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Abstract – In this work the properties of the axial-tensor K2(1820) meson in a hot medium are
investigated. The mass and the decay constant of this state are calculated via thermal QCD sum
rules considering QCD condensates up to dimension five. Our analysis show that both mass and
decay constant stay almost monotonous up to certain temperatures and then they diminish with
increasing temperature. The mass and decay constant estimated at zero temperature are in good
agreement with the present experimental data and theoretical estimations.

editor’s  choice Copyright c© EPLA, 2019

Introduction. – The features of hadronic matter un-
der extreme densities and temperatures such as deconfine-
ment of quarks and gluons creating strongly interacting
Quark-Gluon-Plasma (QGP) are significant topics of high-
energy physics within last decades [1–5]. After being
predicted by Matsui and Satz in ref. [2], the suppres-
sion of the J/ψ state in hot medium was considered as
a signature for the QGP production in heavy-ion colli-
sion experiments [6–9]. In this context, numerous studies
have been devoted to the determination of the thermal
properties of hadrons in a hot medium [10–20]. Study-
ing thermal properties of hadrons and their fate in high
temperatures gives us an understanding about the collec-
tive behavior of strongly interacting matter and it also
helps us to explore the mechanisms behind confinement
and chiral symmetry breaking. The critical tempera-
ture, at which QCD phase transition occurs in QGP
and hadronic matter, is estimated as Tc

∼= 155MeV by
Andronic, Braun-Munzinger et al. [21], analyzing the ex-
perimental data from heavy ion collisions at RHIC and
LHC via theoretical efforts [22,23] while Beccattini et al.
supposed that deconfinement temperature should be be-
tween 160 and 165MeV [24] using the UrQMD hybrid
model. Lattice QCD also predicted a transition tem-
perature from partonic stage to hadronic matter with a
smooth crossover [4,25–29]. In general, the decay con-
stants and the masses of physical states are estimated
to decrease with increasing temperature, while hadronic
widths of these states increase [5,10].

Studying tensor mesons is relatively more complicated
when compared with scalars or vectors. The classifi-
cation of these states into the qq̄ scenario is an allur-
ing question, since the number of the observed states
are more than those required by the Quark Model
(QM). Tensor mesons with JPC = 2++ are exam-
ples of a very well-known qq̄ nonet, and their decays
match nicely into this scheme [30,31]. However, the chi-
ral partners of tensor mesons, the axial-tensor mesons
(13D2, I(JPC) = 2−−), are not so well understood includ-
ing K2(1820) [32–34]. Axial-tensor systems were investi-
gated by theoretical models such as the quadratic spinless
Salpeter-type equation (QSSTE) [35], the non-relativistic
quark model (NRQM) with instanton-induced interac-
tion [36], the Godfrey-Isgur model (GIM) and its modi-
fications [30,31], the relativistic quark model (RQM) [37]
and QCD sum rules (QCDSR) [38].

In this work we concentrated on the mass and the de-
cay constant of the ground-state [ds̄] axial-tensor meson
K2(1820). We used thermal QCD sum rules including
the quark, gluon and mixed condensates corrections up
to dimension five. We modified the quark-hadron dual-
ity with a temperature-dependent threshold and replaced
the vacuum expectation values of condensates with ther-
mal forms. This article is organized as follows. In the
following section we present the formalism of thermal
QCD sum rules for K2(1820). In the third section, we
give our numerical analysis to estimate the mass and the
decay constant of K2(1820) at vacuum and also at finite
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temperatures. Results and discussions are presented at
the end of the third section.

Thermal QCD sum rules for K 2(1820). – The sum
rules to obtain the mass and the decay constant of the
axial-tensor meson are derived from the following two-
point thermal correlation function:

Πμν,αβ(q, T ) = i

∫
d4xeiq·(x−y)

×Tr{ρT [Jμν(x)J†
αβ(y)]}|y→0, (1)

where Jμν is the interpolating current of K2(1820). In
eq. (1), ρ = e−H/T /Tr(e−H/T ) is the thermal density ma-
trix, T is the temperature, H is the QCD Hamiltonian and
T is the time-ordered product. The interpolating current
is chosen as [38]

Jμν(x) =
i

2
[
s̄(x)γμγ5

↔
Dν (x)d(x)

+ s̄(x)γνγ5

↔
Dμ (x)d(x)

