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Abstract The mass and decay constants of ρ2, ω2 and
a missing member in the 2−− nonet along with their first
excited states are analyzed by the Thermal QCD sum rules
approach, including QCD condensates up to dimension five.
Mass and decay constant values of these mesons are stable
from T = 0 up to T ∼= 120 MeV. However, after this thresh-
old point, our numerical analyses indicates that they begin
to diminish with increasing temperature. When we compare
the hadronic parameters with their vacuum values, masses of
these mesons and their first excited states decrease between
(1–13%) from the PDG data and (10–26%) for the decay
constants. However they diminish in the interval of (9–26%)
and (2–34%) respectively with regards to Regge Trajectory
Model data. We expect our numerical results will be con-
firmed by future heavy-ion collision experiments.

1 Introduction

The physics of strongly interacting matter under extreme con-
ditions is a major challenge in the Thermal QCD [1–4]. It is
predicted that bound quarks and gluons at high temperatures
and/or densities liberate from hadrons to form a new state
of matter called as Quark–Gluon Plasma (QGP). In this hot
hadronic matter, a chiral phase transition is estimated to occur
at a certain temperature. However, a quantitative explanation
of (de)confinement and restoration (or breaking) of the chiral
symmetry phenomena is still lacking and reveals a research
topic for future studies. The phase structure of the QGP con-
tains rich information on strong interactions between quarks
and gluons in hot medium and may shed light on some cen-
tral questions like confinement mechanisms, hadronisation,
QCD vacuum dynamics, the nature of compact stars, and the
evolution of matter in the early universe [5].

Conditions similar to the early universe can be recreated
in the laboratory conditions in large-scale ultrarelativistic
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heavy-ion collision experiments and the data obtained is cru-
cial for modeling the hot-dense matter [6]. Searching the
form of QCD phase diagram and fixing the region of phase
transition from the hadronic matter to the QGP state at high
temperatures are the main objectives of current and planned
experimental programs at the RHIC in Brookhaven National
Laboratory and future experiments at the FAIR facility in
Darmstadt and NICA in Dubna [7–9].

The precise experimental verification of the phase tran-
sition temperature, called the critical temperature Tc, from
hadronic matter to the QGP state would be a big step in
improving understanding of QCD in hot medium, and a sig-
nificant contribution to the survey of QCD phase diagram.
In addition, some studies assumed that there is a specific
starting point for the QGP phase transition named pseudo-
critical temperature which is not a real phase transition, but
an analytic crossover with a rapid change, as opposed to a
jump [10–12]. Recently, the critical temperature for the QGP
formation has estimated atTc ∼= 155 MeV [13] based on anal-
ysis of experimental data from heavy-ion collisions at LHC
and RHIC [10,14], although in UrQMD hybrid model it is
proposed that the phase transition temperature for hot mat-
ter should be between 160 and 165 MeV [15]. Some Lattice
theory studies predict that critical temperature for the QGP
phase transition is above this temperature [16,17]. Therefore
there is no unique temperature estimate for the deconfine-
ment phase transition of hot matter.

In this manner there are many studies about the effect of
temperature on the fundamental parameters of hadrons in
the literature [3,4,18,19]. Due to the temperature depen-
dence of the color screening radius in the QGP, it is expected
that mesons with different flavors melt at certain tempera-
tures. Light flavored mesons may dissociate in the neigh-
borhood of Tc reflecting the close relationship between the
chiral crossover and deconfinement temperature [18,20,21].
So the chiral symmetry breaking point in hot medium can
be described by the relevant thermal properties of the light
mesons. Appearance of a turning point in temperature depen-
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dence of hadronic parameters will explain the occurrence
of chiral symmetry transition. Additionally, the deviation of
light mesons thermal mass from their mass in vacuum is
closely connected to the location of freeze-out (i.e. hadroni-
sation) temperature. In this sense, the light unflavored axial-
tensors and their first excited states are of particular interest
to provide valuable information on the formation of QGP.

