
carries a small amount of energy and angular momentum and
only a small fraction of its energy and angular momentum
will be absorbed by the black hole if its frequency is close
to the superradiance limit. Therefore it seems to be very dif-
ficult for a test field to drive a nearly extremal black hole
to extremality and beyond, when the absorption probability
is taken into account. To evaluate this quantitatively, let us
consider a scalar field with frequency

ω = mΩ(1 + ξ) (43)

where the small parameter ξ � 1 assures that the frequency
of the incoming field is close to the superradiance limit
ωsl = mΩ . The scalar field is incident on a nearly extremal
Kerr–Newman black hole parametrised as (4), where ε � 1
determines the closeness of the black hole to extremality. The
highest absorption probability occurs form = 1. Substituting
ω = Ω(1 + ξ) in (40)

Γ0ω11 = 8

9
M2(1 + ε)[M2 − Q2](Ωξ)[Ω(1 + ξ)]3

∼ ξ + O(εξ) (44)

where we have used A = 8πM2(1+ε) for a nearly extremal
black hole. The leading term in the absorption probability
of a challenging mode is of the order of ξ . Now, we can
re-evaluate the overspinning problem taking the absorption
probability into consideration. We start with a Kerr–Newman
black hole satisfying

M2 − Q2 − J 2

M2 = M2ε2

which is perturbed by a test field with

m = 1; ω = mΩ(1 + ξ)

δM = Mζ ; δ J = 1

ω
δM; δQ = 0

Γ ∼ ξ (45)

We should note that we choose the energy, frequency, and
the azimuthal wave number of the test field to challenge the
stability of the event horizon. The absorption probability of
this test field is not a choice; it follows from (40). After the
interaction of the test field with the Kerr–Newman black hole,
the final parameters of the space-time will take the form

Mfinal = M + Mζ ξ

Jfinal = J + 1

ω
Mζ ξ

Qfinal = Q (46)

We demand that the final parameters of the space-time
describe a naked singularity.

(M + Mζ ξ)2 − Q2 −
(
J + 1

ω
Mζ ξ

)2

(M + Mζ ξ)2 < 0 (47)

As in the previous sections, we eliminate Q from (47), and
the define the dimensionless variable α = J/M2. After some
algebra one derives that the condition (47) is equivalent to

ω < ωmax = ζ ξ

M
[
(1 + ζ ξ)

√
2ζ ξ + ε2 + α2 − α

] (48)

We have assumed that the frequency of the incoming field
is slightly larger than the superradiance limit by imposing
Γ = ξ . Remember that the superradiance limit for a neutral
test field is

ωsl = m

M
[

(1+ε)2

α
+ α

]

The maximum value of the frequency of the incident field
derived in (48), has to be larger than the superradiance limit.
Letting ε = ζ = ξ = 0.01, one derives that this will only be
possible if

α � 0.01041 (49)
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We started with a nearly extremal Kerr–Newman black hole
parametrised as (4). We perturbed this black hole with a test
field with energy δM = Mζ . For overspinning to occur the
frequency of the test should be as small as possible since the
contribution to the angular momentum is inversely propor-
tional to the frequency. The test field should also be absorbed
by the black hole which entails that the frequency should be
larger than the superradiance limit. Therefore we the fre-
quency should be slightly larger than the superradiance limit
(ω = mΩ(1+ξ)) for the test field. Using (40) which follows
from the seminal results by Page [59], one can show that the
absorption probability for this field is of the order of ξ . The
final parameters of the black hole are given by (39), which
implies that only the fraction of the test field that is absorbed
by the black hole contributes to the mass, angular momentum,
(and charge) parameters. We demand that the final parameters
of the black hole describe a naked singularity; i.e. δfin < 0.
We derive that this demand is satisfied if the frequency of the
field is smaller than the maximum value derived in (48). This
value is larger than the superradiance limit for a class of Kerr–
Newman black holes with α = J/M2 � 0.01041. To clarify
the reader, we note that for a nearly extremal Kerr–Newman
black hole with mass M = 1 and α = 0.01, the angular
momentum and charge parameters satisfy J 2 = 0.0001 and
Q2 = 0.9998 with ε = 0.01. (See Eq. (17).) For this class of
nearly extremal Kerr–Newman black holes there exist modes
with positive absorption probability, that could increase the
angular momentum parameter beyond the extremal limit.
This stems from the fact that the modes with very low fre-
quencies can have positive absorption probabilities for such
low values of α. For these modes, the contribution to angular
momentum will be very large as it is inversely proportional to
the frequency. However, the induced increase in the angular
velocity of the event horizon will also be very large for these
fields. The modified value of the superradiance limit, which
was analytically derived in (21), will considerably exceed
the frequency of the test field and its absorption will be pre-
vented.

