
Vol.:(0123456789)

SN Applied Sciences (2020) 2:122 | https://doi.org/10.1007/s42452-019-1917-y

Research Article

Load and stress testing for SDN’s northbound API

Majd Latah1   · Levent Toker2

Received: 21 August 2019 / Accepted: 17 December 2019 / Published online: 20 December 2019 
© Springer Nature Switzerland AG 2019

Abstract
In this work, we apply load and stress testing for well-known Software defined networking (SDN) controllers from an SDN 
application perspective. More precisely, we focus on the communication between the controller and SDN applications 
via the northbound Application programming interface (API). We apply proper load and stress testing plans, in order 
to correctly capture the behaviour of the controllers under consideration. Our load testing includes applying gradu-
ally increased workloads to find the throughput each controller can handle. Our stress test, on the other hand, builds 
upon the results of the load test and includes (1) measuring the API’s ability to handle extremely high workloads for a 
prolonged period of time and (2) directly attacking the underlying hosts of SDN network using Denial of Service (DoS) 
and Distributed Denial of Service (DDoS) attacks. We considered POX, Ryu, Floodlight, OpenDayLight (ODL) and Open 
Network Operating System (ONOS) SDN controllers. The experimental results showed that ONOS and ODL followed by 
Floodlight achieve the best throughput. Whereas POX and Ryu are characterized by lower throughput accompanied 
with partial and/or continuous failures during high workloads or DoS/DDoS attacks.

Keywords  Software defined networking (SDN) · Load and stress testing

1  Introduction

Software Defined Networking (SDN) represents a new net-
working architecture that combines central management 
and network programmability. SDN separates the control 
layer from the infrastructure layer and transfers the net-
work management to a central point, called the controller, 
which can be seen as the brain of the network [1]. SDN 
controllers provide an application programming interface 
(API), usually northbound API, to communicate between 
the SDN controller and the services and applications run-
ning over the network. A simplified SDN architecture is 
shown in Fig. 1, where the controller represents the brain 
of the network.

Unlike previous works [2–13] which focus on testing 
each controller’s southbound APIs, we apply load and 
stress testing on controller’s northbound APIs. We consid-
ered well-known open source SDN controllers, which are: 

POX, Ryu, Floodlight, OpenDayLight (ODL) and Open Net-
work Operating System (ONOS). POX and Ryu are single-
threaded controllers whereas Floodlight, ODL and ONOS 
support multi-threading. Both ODL and ONOS are can-
didates for enterprise-scale SDNs due to their enhanced 
architecture.

In this work, we measure the throughput of each con-
troller based on gradually increased loads that reach 
1000 requests per second. Then, we investigate each con-
roller’s ability to handle unexpected cases such as DoS/
DDoS attacks and prolonged heavy workloads that exceed 
its average throughput. Accordingly, we examine the 
throughput of different SDN controllers as well as potential 
partial and continuous failures that may occur during the 
experimental test. Partial failure indicates non-consecu-
tive failed API requests whereas continuous failure indi-
cates consecutive failures of API requests. Moreover, we 

 *  Majd Latah, majd.latah@ozu.edu.tr | 1Department of Computer Science, Ozyegin University, Istanbul, Turkey. 2Department of Computer 
Engineering, Ege University, Izmir, Turkey.

http://crossmark.crossref.org/dialog/?doi=10.1007/s42452-019-1917-y&domain=pdf
http://orcid.org/0000-0002-1204-505X


Vol:.(1234567890)

Research Article	 SN Applied Sciences (2020) 2:122 | https://doi.org/10.1007/s42452-019-1917-y

considered on-premises and off-premises (cloud-based) 
deployment of SDN network.

2 � Related works

Laissaoui et  al. [2] evaluated the performance of Bea-
con, Floodlight, Ryu and POX SDN controllers in terms of 
latency and throughput based on Cbench benchmarking 
tool. They found that Floodlight achieves the best results 
in terms of latency. Whereas Beacon achieves slightly bet-
ter results than Floodlight in terms of throughput. They 
also observed that Ryu achieves better results than POX in 
terms of throughput however it achieves the worst results 
in terms of latency when the size of the network increases. 
This study is emulated on a virtual machine rather than a 
real SDN experiment.