Specifically, attention is shifted towards the light unfla-
vored axial-tensor family with quantum number J PC = 2−−
to complete the hadron spectrum which still needs to be prop-
erly classified [19,22–27]. However, there is a discrepancy on
the ground and the first excited states of axial-tensor meson
nonet between the Regge Trajectory Model’s estimations and
the data of PDG. Our plan is to investigate which of these
data is more consistent with the QCD sum rules (QCDSR)
calculations. This is our other motivation for examining this
family, whose main features are presented in Table 1, in terms
of PDG data.

The ρ2 meson quark content is given as [ud̄] in PDG. The
physical isoscalars ω2, φ2 are mixtures of the SU(3) wave
function ψ8 and ψ1:

ω = ψ8sinθ + ψ1cosθ,

φ = ψ8cosθ − ψ1sinθ, (1)

where θ is the nonet mixing angle, the physical ω2 and φ2

states are the linear combinations of these SU(3) singlet and
octet states [28]:

ψ1 = 1√
3
(uū + dd̄ + ss̄),

ψ8 = 1√
6
(uū + dd̄ − 2ss̄). (2)

Due to the relatively small effect of the mixing angle, we can
omit the mixing of singlet and octet states since this is within
the uncertainties of the QCDSR approach. Namely, the ω2

and φ2 mesons can be handled as pure singlet and octet state,
respectively.

In this study, in addition to the above-mentioned objec-
tives, we aimed to determine the behavior of mass and decay

Table 1 Zero temperature mass and width values of light unflavored
meson family in 2−− nonet

State Mass (MeV) [28] Width (MeV) [28]

ρ2 1940 ± 40 155 ± 40

ω2 1975 ± 20 175 ± 25

ρ∗
2 2225 ± 35 335+100

−50

ω∗
2 2195 ± 30 225 ± 40

φ2 ? ?

φ∗
2 ? ?

constants of ground states of ρ2, ω2, φ2 family and their first
excited states in hot medium. Assuming the quark-hadron
duality is also valid at finite temperatures, we replace the vac-
uum expectation values of the condensates and other related
parameters with their temperature dependent expressions [3].
We used the modified QCDSR theory up to dimension five
which is typical since dimension six operators are constrained
with no lattice data available.

We organize rest of the content as follows: in Sect. 2, we
talk about the theory used in our calculations. Then we esti-
mate the hadronic parameters of these states in hot medium
and present numerical analysis in Sect. 3. Finally, we give a
summary and interpret the results in Sect. 4.

2 Thermal QCD sum rules

One of the non-perturbative techniques used to investi-
gate chiral phase transition via analyzing the variations
of hadronic properties at finite temperatures is the Ther-
mal QCD sum rules (TQCDSR) approach. TQCDSR is the
extended version of QCDSR to finite temperatures. In the
QCDSR, at large distances or low energies, the correlation
function is formulated according to hadronic parameters,
called as the “physical side” or “phenomenological side”.
However, at short distances or high energies, the correlator
is defined with QCD parameters such as quark masses and
quark condensates. This side is named either the “theoretical
side” or “QCD side”. We can evaluate the correlation func-
tion with these two sides, and there is a q2 region in which
both sides can be equalized using the quark-hadron duality
hypothesis [29].

QCDSR method was first expanded to finite temperatures
by Bochkarev and Shaposhnikov [30]. In this version of the
QCDSR, analogous to vacuum sum rules the dual nature of
the correlator is employed. The features of hadrons in hot
medium is identified by assuming both the operator prod-
uct expansion (OPE) and quark-hadron duality is valid, but
the vacuum condensate values are displaced by their thermal
versions.

To compute the mass and decay constants of the ρ2, ω2,
φ2 mesons, and their first excited states within the TQCDSR
approach, we start our calculation with the temperature-
dependent two-point correlation function as shown below:

�μν,αβ(q, T ) = i
∫

d4xeiq·(x−y)

×Tr
{
�T

[
Jμν(x)J

†
αβ(y)

]}
y→0

, (3)

here Jμν is the interpolating current belonging to the ρ
(∗)
2 ,

ω
(∗)
2 , φ

(∗)
2 mesons. Here T is the time ordered operator and
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the thermal density matrix is expressed with

� = e−H/T /Tr(e−H/T ), (4)

where H is the QCD Hamiltonian and T is the temperature
of the medium. The associated interpolating currents for the
ρ