Let us clarify this argument with a quantitative examle. For
that purpose we consider a nearly extremal Kerr–Newman
black hole with α ≡ J/M2 = 0.01. For this black hole, we
can use (48) and the general expression for the superradiance
limit to find that

ωmax = 0.009998
1

M

ωsl = 0.009802
1

M
(50)

Let us consider a test field with

m = 1; ω = 0.0099
1

M
∼ mΩ(1 + ξ)

δM = Mζ = 0.01M

δ J = m

ω
δM = 1.0101M2

Γ ∼ ξ (51)

Without considering backreaction effects, one derives that
the final parameters of the black hole given in (46) describe
a naked singularity rather than a black hole. However, one
can notice that δ J is too large for this field; in particular it
is even larger than M2. Let us calculate the modified value
of the limiting frequency due to the induced increase in the
angular momentum of the horizon, for this mode. Using (20)
and (21),

Δω = δ J

4M3 = 0.2525

(
1

M

)

ω′
sl = ωsl + Δω = 0.262302

(
1

M

)
(52)

The modified value of the superradiance limit is far larger
than the frequency of the incoming field, which assures
that the test field will not be absorbed by the black hole.
Therefore the backreaction effects fix the overspinning prob-
lem for nearly extremal Kerr–Newman black holes with
α ≡ J/M2 � 0.01041. Moreover, one can argue that the
challenging modes for this class of Kerr–Newman black
holes cannot be treated in the test field approximation, since
δ J � M2. In this case these modes can be excluded, and the
overspinning problem becomes irrelevant. In either case, the
incorporation of the absorption probability brings an ultimate
solution to the overspinning problem for nearly extremal
Kerr–Newman black holes.

4.3 Extremal black holes and challenging modes

We mentioned that the absorption probability is very low
for the challenging modes. Most of the energy and angu-
lar momentum carried by the test field is reflected back to
infinity. This leads one to conclude that it should be very
difficult for a test field to drive a nearly extremal black
hole to extremality and beyond. The situation is different
for extremal black holes. A tiny excess amount of angular
momentum can lead to overspinning, since δin is equal to
zero. In this section, we calculate the possibility to overspin
an extremal Kerr–Newman black hole by neutral test fields
by taking the absorption probabilities into consideration.
By definition, an extremal black hole satisfies (24) and its
dimensionless equivalent (25). The dimensionless parameter
α ≡ J/M2 allows us to distinguish extremal black holes with
different parameters of charge and angular momentum. As in
the case of nearly extremal black holes we attempt to destroy
the horizon by sending in a test field with energy δM = Mζ ,
and frequency close to the superradiance limit, such that the
absorption probability takes the form Γ ∼ ξ . Proceeding the
same way as in the previous section, we choose m = 1 for
the test field which maximizes the absorption probability. We
find that the event horizon will be destroyed if the frequency
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of the test field satisfies

ω < ωmax−ex = ζ ξ

M
[
(1 + ζ ξ)

√
2ζ ξ + α2 − α

] (53)

which is the ε → 0 limit of the result found in (48). Remem-
ber that the superradiance limit for a neutral test field incident
on an extremal black hole is

ωsl = 1

M
[ 1

α
+ α

]
where m = 1. Letting ζ = ξ = 0.01, one observes that the
upper limit ωmax−ex derived in (53), and the lower limit ωsl

for the range of the frequencies that can lead to overspinning,
almost coincide in the range 0 < α < 1. The upper limit
derived in (53) is slightly larger than the superradiance limit
provided that

α � 0.70707 (54)

where the dimensionless parameter α defined in (16), distin-
guishes extremal Kerr–Newman black holes with different
angular momentum and charge parameters, keeping the sum
(Q2+J 2/M2)fixed. For extremal Kerr–Newman black holes
satisfying (54), there exists a narrow range of frequencies
ωsl < ω < ωmax−ex that can lead to overspinning. However,
this can easily be fixed by employing backreaction effects.
The induced increase in the angular momentum of the event
horizon can be calculated as

Δω = δ J

4M3 = 1

M

(1 + ζ ξ)
√

2ζ ξ + α2 − α

4ξ
(55)

where we have used

δ J = m

ω
δM =

(
1

ωmax−ex

)
Mζ

As we have argued previously it is critical to calculate Δω

for the upper limit ωmax−ex. Substituting the superradiance
limit for extremal black holes and the induced increase in the
superradiance limit derived in (55), the modified value of the
superradiance limit takes the form:

ω′
sl = ωsl + Δω

= 1

M
[ 1

α
+ α

] + 1

M

(1 + ζ ξ)
√

2ζ ξ + α2 − α

4ξ
(56)

To overspin an extremal Kerr–Newman black hole, the fre-
quency of a test field should be less than the maximum value
derived in (53). A test field with such a low frequency can
have a positive absorption probability only for a class of
extremal black holes satisfying (54). We checked if the over-
spinning can be fixed by the induced increase in the angular

