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Abstract—In this paper, a method to control a manipulator
using force-induced trajectory is proposed. The trajectory is
learned from an operator doing the polishing task using a tool
attached to the robot’s end effector. The learning process is
performed by a deep neural network which is designed and trained
to generate a force profile according to the states (joints’ positions
and velocities). The admittance control technique is utilized to
make the manipulator compliant to the operator movements in the
teaching mode. Spring-Damper system along with Inertia-Damper
system have been studied to impose the relationship between the
operator’s applied force and the reaction of the manipulator. The
universal robot (UR5) aside with a force sensor (OptoForce) are
used to run the experiment. Robot Operation System (ROS) is used
to accomplish the task in real time. The polishing task is learned
and achieved by the robot itself, and the force trajectories are
better followed using the Inertia-Damper system as the admittance
controlling scheme.

Index Terms—Admittance control, manipulator, human-robot
interaction, force trajectory

I. INTRODUCTION

For the last couple of decades, robotic manipulators have
been extensively employed in factories. These robots have
accomplished repetitive tasks in an agile and efficient manner,
provided that the tasks are meticulously pre-engineered in
a well-controlled environment. Therefore, they must remain
stationary within the workflow for longer periods, causing a
certain amount of decrease in the transformability of production
lines. This fact appears to be a big issue when considering the
fact that industrial manufacturing goes through a paradigm shift
from mass production to mass customization [1].

In response to this matter, Industry 4.0 (the 4th Industrial
Revolution) enforces the use of robots that can adaptively
collaborate with humans in a safe and dependable manner [2]–
[4]. Therefore, it would be possible to blend in the robots within
the human working environment as a key player to form hybrid
human-robot cooperative teams [5]. In this perspective, one of
the main prerequisites in achieving this goal is to ensure the
stability while enhancing physical interaction capabilities.

The tasks that involve physical interaction leads to a cer-
tain energy exchange with the environment, posing technical
challenges [6]–[8]. Yet, these tasks can be achieved by means
of simultaneous motion and force control [9]. As stated in
[10], there are two approaches to address control issues for

the robots that physically interact with the environment: i)
the hybrid position-force control that divides the task space
into position-controlled and force-controlled subspaces [11], ii)
the compliance/impedance control that manages the position-
force trade-off through the active regulation of mechanical
impedance [12]–[14]. The adaptability factor in impedance
control schemes surely contributed to their popularity, and such
controllers have been implemented to various robotic systems
[15]–[17].

The energy exchange with the environment is directly linked
to the management of stability vs. performance trade-off, im-
posing the need for certain adaptation of the rendered mechani-
cal impedance to ensure passivity [18], [19]. To this end, several
methods have been proposed; for instance, Aydin et al. utilized
a fractional order admittance controller to ensure adaptability
[20]. In another example, Gribovskaya et al. devised a method
in which the user’s intentions were anticipated to adapt the
motion in accordance with the perceived motion [21]. Rozo
et al. used machine learning to achieve transfer impedance-
based behaviors to a torque-controlled robot [22]. Following a
similar strategy, Dimeas and Aspragathos employed a learning
algorithm for the minimization of jerk via varying damping so
as to achieve effective human-robot cooperation [23].

Evidently, varying the mechanical impedance characteristics
plays a pivotal role in improving the performance metrics
concerning the physical interaction applications [17]–[23]. In
another view, mechanical impedance adjusts the interplay be-
tween the force and motion constraints [9]. Since the motion
constraints are given a priori in most robotic applications, vary-
ing the mechanical impedance could satisfy force constraints
due to physical interactions.

In an alternative view, the above-mentioned objective can be
fulfilled if we can synthesize feasible force constraints for a
given task. To contribute toward this direction, we propose a
human-to-robot skill transfer method in which the force trajec-
tories for the robotic polishing task is obtained from a human
demonstrator and then learned using a deep neural network
scheme. With the addition of an admittance controller, the
humans can physically manipulate the polisher that is attached
to the robot end-effector to train it. In order to formulate the
force trajectories in terms of position constraints, robot states



(all joint positions and velocities) are assigned as inputs to the
neural network. Once the neural network is trained and able
to generate force constraints in terms of robot states, the task
can be achieved by using the force-induced motion controller
displayed in Fig. 1.

The reminder of the paper is organized as follows: the
proposed force reference extraction algorithm, including the
real-time admittance controller, is explained in Section II.
Experimental results are presented and discussed in Section III.
Finally, the paper is concluded in Section IV.