Khattak et al. [3] compared the performance of Open-
DayLight (ODL) with Floodlight SDN controller under dif-
ferent scenarios in terms of latency and throughput using 
Cbench. They found that ODL has lower throughput when 
compared to Floodlight. They also suggested that ODL 
may suffer from memory leakage problem. This study was 
conducted as a real SDN experiment. Additionally, they 
modified Cbench tool in order to add the ability to gener-
ate probabilistic traffic models.

Fancy and Pushpalatha [4] also compared POX and 
Floodlight in terms of delay and throughput. They con-
sidered star, linear and tree topologies. They found that 
Floodlight achieves better performance than POX. This 
study was conducted using Mininet emulator.

Rastogi and Bais [5] compared POX and RYU in terms 
traffic handling capabilities. The experiments were con-
ducted using Mininet with a simplified data center 

topology. As a result, they found that POX outperforms 
RYU in terms of layer 1 switching, whereas RYU shows far 
betters results in terms of layer 2 switching.

Darianian et al. [6] evaluated ONOS and ODL in terms 
of throughput, latency and thread scalability in physi-
cal and virtualized (OpenStack) environment based on 
Cbench tool. The experimental results showed that ONOS 
can achieve higher throughput and lower latency than 
ODL. They also observed that each controller’s through-
put decreases when they increase the number of threads 
due to the communication overhead between different 
threads on different virtual cores. In addition, this work 
refuted Khattak et al [3]’s observation regarding ODL’s 
memory leakage.

Mamushiane et al. [7] evaluated Ryu, Floodlight, ODL 
and ONOS in terms of latency and throughput, again 
based on Cbench tool. Apart from the previous works [2-6], 
they studied the effect of network load on each controller. 
The experimental results showed that ONOS achieves the 
best throughput. Ryu and ODL showed the best latency. 
Whereas ODL, Ryu and Floodlight were  significantly 
affected by the network workload. Overall, ONOS showed 
the best results.

Stancu et al. [8] compared the performance of POX, 
Ryu, ODL and ONOS. They considered tree topology and 
found that ONOS achieves the best performance in terms 
of delay and throughput. Rowshanrad et al. [9] compared 
Floodlight and ODL in terms of delay and loss in different 
topologies and network loads. The experimental results 
showed that ODL outperforms Floodlight in low-loaded 
networks and also for tree topologies in mid-loaded net-
works in terms of latency. Whereas Floodlight outper-
formed ODL in heavily loaded networks for tree topologies 
in terms of packet loss, and in linear topologies in terms 
of latency.

Shalimov et al. [10] conducted a comprehensive anal-
ysis of the following open source SDN controllers: NOX, 
POX, Beacon, Floodlight, MuL, Maestro, and Ryu. Beacon 
showed the best results in terms of latency and through-
put whereas POX and Ryu showed the worst results due 
to lack of multi-threading support.

Tootoonchian et al. [11] compared the performance 
using four open-source SDN controllers: NOX, NOX-MT, 
Beacon, and Maestro. The experimental results showed 
that NOX-MT has the highest throughput, and the least 
response time compared to other SDN controllers used 
in this study. NOX-MT is a multi-thread extension of the 
single-threaded NOX controller and uses optimization 
techniques such as Input/Output (I/O) batching and Boost 
Asynchronous I/O (ASIO) library in order to simplify multi-
thread operations.

Zhao et al. [12] conducted two separate comparisons. In 
the first comparison, they compared the performance of 

Application 
Plane

Control
Plane

Data 
Plane

Network App. Monitoring App.

SDN Controller

Firewall App.