Fig. 1 The superradiance limit ωsl and the upper limit ωmax−ex almost
coincide in the range 0 < α < 1. The modified value of superradiance
ω′

sl exceeds the upper limit ωmax−ex. (Here we let M = 1)

momentum of the black hole, which modifies the superradi-
ance limit. Due to the induced increase in the angular momen-
tum, the superradiance limit increases. The absorption of the
modes with frequencies lower than the modified value of
the superradiance limit is prevented, though their absorption
probability appears to be positive when one ignores backre-
action effects based on the induced increase in the angular
momentum. If this modified value exceeds the maximum
value derived in (53), the absorption of all the challenging
modes with low frequencies and positive absorption prob-
abilities will be prevented. One observes that the modified
value of the superradiance limit exceeds the maximum value
of the frequency that can lead to overspinning, for any value
of α in the range 0 < α < 1. To clarify this, we have plotted
ωmax−ex, ωsl, and ω′

sl as a function of α in Fig. 1.
The fact that the modified value of the superradiance limit

exceeds the upper limit of frequency ωmax−ex, indicates that
the absorption of the fine-tuned frequencies in the narrow
range ωsl < ω < ωmax−ex will be prevented; i.e. the event
horizon cannot be destroyed. Taking absorption probabili-
ties into consideration fixes the overspinning problem for
the extremal case as well as the nearly extremal case.

5 Summary and conclusions

In this work we have re-considered the overspinning problem
for Kerr–Newman black holes. First, we have scrutinized
the recent analysis by Sorce and Wald where they employ
a variational method and expand the field configurations to
second order in the small parameter λ. Sorce and Wald claim
that they have obtained an expression for the full second order
correction δ2M without having to calculate the backreaction
effects explicitly. In a recent paper we have also employed
the method developed by Sorce and Wald for MTZ black
holes. In that work we have imposed that δM is a first order
quantity itself, for test bodies and fields. We have noticed
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that imposing this non-controversial fact leads to order of
magnitude problems in the SW method. Therefore we have
concluded that it would be better to calculate the backreaction
effects explicitly. Here we argued that the order of magnitude
problems do not pertain to the case of MTZ black holes,
they also appear in the case of Kerr–Newman black holes.
The argument is simple. Since δM is inherently a first order
quantity:

λδM ⇒ second order, not first

λεδM ⇒ third order, not second

λ2(δM)2 ⇒ fourth order, not second

λ2δ2M ⇒ fourth order, not second

Sorce and Wald claim that the function f (λ) in the equa-
tion (6) –which is the equation (119) in [54]– can be made
negative for the terms first order in λ and the contribu-
tion of the terms second order in λ makes f (λ) positive
again. This implies that the previous results due to Hubeny
[4], Jacobson–Sotiriou [5], and Düztaş–Semiz [6] are repro-
duced. Nearly extremal black holes can be destroyed by test
bodies and fields and the destruction of the event horizon
is fixed by employing backreaction effects. We showed that
these correct results cannot be reproduced by SW method.
The leading term in f (λ) is of the second order (M2ε2),
whereas the contribution of the second order perturbations
are of the fourth order (λ2δ2M). Therefore the effect of
second order corrections cannot be incorporated using SW
method, unless one fallaciously imposes δM ∼ M . This
assumption apparently contradicts the test body/field approx-
imation. For that reason, backreactions should be identified
and explicitly calculated for every specific problem.

Based on the argument that the SW method is invalid, we
re-visited the overspinning problem for extremal and nearly
extremal Kerr–Newman black holes. In a recent paper we
had shown that there exists a class of extremal Kerr–Newman
black holes which can be overspun by neutral test fields [56].
The overspinning is possible if the extremal Kerr–Newman
black hole satisfies α2 ≡ J 2/M4 < 1/3. (The dimension-
less parameter α is introduced to distinguish black holes with
different angular momentum and charge parameters keeping
the sum (Q2+ J 2/M2) fixed. See Eqs. (17) and (25). ) There,
we gave numerical examples and compared our results with
previous claims. Here we showed that nearly extremal Kerr–
Newman black holes can also be overspun independent of
the value of α. In our analysis we do not ignore the con-
tribution of the second order terms (δM)2 and (δ J )2 which
drastically changes the results. Therefore we need to cal-
culate the backreaction effects to complete our analysis. In
this work, we employed the backreaction effects due to the
increase in the angular velocity of the horizon which was
first suggested by Will [57]. The induced increase in the
angular velocity of the event horizon leads to an increase

in the superradiance limit. This prevents the absorption of
the modes that could potentially overspin the black hole. We
showed that this backreaction brings further restrictions to
the classes of extremal and nearly extremal black holes that
can be overspun by test fields. Overspinning is prevented for
nearly extremal black holes with α � 0.50 and for extremal
black holes with α � 0.31. We noted that the effect of back-
reactions is an open problem and there could be different
sorts of backreaction effects that could potentially bring a
full solution to the overspinning problem.