II. FORCE REFERENCE EXTRACTION: POLISHING TASK

A. Experimental Setup

An industrial manipulator with six degrees of freedom (DOF)
was used as the experimental testbed. A polishing tool was
attached to the end-effector that allows the operator to interact
with the robot. The external force applied by the operator was
measured using a 6-axis Force/Torque (F/T) sensor mounted
between the end-effector and the polisher.

The main blocks of the method can be seen in Fig. 1, which
are: the industrial manipulator, the force sensor, the deep neural
network (DNN) block, the admittance control scheme. For the
industrial manipulator, the Universal Robot (UR5) manipulator
was chosen due to its highly customizable properties and its
suitability to optimize low-weight collaborative processes, such
as picking, placing, and testing 1. The robot is equipped with
absolute encoders in each joint such that all the robot states,
i.e., joint positions (θ) and velocities (ω), are readily available.

The UR5 manipulator has seven links and six revolute joints.
The size of the links are given by the manufacturer and
verification on the manipulator were done before using them.
The forward kinematic has been derived depending on the
research [24] then extra calculation has been done to take into
account the sensor axes.

A high-resolution 6-axis F/T Sensor (OptoForce) was at-
tached to the robot’s end-effector in order to detect interaction
forces in all three Cartesian axes (x, y and z) as well as all three
rotational axes (roll, pitch, yaw or α, β, γ). A polishing tool
was added then to be held by the operator and do the polishing
task.

B. ROS-based Joint Velocity Control

The ROS was built as a collection of nodes that communicate
using messages and topics. The main service in ROS is the
roscore which provides connection information to each node
and let it form a direct peer to peer connection (without central
routing service) with other nodes publishing and subscribing to
the same message topics. A ROS workspace should be set up
(made and initialize) before writing any code, the workspace
(usually named catkin ws) can be imagined simply as a set
of directories which contain the related set of the code [25].

To work with the UR5 robot, the ROS kinetic with Ubuntu
16.04 or ROS Indigo with Ubuntu 14.04 are recommended.

1www.universal-robots.com/products/ur5-robot/

Fig. 1: Force-induced motion scheme, using a mass-spring-
damper system; if m = 0 and k 6= 0 then it is a spring-damper
system, if k = 0 and m 6= 0 then it is a mass-damper system.
See section III for details.

The ur modern driver should be installed 2, then launched
by roslaunch to start the communication with the robot.
It is also recommended in ROS to separate the code into
different modules (nodes) and make them publish/subscribe
to a topic. In our implementation, we created an encoder
node which subscribes to the encoder topic and receives the
joints position and velocity. We created another node which
subscribes to the force sensor topic (which was defined and
launched beforehand to communicate with the force sensor
3) and reads the forces and moments applied on the sensor
at each sampling time. Fig. 2 shows the nodes which we
created to run the experiment; the ur driver is the universal
robot driver and it refers to the main code that controls the
robot. The robot state publisher is the encoder node, which
is used by the main code to read the joint states (the joints
position and velocity). The test move is the node that contains
the trajectory that the robot should follow, the graph shows
a topic named follow joint trajectory/status which sends
the robot current status to the node, so the node will depend on
it and generate a goal trajectory and sends it by a topic named
follow joint trajectory/goal. The node etherdaq node is
the force sensor node which runs in parallel with the ur driver
and keeps publishing the forces and moments values (with a
rate of 500 Hz; The publishing speed of the F/T information,
and can be changed), so the main node (which is subscribed to
it) can read it any time.

C. Real-time Admittance Control Scheme

As a definition, the admittance control is a mass (inertia)-
spring-damper between the target position and the actual posi-
tion of the robot. It can be imagined as pushing a stick through
a very viscous substance, like honey or wet sand; the more
force is applied with the stick to the substance, the further the
stick will move. Fig. 3 shows the mass-spring-damper system

2https://github.com/ros-industrial/ur modern driver
3https://github.com/OptoForce/etherdaq ros



Fig. 2: ROS nodes which control the UR5 robot. The figure
was built by the help of the GUI ROS plug-in rqt graph.

and its free-body diagram. The spring force is proportional to
the displacement of the mass, x (k is the spring constant), and
the viscous damping force is proportional to the velocity of the
mass, v = ẋ (b is the damping coefficient). Both forces oppose
the motion of the mass (m) so they are shown (in Fig. 3-(b))
in the negative x-direction. The force equation of the whole
system can be written as in Eq. (1) and in Laplacian as in (2)
where S is the Laplace variable. In (3) the transfer function
is formulated. The spring-damper function can be found by
eliminating the mass element (m), as in (4). Similarly, the mass-
damper function can be found by eliminating the spring element
(k), as in (5) [26].