Northbound API

Southbound API (e.g. OpenFlow)

Flow Table

Rules Counters Ac
ons

Flow Table Flow Table

Fig. 1   A basic SDN architecture [1]



Vol.:(0123456789)

SN Applied Sciences (2020) 2:122 | https://doi.org/10.1007/s42452-019-1917-y	 Research Article

centralized controllers including Ryu, Pox, Nox, Floodlight 
and Beacon controllers. In the second comparison, on the 
other hand, they compared the performance of distrib-
uted controllers including ODL and ONOS. The experimen-
tal results for centralized controllers showed that Beacon 
achieves the lowest latency and the highest throughput. 
Whereas the experimental results for distributed control-
lers showed that ONOS achieves the best results for the 
same metrics. Bholebawa and Dalal [13] conducted a per-
formance analysis between POX and Floodlight over differ-
ent network topologies (single, linear, tree and custom) in 
terms of throughput and latency. The experimental results 
showed that Floodlight outperforms POX.

Overall, one can observe that the previous works [2–13] 
focused only on evaluating the communication between 
the controller and the underlying OpenVSwitches (i.e. test-
ing the southbound API). Our work, on the other hand, 
takes a step forward by applying load and stress testing 
on the communication between the controller and the 
application programming interface (i.e. testing the north-
bound API). To the best of our knowledge, this is the first 
work that applies load and stress testing for SDN control-
lers from an SDN application perspective.

3 � Background

3.1 � Methodology

For load testing we aim to answer the question of “How 
much throughput can each controller provide ?” Therefore, 
we measure the throughput of SDN controllers using dif-
ferent workloads. We observe the throughput of each con-
troller while gradually increasing the workload. Increas-
ing the workload also increases the requests that must be 
handled per second and raises the chance of bottlenecks. 
If the controller is not able handle the workload, it will end 
up with partial or continuous failure.

In the next stage, as we already measured the average 
throughput of each controller from our previous load test, 
we can build upon this performance metric in order to 
apply a proper stress testing that examines the behaviour 
when we exceed the expected number of requests each 
controller can handle. Therefore, for stress testing we aim 
to answer the following question: “How each controller acts 
under unexpected workloads or attacks ?”. This also includes 
measuring the controller’s ability to handle extreme work-
loads for a prolonged period of time. We considered two 
test cases (1) when the application layer is under attack 
(i.e. attacking the northbound API), and (2) when the infra-
structure layer is under attack (i.e. attacking various hosts 
in the network). Therefore, we considered (i) exceeding 
the average throughput of the northbound API provided 

by each controller and (ii) directly attacking the hosts of 
SDN network using Denial of Service (DoS) and Distributed 
Denial of Service (DDoS) attacks.

3.2 � Tools and libraries

Our experiments considered POX ,1 Ryu,2 Floodlight,3 
OpenDayLight (ODL)4 and Open Network Operating Sys-
tem (ONOS)5 SDN controllers. We used JMeter6 for load 
testing. In addition, we used JMeter-Plugins7 to simulate 
users with specific RPS (Requests Per Second). Apart from 
that we utilized Mininet,8 an open-source SDN emulator, 
to emulate an SDN network and scapy9 library to gener-
ate appropriate (D)DoS traffic on the underlying network. 
Moreover, we employed Grafana10 and Influxdb11 to imple-
ment a real-time performance monitoring dashboard.

4 � Experimental setup

In order to conduct our test, we used Mininet with a simple 
linear topology that consists of 3 hosts. Our experiments 
were conducted in a virtual environment using Ubuntu 
14.04 LTS which works on Intel i5 processor running at 
2.3GHz with 12 GB of RAM where we allocated 8 GB of 
RAM and 4 CPU cores to our VM. We used Apache JMeter, 
a well-known open source load and stress testing tool, 
which runs on the host OS. For our on-premises setup, the 
average round-trip time (RTT) is < 1 ms. In JMeter a test 
plan determines a series of steps that need to be executed. 
A test plan mainly consists of one or more thread groups, 