(∗)
2 , ω

(∗)
2 , φ

(∗)
2 states are given below [25]:

J
ρ

(∗)
2

μν (x) = i

2

[
ū(x)γμγ5

↔
Dν (x)d(x)

+ū(x)γνγ5
↔
Dμ (x)d(x)

]
, (5)

J
ω

(∗)
2

μν (x) = 1

2
√

3

{[
u(x)γμγ5

↔
Dν (x)u(x)

+d(x)γμγ5
↔
Dν (x)d(x) + s(x)

×γμγ5
↔
Dν (x)s(x)

]
+ [μ ↔ ν]

}
, (6)

J
φ

(∗)
2

μν (x) = 1

2
√

6

{[
u(x)γμγ5

↔
Dν (x)u(x)

+d(x)γμγ5
↔
Dν (x)d(x) − 2s(x)

×γμγ5
↔
Dν (x)s(x)

]
+ [μ ↔ ν]

}
. (7)

In Eqs. (5–7),
↔
Dμ (x) shows the derivative with respect

to four-x simultaneously acting on left and right and it is
described with

↔
Dμ (x) = 1

2
[−→D μ(x) − ←−D μ(x)], (8)

−→D μ(x) = −→
∂ μ + i

2
gλaGa

μ,

←−D μ(x) = ←−
∂ μ − i

2
gλaGa

μ, (9)

where λa (a = 1, 8) are the Gell-Mann matrices and Ga
μ(x)

are gluon fields. First, we focus on the “physical side” of the
correlation function. In this side, i.e. at the hadron level, a
complete set of intermediate physical states with the same
quantum numbers are embedded into Eq. (3) and then rel-
evant integrals over four-x are performed. Representing the
axial-tensor mesons with A and their first excited states with
A∗, the correlation function can be written by matrix ele-
ments of interpolating currents (for similar works see [31–
33])

�
phys
μν,αβ(q, T ) = 〈� | Jμν(0) | A〉〈A | J̄αβ(0) | �〉

m2
A(T ) − q2

+〈� | Jμν(0) | A∗〉〈A∗ | J̄αβ(0) | �〉
m2

A∗(T ) − q2

+ · · · , (10)

where � indicates the hot medium and dots show the contri-
butions originating from the other excited states and con-
tinuum. The matrix element 〈� | Jμν(0) | A(∗)〉 and
〈A(∗) | J̄αβ(0) | �〉 is defined depending on the decay con-
stant f A(∗) and the mass mA(∗) in the following form

〈� | Jμν(0) | A(∗)〉 = f A(∗) (T )m3
A(∗) (T ) εμν, (11)

〈A(∗) | J̄αβ(0) | �〉 = f A(∗) (T )m3
A(∗) (T ) ε

′
μν, (12)

here εμν represents the polarization tensor and the below
relationship is valid:

εμνε
′
αβ = 1

2
ημαηνβ + 1

2
ημβηνα − 1

3
ημνηαβ, (13)

where

ημν = −gμν + qμqν

m2
A(∗)

. (14)

Inserting Eqs. (11–14) into Eq. (10), the final expression for
the correlator belonging to the physical side is obtained as

�
phys
μν,αβ(q, T ) =

[
f 2
A(T )m6

A(T )

m2
A(T ) − q2

+ f 2
A∗(T )m6

A∗(T )

m2
A∗(T ) − q2

]

×1

2
(gμαgνβ + gμβgνα) + other structures. (15)

Secondly, we compute the correlation function for “QCD
side” up to certain order in the OPE expansion to get thermal
properties of the considered mesons. In this step, we can
distinguish the perturbative �(q2, T ) and non-perturbative
�̃(q2, T ) contribution of the correlation function in Eq. (3):

�QCD(q2, T ) = �(q2, T ) + �̃(q2, T ). (16)

At the quark level, i.e. in the QCD side, the correlation func-
tion can be defined in the form of a dispersion relation:

�(q, T ) =
∫

ρ(s)

s − q2 ds + subtracted terms, (17)

here ρ(s) is the spectral density function and expressed as:

ρ(s) ≡
∑
n

δ(s − m2
n)〈�|J |n〉〈n|J †|�〉

= f 2
Am

6
Aδ(s − m2

A) + f 2
A∗m6

A∗δ(s − m2
A∗)

+higher states. (18)

For computing the QCD side, the explicit expressions of
the interpolating currents in Eqs. (5–7) are embedded into
Eq. (3). Then following standard manipulations, the QCD
side of the correlation function is obtained as follows:

�
ρ

(∗)
2

μν,αβ(q, T ) = 3i

16

∫
d4xeiq·(x−y)

{
Tr

[
− −→D β(y)

×Sd(y − x)γμγ5
−→D ν(x)Su(x − y)γαγ5 + Sd(y − x)
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×γμγ5
−→D ν(x)

−→D β(y)Su(x − y)γαγ5 + −→D β(y)
−→D ν(x)

×Sd(y − x)γμγ5Su(x − y)γαγ5 − −→D ν(x)Sd(y − x)

×γμγ5
−→D β(y)Su(x − y)γαγ5

]
+ [β ↔ α] + [ν ↔ μ]

+ [β ↔ α, ν ↔ μ]

}
y→0

, (19)

�
ω

(∗)
2

μν,αβ(q, T ) = i

16

∫
d4xeiq·(x−y)

{
Tr

[(
− −→D β(y)

×Su(y − x)γμγ5
−→D ν(x)Su(x − y)γαγ5 + Su(y − x)

×γμγ5
−→D ν(x)

−→D β(y)Su(x − y)γαγ5 + −→D β(y)
−→D ν(x)

×Su(y − x)γμγ5Su(x − y)γαγ5 − −→D ν(x)Su(y − x)

×γμγ5
−→D β(y)Su(x − y)γαγ5

)
+ (β ↔ α) + (ν ↔ μ)

+ (β ↔ α, ν ↔ μ)

]
+ [u → d] + [u → s]

}
y→0

,

(20)

�
φ

(∗)
2

μν,αβ(q, T ) = i

32

∫
d4xeiq·(x−y)

{
Tr

[(
− −→D β(y)

×Su(y − x)γμγ5
−→D ν(x)Su(x − y)γαγ5 + Su(y − x)

×γμγ5
−→D ν(x)

−→D β(y)Su(x − y)γαγ5 + −→D β(y)
−→D ν(x)

×Su(y − x)γμγ5Su(x − y)γαγ5 − −→D ν(x)Su(y − x)

×γμγ5
−→D β(y)Su(x − y)γαγ5

)
+ (β ↔ α) + (ν ↔ μ)

+ (β ↔ α, ν ↔ μ)

]
+ [u → d] + 4[u → s]

}
y→0

.

(21)

We replace the thermal light quark propagator Sq(x − y) in
coordinate space in Eqs. (19–21) defined in the form below:

Si jq (x − y) = i
� x−� y

2π2(x − y)4 δi j − mq

4π2(x − y)2 δi j

−〈q̄q〉T
12

δi j − (x − y)2

192
m2

0〈q̄q〉T
[
1 − i

mq

6
(� x−� y)

]
δi j

+ i

3

[
(� x−� y)

(mq

16
〈q̄q〉T − 1

12
〈uμ� f

μνu
ν〉

)

+1

3

(
u · (x − y) �u〈uμ� f

μνu
ν〉

)]
δi j − igsGμν

32π2(x − y)2

×
(
(� x−� y)σμν + σμν(� x−� y)

)
δi j , (22)

where �
f
μν and uμ are the fermionic part of the energy

momentum tensor and the four-velocity of hot medium,
respectively. The temperature-dependent quark condensate
is expressed in connection with vacuum condensate in the
rest frame uμ = (1, 0, 0, 0), u2 = 1 [3].