The results derived in this work can also be exploited
to evaluate the possibility to overspin Kerr black holes. In
the limit Q → 0, extremal Kerr black holes are identified
with α ≡ J/M2 = 1 whereas nearly extremal ones are
parametrised as α2 = 1− ε2. There is no overspinning prob-
lem for extremal Kerr black holes even if one ignores the
backreaction effects, since α2 = 1 > (1/3). The backre-
action effects due to the increase in the superradiance limit
fixes the overspinning problem for nearly extremal Kerr black
holes, since α = 1 − ε2 > (0.50). These findings are in
accord with previous results on Kerr black holes.

In all the previous thought experiments – including the
works of this author – the absorption probability of test fields
was ignored. Ignoring the probability corresponds to assum-
ing that it is of the order of unity. However, the interaction of
black holes with test fields is a scattering problem. A fraction
of the test field is absorbed by the black hole, while part of it
is reflected back to infinity. In Sect. 4, we have incorporated
the absorption probabilities in the thought experiments to test
whether the event horizon can be destroyed. The fact that only
a small fraction of the challenging modes is absorbed by the
black holes, fundamentally changes the course of the analysis
in favour of the cosmic censorship conjecture. We calculated
the absorption probability for test fields with frequency close
to the superradiance limit, using the seminal results by Page
[59]. The absorption probability of a test field with frequency
ω = mΩ(1+ ξ) turns out to be of the order O(ξ). The prob-
ability approaches zero for optimal perturbations with fre-
quency ω = mΩ , which implies that these fields are entirely
reflected back to infinity. The parameters of the space-time
remain invariant after the interaction with these test fields.
Hence, the event horizon cannot be destroyed. For the nearly
extremal case, we derived that there exists a class of Kerr–
Newman black holes identified by α � 0.01401, which can
be destroyed by test fields. Overspinning occurs due to the
fact that test fields with very low frequencies can be absorbed
by these black holes. The contribution of these test fields to
the angular momentum parameter will be large, since it is
inversely proportional to the frequency. However the induced
increase in the angular momentum of the event horizon is also
large for these perturbations. Therefore the overspinning is
easily fixed by employing the backreaction effects. We noted
that one can also argue that these fields cannot be treated in
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the test field approximation due to the large magnitude of
δ J . This argument would render the overspinning problem
irrelevant. For the case of extremal black holes we derived
that there exists a set of fine-tuned parameters that can over-
spin Kerr–Newman black holes with α � 0.70707. However,
the range of frequencies is very narrow and the overspinning
problem is fixed by employing backreaction effects. Both for
extremal and nearly extremal Kerr–Newman black holes, the
ultimate solution to the overspinning problem follows by the
incorporation of the absorption probabilities into the analy-
sis.

In a recent paper we argued that fermionic fields lead
to a generic destruction of the event horizon in the classi-
cal picture [56]. Since the fermionic fields do not obey the
weak energy condition, one cannot find a lower bound for the
energy of a fermionic field similar to the condition (3). The
absorption probability is positive definite and it approaches
zero only as ω approaches zero, as confirmed by Page [59].
For that reason, the arguments about the absorption probabil-
ity of scalar fields and its effect on the overspinning problem
developed in this paper, do not apply to fermionic fields.
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has no associated data since it is purely theoretical.]

Open Access This article is licensed under a Creative Commons Attri-
bution 4.0 International License, which permits use, sharing, adaptation,
distribution and reproduction in any medium or format, as long as you
give appropriate credit to the original author(s) and the source, pro-
vide a link to the Creative Commons licence, and indicate if changes
were made. The images or other third party material in this article
are included in the article’s Creative Commons licence, unless indi-
cated otherwise in a credit line to the material. If material is not
included in the article’s Creative Commons licence and your intended
use is not permitted by statutory regulation or exceeds the permit-
ted use, you will need to obtain permission directly from the copy-
right holder. To view a copy of this licence, visit http://creativecomm
ons.org/licenses/by/4.0/.
Funded by SCOAP3.

References

1. R. Penrose, Rivista del Nuovo Cim. Numero specialle 1, 252 (1969)
2. S.W. Hawking, R. Penrose, Proc. R. Soc. Lond. 314, 529 (1970)
3. R.M. Wald, Ann. Phys. (N. Y.) 82, 548 (1974)
4. V.E. Hubeny, Phys. Rev. D 59, 064013 (1999)
5. T. Jacobson, T.P. Sotiriou, Phys. Rev. Lett. 103, 141101 (2009)
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26. K. Düztaş, Gen. Relativ. Gravit. 46, 1709 (2014)
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