1  POX (2019) SDN Controller [online]. Website https​://noxre​
po.githu​b.io/pox-doc/html/ Accessed 12 April 2019.
2  Ryu (2019) SDN Controller [online]. Website https​://osrg.githu​
b.io/ryu/ Accessed 12 April 2019.
3  Floodlight (2019) SDN Controller [online]. Website http://www.
proje​ctflo​odlig​ht.org/flood​-light​/ Accessed 12 April 2019.
4  ODL (2019) SDN Controller [online]. Website https​://www.opend​
aylig​ht.org/ Accessed 12 April 2019.
5  ONOS (2019) SDN Controller [online]. Website https​://wiki.onosp​
rojec​t.org/ Accessed 25 Sept 2019.
6  Apache JMeter (2019) Load Testing Tool [online]. Website https​://
jmete​r.apach​e.org Accessed 05 March 2019.
7  Apache JMeter-Plugins (2019) [online]. Website https​://jmete​
r-plugi​ns.org/ Accessed 12 March 2019.
8  Mininet (2019) SDN Emulator [online]. Website http://minin​
et.org/ Accessed 01 May 2019.
9  Scapy (2019) Python Packet Manipulation Library [online]. Web-
site https​://scapy​.net/ Accessed 03 May 2019.
10  Grafana (2019) Real time performance monitoring tool [online]. 
Website https​://grafa​na.com/ Accessed 12 May 2019.
11  Influxdb (2019) Time series database [online]. Website https​://
www.influ​xdata​.com/ Accessed 12 May 2019.

https://noxrepo.github.io/pox-doc/html/
https://noxrepo.github.io/pox-doc/html/
https://osrg.github.io/ryu/
https://osrg.github.io/ryu/
http://www.projectfloodlight.org/flood-light/
http://www.projectfloodlight.org/flood-light/
https://www.opendaylight.org/
https://www.opendaylight.org/
https://wiki.onosproject.org/
https://wiki.onosproject.org/
https://jmeter.apache.org
https://jmeter.apache.org
https://jmeter-plugins.org/
https://jmeter-plugins.org/
http://mininet.org/
http://mininet.org/
https://scapy.net/
https://grafana.com/
https://www.influxdata.com/
https://www.influxdata.com/


Vol:.(1234567890)

Research Article	 SN Applied Sciences (2020) 2:122 | https://doi.org/10.1007/s42452-019-1917-y

sample generating and logic controllers, listeners, timers, 
assertions and configuration elements. JMeter-Plugins 
provide a custom set of plugins for Apache JMeter that 
can be utilized to boost JMeter’s capabilities. One of these 
plugins is Throughput Shaping Timer, which can be used 
to simulate users with specific RPS (Requests Per Second) 
throughput without the need for tuning the number 
of threads and timers. We set the maximum number of 
concurrent threads to 200, which are used to satisfy the 
necessary RPS load schedule. We shared our test plan and 
related setup files on a public repository.12

As shown in Fig. 2a, for load testing the workload gradu-
ally increases to finally reach 1000 requests per second. 
This allows us to answer our first question we mentioned 
previously. At this point, partial or continuous failures may 
occur when we exceed the number of requests per second 
the controller can provide. In other words, once we reach a 
bottleneck, the throughput will decrease as the controller 
will be not able to handle such high workload.

On the other hand, we conduct a stress test for each 
controller based on its average throughput. In our experi-
ment, DoS/DDoS attacks are launched from the same 
SDN network, which takes place in our VM machine. We 
did not implement any mitigation strategy in both guest 
and host operation systems or the interfaces hosting the 
corresponding SDN controllers, which also do not include 
any mitigation/detection module. We aim to exceed the 
average throughput of the northbound API provided by 
each controller by applying extremely high workloads 

for a prolonged period of time. As shown above in Fig. 2b 
we have two workload profiles. The first one is for single-
threaded controllers (POX and Ryu) whereas the other one is 
for multi-threaded controllers (Floodlight, ODL and ONOS).

5 � Experimental results

5.1 � Results of our load testing

As we mentioned previously, partial failure indicates non-
consecutive failed API requests whereas continuous failure 
indicates consecutive failures of API requests. From Fig. 3a, 
we observe that POX continuously fails when we exceed its 
average throughput (243.4 RPS). The obtained response is 
an order of magnitude lower of the expected one. Whereas 
Fig. 3b reveals that Ryu partially fails under extremely high 
workload (1000 requests per second). As a results, we con-
clude that Ryu is more stable than POX. Figure 3c shows 
that Floodlight was not able to achieve 1000 RPS due to 
its high response time in compared with ODL and ONOS. 
Figure 3d, e, on the other hand, show that both ODL and 
ONOS achieve higher throughput, however ODL achieves 
slightly better results in compared with ONOS.