After some long and standard calculations, correlation
function of the QCD side is written with respect to the
selected Lorentz structures just as in the physical side in
Eq. (15):

�
QCD
μν,αβ(q2, T ) = �QCD(q2, T )

{
1

2
(gμαgνβ + gμβgνα)

}

+other structures. (23)

Next we obtain the correlation functions for both the physical
and QCD sides separating the terms according to their struc-
tures. Then, we need to eliminate the highest order particles
from the lowest hadronic states. To do this taking derivative
of unknown polynomials in terms of q2 in the correlators of
both sides based on the idea of QCDSR and employing the
quark-hadron duality assumption, the following equality can
be written:

B̂�phys(q2, T ) = B̂�QCD(q2, T ), (24)

here B̂ symbolizes the Borel transformation defined by the
undermentioned expression in which F(x) represents a func-
tion:

B̂(q2)[F(x)] ≡ lim
n→∞

q2=nM2

(−q2)n

(n − 1)!
(

dn

dq2n

)
[F(x)]. (25)

After calculating the correlator belonging to the QCD and
physical sides, equating the coefficients of selected structures{ 1

2 (gμαgνβ + gμβgνα)
}

and taking into account Borel trans-
formation and quark-hadron duality, we obtain the ground-
state decay constant sum rule for ρ2, ω2 and φ2 states as

f 2
A(T ) =

[ ∫ s0(T )

smin

ds ρpert(s) e−s/M2 + B̂�̃(q2, T )

]

×m−6
A (T ) em

2
A/M2

, (26)

here �̃ represents the contribution of nonperturbative part
belonging to the chosen structure. We have two expressions
and two unknown parameters. One can extract the mass sum
rule from Eq. (26) easily performing derivative in terms of
(−1/M2) where M2 is the Borel mass parameter. So we also
get the mass sum rule for the ground-state ρ2, ω2 and φ2 as

m2
A(T ) = A1

B1
,

A1 =
∫ s0(T )

smin

ds ρpert(s) s e−s/M2 + d

d(−1/M2)
B̂�̃(q2, T ),

B1 =
∫ s0(T )

smin

ds ρpert(s) e−s/M2 + B̂�̃(q2, T ) (27)

where
√
smin is the sum of quark contents of the related

mesons. As for the excited states sum rules of the examined
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axial-tensor mesons we get:

f 2
A∗(T ) = 1

m6
A∗

[ ∫ s∗0 (T )

s∗min

ds ρpert(s) e(m2
A∗−s)/M2

+em
2
A∗/M2 B̂�̃(q2, T ) − f 2

Am
6
A e(m2

A∗−m2
A)/M2

]
,

(28)

m2
A∗(T ) = A2

B2
,

A2 =
∫ s∗0 (T )

s∗min

ds ρpert(s) s e−s/M2 − f 2
Am

8
Ae

−m2
A/M2

,

B2 =
∫ s∗0 (T )

s∗min

ds ρpert(s) e−s/M2 + B̂�̃(q2, T )

− f 2
Am

6
Ae

−m2
A/M2

, (29)

here s∗
0 (T ) is the thermal continuum threshold parameter,

which separates the contribution of “A+A∗” from the “higher
resonances and continuum”. Meanwhile sum rules depend on
the same spectral density ρQCD(s) and the cut-off parameter
must follow s0 < s∗

0 where s0(0) and s∗
0 (0) are the vacuum

values of the continuum thresholds for the related ground
states and first excited states respectively. As is mentioned
above the mass and decay constants of the ground state axial-
tensor mesons enter into Eqs. (26–29) as input parameters.

The spectral densities are parameterized as

ρ(s)cont = ρQCD(s)�
(
s − s0(T )

)
(30)

with a single sharp pole pointing out the ground state hadron,
and in the above equation ρ(s)cont is the spectral density
function of the continuum. s0(T ) is the thermal cut-off
parameter described in terms of s0(0) [4,34,35]:

s0(T )

s0(0)
=

[ 〈qq〉T
〈q̄q〉0

]2/3

. (31)

Next we move to the numerical analysis section.