F = mẍ+ bẋ+ kx (1)

F (S) = mS2X(S) + bSX(S) + kX(S) (2)

X(S)

F (S)
=

S

mS2 + bS + k
(3)

X(S)

F (S)
=

S

bS + k
(4)

X(S)

F (S)
=

1

mS + b
(5)

Fig. 3: (a)-Mass-Spring-Damper System, (b)-free-body diagram

D. Neural Network

Neural Network can be defined as a connectionist
computational system. The normal computational systems are
procedural; a program executes the code line by line. A true
neural network does not follow a linear fashion; it processes
the information in parallel throughout a network of nodes
(neurons) [27].

We built a deep neural network (DNN), to predict the
required force to be applied by the polisher at each state as
a function of robot states (joint positions and velocities). The
network was designed as two hidden layers as shown in Fig.
4. The number of neurons in each layer (L1 and L2) with their
activation functions will be specified in accordance with the
loss value while training the neural network. The input dataset,
i.e. robot states, was formed by twelve features (N ), and the
related data was obtained by means of joint encoders. Six of
them are the position of each joint (six joints), and the other
six are the angular velocity of the joints. While the operator
is moving the robot (generating a trajectory), the encoder will
give us many data points (M ) for each feature, so the input size
is N ×M . The output of the neural network is the force and
moment values which the network should predict after training,
so the output size (O) is six values (forces and moments in the
Cartesian space).

Fig. 4: Deep Neural Network Design, NxM: the shape of the
input dataset, O: number of outputs, L1 and L2: number of
neurons in the first and second hidden layers respectively. W1,
W2 and W3: the weights between the layers.

In order to collect the DNN dataset, we made the robot
operate in the admittance control mode and let the operator hold
the polisher (attached to the robot) and do the polishing task
following many different trajectories. During that, we collected
the joint space position and velocity with a sampling time of
8 ms which is the highest sampling frequency allowed in real-
time UR5 operations. In addition, we collected the force sensor
readings at each time step.

After collecting a suitable amount of data and before train-
ing the neural network on that data we used a cubic spline
interpolation technique to generate a function which tries to
fit that data. The spline formed by a sequence of polynomial
curves which are connected together (end to end) to construct
a complex curve, with the condition that the formed curve is
continuous and smooth [28]. The spline technique gives us the
power of controlling the shape of complex curves by choosing
the number of data points (called control points) and that helps
in training the NN. Fig. 5 shows the result of spline which we
applied on the collected velocity from one of the robot’s joints
(the base joint). After choosing a suitable number of control



points, we obtained a curve which sufficiently represents the
data and can be used to train the neural network.

Fig. 5: Interpolation using spline curves, applied on the angular
velocity of the robot’s base joint.

A new dataset is formed after applying the spline technique
on the collected data (position, velocity, force and moments),
and that dataset is used to train the neural network. To train
the NN efficiently, we split the dataset randomly into training,
validation and testing datasets. The splitting has been done with
the help of a Python library (SkiKit), the test size has been
choosing as 0.25, so 25% of the dataset will be used for testing
and the rest for training. In accordance with the loss calculation,
we edited the network design (number of neurons, activation
functions and number of epochs). The loss values (MSE: mean
squared errors) were recorded in each epoch for the training
and validation datasets and plotted after the training finished,
as shown in Fig 6. From the plot, we can see that the model
has a good performance on both train and validation datasets.
That performance was reached by choosing forty neurons in
the first hidden layer and twenty neurons in the second one.
The neurons’ activation function was chosen to be rectified
linear unit (ReLU), which is the most commonly used activation
function in neural networks.

Fig. 6: The model loss on training and validation datasets.

After building the model (specifying the number of layers,
number of neurons, and the activation functions), a compiling
step was performed to configure the model for training. The
MSE function was chosen as the objective function, and the
stochastic gradient descent (SGD) was chosen as the optimizer.
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Fig. 7: Measured force/moment (in blue) and predicted
force/moment (in red).

The metrics to be evaluated by the model during training and
testing were set as MSE and MAE (Mean Absolute Error).
We performed the training step for a suitable number of
epochs (200 epochs were chosen). After completing the training
step, we tested the neural network using the test part of the
dataset, and that provided the predicted force and moment. A
comparison between the predicted forces and the measured ones
is shown in Fig. 7. The result validates that the network has
favorable representation capabilities concerning the interaction
forces.