As shown below in Table 1, POX and Ryu achieved the 
worst results in terms of average throughput and error 
rate. The best throughput was achieved by ODL followed 
ONOS and Floodlight with zero error.

Moreover, we used Google Cloud to implement a simple 
off-premise SDN network. To this end, we setup a separate 
VM for each controller. Mininet is used to simulate a sim-
ple linear topology that consists of 3 hosts. We launched 

(a) Load test workload (b) Stress test workload

Fig. 2   Workload profile for our load and stress testing

12  SDNLoadTest [online]. https​://githu​b.com/majdl​atah/SDNLo​
adTes​t.

https://github.com/majdlatah/SDNLoadTest
https://github.com/majdlatah/SDNLoadTest


Vol.:(0123456789)

SN Applied Sciences (2020) 2:122 | https://doi.org/10.1007/s42452-019-1917-y	 Research Article

our JMeter test plan from our local machine, which works 
on Intel i5 processor with 12 GB of RAM. We used one-
way delay (OWD) to estimate potential asymmetric delay 
between the SDN network and our local machine that 
runs JMeter test plan (i.e. we measured the time taken for 
a packet transmitting from the sender to the receiver). We 
used Network Time Protocol (NTP) for clock synchroniza-
tion. Accordingly, we found that the delay from the SDN 
network to our local machine is 31.85ms whereas the delay 
from our local machine to the SDN network is 34.5ms. As 

Fig. 3   Results of our load testing (On-premises experiment)

Table 1   Results obtained from our load test

SDN controller Average throughput 
(requests per sec)

Error rate (%)

POX 243.4 1.44
Ryu 272.8 0.08
Floodlight 595.67 0
ONOS 725.5 0
ODL 758.39 0



Vol:.(1234567890)

Research Article	 SN Applied Sciences (2020) 2:122 | https://doi.org/10.1007/s42452-019-1917-y

a result, the reply packets sent from the SDN network are 
received faster than request packets sent by the JMeter 
due to less OWD, which may affect the throughput and 
the number of failed requests. In our experiment, we took 

into consideration that the number of virtual CPUs (vCPUs) 
needs to be tuned to obtain the best performance. As 
shown in Fig. 4, allocating a low number of vCPUs can lead 
to a low throughput. Also a high number of vCPUs can lead 
to a low throughput due to the communication overhead 
between threads on different vCores. The best performance 
was achieved by allocating 4 vCPUs for each controller.

5.2 � Results of our stress testing

Our stress test takes into consideration the average through-
put of each controller. Therefore, to answer our second ques-
tion we gradually increase the workload on each control-
ler’s API for a prolonged period of time to see whether the 
controller can handle this case or not. We also considered 
launching DoS and DDoS attacks on the underlying network. 
As shown in Fig. 5a the performance of POX is accompanied 

0

100

200

300

400

500

600

700

800

2 4 8 16

)ceS/tseuqeR(tuphguorhT

Number of vCPUs

ONOS OpenDayLight Floodlight Ryu POX

Fig. 4   Throughput versus number of vCPUs (Off-premises experi-
ment)

Fig. 5   Results of our stress testing



Vol.:(0123456789)

SN Applied Sciences (2020) 2:122 | https://doi.org/10.1007/s42452-019-1917-y	 Research Article

with continuous failures in all cases of the stress test along 
with significantly decreased throughput during DoS and 
DDoS attacks. This is due to the fact that the controller could 
not handle extreme loads that exceed its average through-
put. From Fig. 5b, on the other hand, one can observe that 
under DoS attacks Ryu shows partial failures along with sig-
nificantly decreased throughput. Furthermore, under DDoS 
attacks Ryu demonstrates continuous failures along with sig-
nificantly decreased throughput. Moving to Fig. 5c one can 
observe that Floodlight shows decreased throughput along 
with high throughput under DoS/DDoS attacks. Fig. 5d also 
shows that under DoS/DDoS attacks ODL can still achieve 
a high throughput. Fig. 5e, on the other hand, reveals that 
ONOS has a smoother decline in throughput in compared 
with Floodlight and ODL. We can also observe a slightly 
decreased throughput under DDoS attacks. The results of 
our stress test are summarized in Table 2. 