3 Numerical analysis

In this section we present numerical values of input parame-
ters used in our calculations in order to analyze the obtained
sum rules, i.e. Eqs. (26–29). For the quark and mixed conden-
sates we used 〈q̄gsσGq〉 = m2

0〈q̄q〉, wherem2
0 = (0.8±0.2)

GeV2, 〈0|uu|0〉 = 〈0|dd|0〉 = −(0.24 ± 0.01)3 GeV3,
〈0|ss|0〉 = −0.8(0.24 ± 0.01)3 GeV3 [29,36–38]. The
vacuum condensates are parameters that do not depend on
particles under consideration. Their numerical values are
extracted once and are applicable in all sum rules calcu-
lations. The masses of u, d and s quarks can be found

in Ref. [28]. They are equal to mu = (2.16+0.49
−0.26) MeV,

md = (4.67+0.48
−0.17) MeV and ms = (93+11

−5 ) MeV.
During the calculations normalized thermal quark con-

densate is used in Eq. (22) fitting Lattice data from Ref. [39]
as follows representing q, u or d quarks

〈q̄q〉T
〈0|q̄q|0〉 = C1e

aT + C2 (32)

and for the s quark

〈s̄s〉T
〈0|s̄s|0〉 = C3e

bT + C4, (33)

here a = 0.040 MeV−1, b = 0.516 MeV−1, C1= −6.534×
10−4, C2 = 1.015, C3 = −2.169 × 10−5 and C4= 1.002 are
coefficients of the fit function.

Note that in Ref. [39] the temperature dependence of quark
condensates are presented up to temperature T = 300 MeV.
However we parameterize them up to the Tc = 165 MeV,
which is treated as the pseudocritical temperature for the
crossover phase transition at zero chemical potential [40].
Then the fermionic part of the energy density is parameter-
ized as [41]

〈uμ� f
μνu

ν〉T = T 4e
(
λ1T 2−λ2T

)
− λ3T

5, (34)

where λ1 = 113.867 GeV−2, λ2 = 12.190 GeV−1 and λ3 =
10.141 GeV−1.

To check the reliability of thermal sum rules obtained,
we examine whether the hadronic parameters of the particles
handled give vacuum values. Note that in Eqs. (26–29), the
mass and decay constants QCD sum rules rely on the Borel
mass parameter. Thus we determine the intervals of Borel
mass parameter M2 and continuum threshold s0. Our results
should be insensitive to their variations because they are not
completely physical quantities. Given these circumstances,
we used s(∗)

0 = (mA(∗) + 0.5)2 condition for the ground and
first excited states of the related mesons so that OPE conver-
gence is satisfied. Besides these criteria, values of physical
properties of mesons have to be stable according to small
changes of s0 and M2 as well.

The gap of Borel mass parameter in QCD sum rule
approach is determined by the following criteria:
a) The lower bound of M2 is fixed using the criterion of
OPE convergence such that the contributions of highest-
dimensional operators are less than the 20% of total terms in
OPE. In this computation this ratio is used as:

�Dim5

�all terms < 20%

where �Dim5 represents the contribution from five dimen-
sional operators.
b) For the upper bound of M2 it is standard to employ the pole
dominance condition which guarantees that the contribution
of continuum states is suppressed. One more condition for
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the intervals of these auxiliary parameters is the fact that
since we extract information only from the ground state in the
QCDSR approach, we have to ensure the pole contribution
(PC) is larger than the continuum ones. To determine the
PC in terms of s0 and M2 at T = 0, we employ the below
condition:

PC = �(s0, M2, T = 0)

�(∞, M2, T = 0)
≥ 50%.

Sum rule that do not obey above criteria is not applicable
and must be discarded. Taking into account this condition
we achieve a 50% pole contribution in the specified region
and below present the graph in Fig. 1.

We determine the values in Tables 2 and 3 for the s0 and
M2 parameters.

Then using these numerical values we obtain the mass and
decay constants of axial-tensor meson family and place the
results in Tables 4, 5 and 6.