III. EXPERIMENT RESULTS

The evaluation of the proposed force-induced motion scheme
was conducted experimentally using the UR5 manipulator in
cooperation with a human for a robotic polishing task. The
full experiment was conducted by following these steps; i) a
human operator was asked to do the polishing task by holding
the polisher which is attached to the robot’s end effector, ii) the
admittance controller accepts the applied force exerted by the
operator and make the robot move compliantly in accordance
with the operator’s will, iii) during the motion, the robot states
and interaction forces were recorded to form the input and
output datasets and Fref in Fig. 1 was set to zero, iv) the
input dataset was interpolated by using the spline technique,
and then given as the input for the designed and trained deep
neural network, v) once the training was completed (within
one or two minutes, depending on the trajectory), the DNN
generated the force profile, i.e., Fref in accordance with the
robot states, vi) the force error (Ferr) is calculated and the
transposed Jacobian is used to find the torque error (τerr), vii)
finally we convert those generated values to angular velocity
(ωcalc) using the admittance control scheme in Fig. 1 then it
(named ωcmd) commanded to the robot using the ROS script
code. In this study, ωref is always set to 0 to generate force-
induced motion.



The experiment was conducted by considering two ap-
proaches; in the first one, the spring-damper system was used
as the admittance control part of the study (Fig. 1). In doing
so, the Eq. (4) was used to create the admittance control
block. To control the stiffness and the damping effect of the
manipulator’s motion, the spring constant (k) along with the
damper coefficient (b) for each joint should be controlled. After
executing many trials and evaluating the apparent effect, those
values can be found as mentioned in Table I. The second
approach made use of the inertia-damper system to build the
admittance control block as in Eq. (5). The inertia (m) and
damping (b) coefficients for each joint are displayed as in Table
I. The table values - which are empirically tuned - follow
the logic of giving bigger values to the bigger joints (Base,
Shoulder and Elbow joints), and smaller values to the smaller
joints (Wrist 1,2 and 3).

In order to generate the force-induced motion, the angular
velocity reference (w ref in Fig. 1) was set to zero; the
robot starts doing the motion which was induced from the
force values. While doing the motion, the resulted velocity was
measured in order to compare it with the instructed ones and
evaluate the performance. Fig. 8 depicts the comparison be-
tween the two velocities while using the spring damper system
(force-induced velocities are shown in blue and measured ones
are in green) for all of the six joints. We can see from the
figure that the two curves are closely matched, despite some
noisy values in all joints and more obvious in the small joints
(W4,W5 and W6) which can be fixed by parameters tuning, but
that was not a considerable effect on the particular polishing
task (the first three joints are dominating). Moving on to the
inertia-damper system, Fig. 9 displays that the two velocity
profiles nearly matched as well. Moreover, the noise was much
reduced in all joints which led to increased compliance in this
mode when compared to the spring-damper mode. There is
still a noticeable noise in the small joints but can be ignored
as mentioned before.

Spring (k) - Damper (b) System Mass (m) - Damper(b) System

k1 = 30 , b1 = 500 m1 = 100 , b1 = 300

k2 = 30 , b2 = 500 m2 = 100 , b2 = 300

k3 = 30 , b3 = 500 m3 = 100 , b3 = 300

k4 = 20 , b4 = 200 m4 = 80 , b4 = 100

k5 = 20 , b5 = 200 m5 = 80 , b5 = 100

k6 = 20 , b6 = 200 m6 = 80 , b6 = 100

TABLE I: system coefficient values which are empirically tuned

IV. CONCLUSION

In this study, we presented a method to extract the force
reference profile from an operator movement -while doing the
polishing task- and generate a force-induced motion for the
manipulator. The extraction process was achieved by means
of a deep neural network which we designed and trained
based on the robot states (joint positions and velocities). The
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Fig. 8: force-induced commanded velocities (in blue) and
measured ones (in green) using spring-damper system

trained network predicted the force profile which was then
subsequently followed by the manipulator to accomplish the
task autonomously. The admittance control technique was used,
which introduced compliance between the applied force and
the motion of the robot. Two different approaches were used
to design the admittance control scheme; the spring-damper
approach and the inertia-damper approach. Comparing the per-
formance of them showed that the second one is more suitable
to use to accomplish the polishing task by the manipulator since
it led to less fluctuation.

The proposed method succeeded in controlling the robot us-
ing an extracted force reference to achieve the robotic polishing
task. In our future work, the system coefficients will be tuned by
a reinforcement learning algorithm to find the optimum values
to accomplish the task.
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