5.3 � Realtime monitoring of SDN’s northbound API

We make use of Grafana and Influxdb to implement a 
real-time performance monitoring dashboard. Grafana 
allows us to query, visualize, alert on and understand the 

performance metrics. Whereas Influxdb is a time series 
database optimized for time-stamped or time series data. 
Fig. 6 shows our GUI, which updates the performance 
metrics periodically. Monitored metrics are throughput, 
total number of requests, number of successful requests 
and minimum response time. Accordingly, Jmeter sends 
these metrics to Influxdb using HTTP protocol allowing 
monitoring the performance of each controller in a real-
time manner.

6 � Discussion

This work emphasizes the importance of testing SDN’s 
northbound API. It also shows how single-threaded SDN 
controllers can be significantly affected under unexpected 
workloads or when attacking the underlying SDN network. 
Interestingly, the results obtained from our off-premises 
experiment confirm our on-premises experiment with 
slight differences in terms of throughput. This can be due 
to the influence of asymmetric delay between the SDN 
network and our local machine that runs JMeter test plan.

The best results were  achieved by ONOS and ODL 
potentially due to their enhanced architecture. Moreover, 
ONOS shows high performance with different number 
of allocated vCPUs and even under DoS/DDoS attacks. 
This observation is in line with [6–8, 12] in the sense that 
ONOS can achieve better performance than ODL. Apart 
from that, we observed that a high number of vCPUs can 
lead to a decreased throughput due to the communication 
overhead between threads on different vCores. The same 
observation was also confirmed by Darianian et al. [6].

Table 2   Results obtained from our stress test

CF Continuous failure, PF partial failure, SDT significantly decreased 
throughput, DT decreased throughput, HRT high response time

Stress test POX Ryu Floodlight ODL ONOS

API CF PF – – –
DoS CF+SDT PF+DT DT+HRT DT –
DDoS CF+SDT CF+SDT DT+HRT DT+HRT DT

Fig. 6   Realtime monitoring of 
SDN’s northbound API



Vol:.(1234567890)

Research Article	 SN Applied Sciences (2020) 2:122 | https://doi.org/10.1007/s42452-019-1917-y

Our overall results are also in consistence with the those 
of [2, 4–9, 13]. Additionally, our results are in line with 
[10–12] in the sense that multi-threaded controllers out-
perform single-threaded controllers. On the other hand, 
both our obtained results and those of [6] refute [3]’s con-
clusion regarding ODL’s memory leakage. In other words, 
our results confirm that ODL outperforms Floodlight in 
terms of the throughput of its northbound API.

Overall, one can conclude that single-threaded SDN 
controllers (POX and Ryu) are a good option for fast pro-
totyping rather than for enterprise deployment. Whereas 
multi-threaded SDN controllers (Floodlight, ODL and 
ONOS) can be used in the deployment of large-scale 
networks that include a wide-range of SDN applications. 
However, the best results are achieved by controllers with 
enhanced architecture (i.e. ODL and ONOS).

7 � Conclusion

In this paper, we applied load and stress testing on well-
known SDN controllers. Our work focused on testing the 
communication between the controller and SDN applica-
tions via the northbound API. Our experimental results 
showed that ONOS and ODL followed by Floodlight 
achieve the best results in terms of throughput and sta-
bility against unexpected cases such as DoS/DDoS attacks 
and prolonged heavy workloads. We believe that this work 
can pave the way towards more comprehensive testing of 
SDN controllers, as well as developing testing tools with 
appropriate performance metrics for SDNs.