These results are in good agreement with experiments and
also the Regge Trajectory Model. However this model claims
that ρ2(1940) and ω2(1975) mesons classified as ground
states in PDG are indeed their excited states [22]. There are
another two studies [24,42] denoting ground state masses of
ρ2 and ω2 as ∼ 1.7 GeV comparable with Regge Trajectory
Theory [22]. In this context we estimate the mass and decay
constant values of missing state φ2 in the J PC = 2−− nonet
predicted by the Regge Trajectory Model;

mφ2 = 1846 MeV, fφ2 = 6.83 × 10−2,
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Continuum
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C
on

tin
uu
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Fig. 1 Relative contributions of the pole (red-dashed) and contin-
uum (blue) versus to the Borel parameter M2 at s0 = 5.95 GeV2 for
ρ2(1940) at T = 0

Table 2 Borel and continuum threshold parameters working regions
for the ρ

(∗)
2 and ω

(∗)
2 taking into account “PDG” data

Parameter ρ2 ρ∗
2 ω2 ω∗

2

M2(GeV2) 1.6 − 2.0 1.6 − 2.0 1.8 − 2.1 1.8 − 2.1

s(∗)
0 (GeV2) 5.95 7.43 6.13 7.26

Table 3 Borel and continuum threshold parameters working regions
for the ρ

(∗)
2 and ω

(∗)
2 considering “Regge Trajectory Model”

Parameter ρ2 ρ∗
2 ω2 ω∗

2

M2(GeV2) 1.6 − 1.8 1.6 − 1.8 1.3 − 1.5 1.3 − 1.5

s(∗)
0 (GeV2) 4.82 5.95 4.82 6.67

Table 4 Mass values of the axial-tensor mesons at T = 0 and compar-
ison of the numerical values with experimental data from “PDG”

mρ2 mρ∗
2

mω2 mω∗
2

(MeV) (MeV) (MeV) (MeV)

Our

Results 1882 2258 1923 2288

Exp.[28] 1940 ± 40 2225 ± 35 1975 ± 20 2195 ± 30

Table 5 Masses of the axial-tensor mesons at T = 0 and comparison of
the numerical values with the prediction of “Regge Trajectory Model”

mρ2 mρ∗
2

mω2 mω∗
2

(MeV) (MeV) (MeV) (MeV)

Our Results 1604 1998 1668 1993

Regge Tr. Model [22] 1696 1940 1696 1975

Table 6 Decay constants of the axial-tensor mesons at T = 0 and
comparison of the numerical results with other theoretical predictions
and experiment

fρ2 fρ∗
2

fω2 fω∗
2

Our

Results (×10−2) 6.96 3.32 5.98 1.85

QCDSR [25] (×10−2) 7.4 ± 0.1 − 6.2 ± 0.4 −
Exp. − − − −

mφ∗
2

= 2195 MeV, fφ∗
2

= 3.96 × 10−2

in the Borel interval 1.1 GeV2 ≤ M2 ≤ 1.3 GeV2 and for
the continuum thresholds s0 = 5.77 GeV2, s∗

0 = 7.02 GeV2.
Our result for the ground state mass of φ2 resonance is con-
sistent with the prediction in Ref. [43] which finds the mass
as mφ2 = 1850 MeV employing the Coulomb gauge Hamil-
tonian approach to QCD. It also agrees with the Ref. [26]
using Borel sum rules assuming contents of the related state
as q̄s.

Finally, for all considered states, mass and decay constants
versus M2 and s0 graphs are plotted at T = 0 (but not pre-
sented in the paper for brevity) where dependencies of the
hadronic parameters on M2 and s0 are shown to be weak.
Therefore, we can say that the extracted sum rules are trust-
worthy in estimating the mass and decay constants of φ2 and
φ∗

2 , and analyzing their thermal behaviors. Additionally, we
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draw the OPE convergence plot to ensure that the pole con-
tribution is 50% of the total contribution and determine the
maximum value of M2. For the φ2 and φ∗

2 resonances we
need new precise experimental and also theoretical data to
clarify the case. These missing mesons are still empirically
unambiguous.

4 Summary and discussion

In this article we have explored the hadronic properties
of the ρ

(∗)
2 , ω

(∗)
2 and φ

(∗)
2 mesons with quantum numbers

J PC = 2−− via the TQCDSR approach looking through
the window of both Regge Trajectory Model and PDG data.
Using the two-point thermal correlation function, we calcu-
lated the hadronic parameters of these particles up to dimen-
sion five. After obtaining the temperature dependence of
mass and decay constant sum rules for the considered states,
it is reduced to zero temperature to check the mass and decay
constant values of ρ

(∗)
2 , ω

(∗)
2 and φ

(∗)
2 at vacuum. To see the

variations of the mass and decay constants in Eq. (26–29) in
terms of temperature, graphs are plotted for all considered
mesons considering PDG data and also Regge Trajectory
Model predictions by determining the related Borel mass and
continuum threshold parameters separately. However, for the
sake of brevity, we only present the 3-D mass graphs of ρ2

and ρ∗
2 versus temperature and Borel mass according to PDG

data in Fig. 2.
Looking at analyses for the mass and decay constants of

ρ
(∗)
2 and ω

(∗)
2 , they remain unaffected until T ∼= 0.12 GeV

with regard to both the PDG and Regge Trajectory Model
data. Nevertheless after this temperature value they start to
deviate from vacuum values (For the rates of change see the
Tables 7 and 8).

Table 7 Percentage changes of mass and decay constants of the ρ
(∗)
2

and ω
(∗)
2 compared with vacuum values in terms of “PDG” data at

Tc = 155 MeV

Parameter ρ2 ρ∗
2 ω2 ω∗

2

Mass (%) 9 14 10 35

Decay Constant (%) 4 1 3 14

Table 8 Percentage variations of mass and decay constants of the ρ
(∗)
2 ,

ω
(∗)
2 and φ

(∗)
2 compared with vacuum values according to “Regge Tra-

jectory Model” data at Tc = 155 MeV

Parameter ρ2 ρ∗
2 ω2 ω∗

2 φ2 φ∗
2

Mass (%) 10 26 9 19 10 25

Decay Constant (%) 3 34 2 18 2 14

Fig. 2 The effect of temperature on mass (first) and decay con-
stant (second) for ρ2 meson and mass (third) and decay constant (fourth)
for ρ∗

2 meson with respect to PDG data, respectively
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As a result of these analyses, we conclude that the mass
and decay constants of ρ

(∗)
2 , ω

(∗)
2 and φ

(∗)
2 mesons may dis-

sociate at critical/pseudocritical temperature. However we
need more and precise experimental data to clarify the situ-
ation. Although light mesons exist predominantly for a very
short time in heavy-ion collision experiments, we examine
them for more accurate interpretation of these experiments.
To investigate light unflavored mesons in extreme conditions
is important to understand the QCD vacuum, confinement
and hadronisation phase of the QGP and also whether mesons
or baryons were formed earlier at the initial stages of the uni-
verse. We hope that our numerical results will be confirmed
in near future both by experimental and theoretical studies,
and might help understand the nature of strong interactions
at finite temperatures.
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AThermal spectral densitiesρQCD(s, T ) for theρ
(∗)
2 , ω

(∗)
2

and φ
(∗)
2

The spectral densities from QCDSR at high temperature
approximation is computed and presented explicitly in terms
of dimension in which contributions of the gluon conden-
sates are neglected due to its smallness [44]. The spectral
density expressions for the ρ

(∗)
2 , ω

(∗)
2 and φ

(∗)
2 mesons up to

dimension five are found as follows:
—- Perturbative Parts: —-

ρ
ρ

(∗)
2

= 3s2 − 10smumd

80π2 , (35)

ρ
ω

(∗)
2

= 6s2 − 5s(m2
d + m2

u + m2
s )

160π2 , (36)

ρ
φ

(∗)
2

= 12s2 − 5s(m2
d + m2

u + 4m2
s )

320π2 . (37)

— Non-Perturbative Parts: —

�̃
ρ

(∗)
2

(q, T ) = 4〈u� f u〉(q · u)2

3q2

−m2
0(mu〈ūu〉 + md〈d̄d〉)

4q2 , (38)

�̃
ω

(∗)
2

(q, T ) = 4〈u� f u〉(q · u)2

9q2

−41m2
0(md〈d̄d〉 + mu〈ūu〉 + ms〈s̄s〉)

144q2 , (39)

�̃
φ

(∗)
2

(q, T ) = 8〈u� f u〉(q · u)2

27q2

−41m2
0(md〈d̄d〉 + mu〈ūu〉 + 4ms〈s̄s〉)

288q2 .

(40)
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