Acknowledgements  We would like to thank the anonymous review-
ers for their insightful comments and constructive suggestions, 
which significantly helped us to improve the quality of this work. 
Additionally, we would like to thank Prof. Hasan Sözer for his valuable 
comments, which help us improve the quality of this work.

Compliance with ethical standards 

Conflict of interest  The authors declare that they have no conflict of 
interest.

References

	 1.	 Latah M, Toker L (2019) Artificial intelligence enabled software-
defined networking: a comprehensive overview. IET Netw 
8(2):79–99

	 2.	 Laissaoui C, Idboufker N, Elassali R, El Baamrani K (2015) A meas-
urement of the response times of various open flow/sdn con-
trollers with cbench. In: IEEE/ACS 12th international conference 
of computer systems and applications (AICCSA), IEEE, pp 1–2

	 3.	 Khattak ZK, Awais M, Iqbal A (2014) Performance evaluation of 
opendaylight sdn controller. In: 2014 20th IEEE international 
conference on parallel and distributed systems (ICPADS), IEEE, 
pp 671–676

	 4.	 Fancy C, Pushpalatha M (2017) Performance evaluation of sdn 
controllers pox and Foodlight in mininet emulation environ-
ment. In: International conference on intelligent sustainable 
systems (ICISS), IEEE, pp 695–699

	 5.	 Rastogi A, Bais A (2016) Comparative analysis of software 
defined networking (sdn) controllers in terms of traffic han-
dling capabilities. In: 19th international multi-topic conference 
(INMIC), IEEE, pp 1–6

	 6.	 Darianian M, Williamson C, Haque I (2017) Experimental evalu-
ation of two open flow controllers. In: IEEE 25th international 
conference on network protocols (ICNP), IEEE, pp 1–6

	 7.	 Mamushiane L, Lysko A, Dlamini S (2018) A comparative evalu-
ation of the performance of popular sdn controllers. In: 2018 
wireless days (WD), IEEE, pp 54–59

	 8.	 Stancu AL, Halunga S, Vulpe A, Suciu G, Fratu O, Popovici EC 
(2015) A comparison between several software defined net-
working controllers. In: 12th international conference on tel-
ecommunication in modern satellite. Cable and broadcasting 
services (TELSIKS), IEEE, pp 223–226

	 9.	 Rowshanrad S, Abdi V, Keshtgari M (2016) Performance evalua-
tion of SDN controllers: Floodlight and OpenDaylight. IIUM Eng 
J 17(2):47–57

	10.	 Shalimov A, Zuikov D, Zimarina D, Pashkov V, Smeliansky R, 
(2013) Advanced study of SDN/OpenFlow controllers. In: Pro-
ceedings of the 9th central & eastern european software engi-
neering conference in Russia, ACM, pp 1–6

	11.	 Tootoonchian A, Gorbunov S, Ganjali Y, Casado M, Sherwood 
R (2012) On controller performance in software-defined net-
works. In: 2nd USENIX workshop on hot topics in management 
of internet, cloud, and enterprise networks and services, USENIX 
Association, pp 1–6

	12.	 Zhao Y, Iannone L, Riguidel M (2015) On the performance of SDN 
controllers: a reality check. In: IEEE conference on network func-
tion virtualization and software defined network (NFV-SDN), 
IEEE, pp 79–85

	13.	 Bholebawa IZ, Dalal UD (2018) Performance analysis of SDN/
OpenFlow controllers: Pox versus floodlight. Wirel Pers Commun 
98(2):1679–1699

Publisher’s Note  Springer Nature remains neutral with regard to 
jurisdictional claims in published maps and institutional affiliations.


	Load and stress testing for SDN’s northbound API
	Abstract
	1 Introduction
	2 Related works
	3 Background
	3.1 Methodology
	3.2 Tools and libraries

	4 Experimental setup
	5 Experimental results
	5.1 Results of our load testing
	5.2 Results of our stress testing
	5.3 Realtime monitoring of SDN’s northbound API

	6 Discussion
	7 Conclusion
	Acknowledgements 
	References