]
, (2)

where
↔
Dμ (x) = 1

2 [
→
Dμ (x)−

←
Dμ (x)], λa(a = 1, 8) and

Aa
μ(x) are the Gell-Mann matrices and gluon fields, re-

spectively. In thermal QCD sum rules, similar to vacuum
sum rules [39] the dual nature of the correlation func-
tion given in eq. (1) is used to extract information on
the medium properties of hadrons. At large distances,
the correlation function is expressed in terms of hadronic
parameters, such as mass and decay constant, which is
referred as the physical side. While at short distances,
the correlation function is expressed in terms of QCD pa-
rameters such as quark masses, quark condensates, and
calculation of the correlation function in these regions is
often called as the QCD side. The basic idea of the QCD
sum rules method is to calculate the correlation function
in both regions, and then there should be a q2 region in
which both expressions can be equated to extract physical
features of hadrons.

To obtain the correlation function from the physical
side, a complete set of intermediate physical states are
inserted into eq. (1), and related integrals over four-x
are performed. Hence, finally the correlation function
is obtained in terms of matrix elements of the hadronic
states as

Πphys
μν,αβ(q, T ) =

〈ω | Jμν(0) | K2〉〈K2 | J̄αβ(0) | ω〉
m2

K2
(T ) − q2

+ · · ·, (3)

where ω represents the hot medium state and dots indi-
cate the contributions coming from the higher states and
continuum. The matrix element 〈ω | Jμν(0) | K2〉 is de-
fined in terms of the decay constant fK2(T ) and the mass
mK2(T ) as

〈ω | Jμν(0) | K2〉 = fK2(T )m3
K2

(T )εμν , (4)

where εμν is the polarization tensor satisfying the follow-
ing equalities:

εμνε∗αβ =
1
2
ημαηνβ +

1
2
ημβηνα − 1

3
ημνηαβ , (5)

ημν = −gμν +
qμqν

m2
K2

. (6)

Inserting eqs. (4), (5) and (6) into eq. (3), the final expres-
sion of the correlation function from the physical side is
obtained as

Πphys
μν,αβ(q, T ) =

f2
K2

(T )m6
K2

(T )
m2

K2
(T ) − q2

{
1
2
(gμαgνβ + gμβgνα)

}
+ other structures + · · ·, (7)

where only the Lorentz structures of interest are shown
explicitly.

On the QCD approach, the correlation function given
in eq. (1) is also expanded in terms of selected Lorentz
structures as

ΠQCD
μν,αβ(q, T ) = ΠQCD(q, T )

{
1
2
(gμαgνβ + gμβgνα)

}
+ other structures, (8)

and then separated considering short-distance and long-
distance effects as

ΠQCD(q, T ) = Γ(q, T ) + Γ′(q, T ), (9)

where Γ(q, T ) denotes the perturbative contributions and
Γ′(q, T ) denotes the non-perturbative contributions to the
coefficient of structure 1

2 (gμαgνβ + gμβgνα). In the QCD
side, the short-distance contributions are calculated by us-
ing the perturbation theory, and written in terms of a dis-
persion relation as

Γ(q, T ) =
∫

ds
ρ(s)

s − q2
, (10)

where ρ(s) is the spectral density,

ρ(s) =
1
π

Im[Γ(s, T )]. (11)

On the other hand, the non-perturbative contributions to
the correlation function have to be represented in terms
of thermal expectation values of the quark and gluon con-
densates, and the thermal average of the energy density.
In order to calculate all contributions coming from the
QCD side, the explicit form of the interpolating current
in eq. (2) is inserted into eq. (1). After standard manipu-
lations, the QCD side of the correlation function yields

ΠQCD
μν,αβ(q, T ) =

i

16

∫
d4xeiq·x

×
{

Tr
[
Ss(y − x)γμγ5

↔
Dν (x)

↔
Dβ (y)Sd(x − y)γαγ5

]

+ [β ↔ α] + [ν ↔ μ] + [β ↔ α, ν ↔ μ]

}∣∣∣∣∣
y→0

, (12)
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where Sq(x − y) is the thermal light quark propagator in
coordinate space, and it is given as

Sij
q (x − y) = i

�x−�y
2π2(x − y)4

δij −
mq

4π2(x − y)2
δij

−〈q̄q〉T
12

δij −
(x − y)2

192
m2

0〈q̄q〉T
[
1 − i

mq

6
(�x−�y)

]
δij

+
i

3

[
(�x−�y)

(mq

16
〈q̄q〉T − 1

12
〈uμΘf

μνuν〉
)

+
1
3

(
u · (x − y) �u〈uμΘf

μνuν〉
)]

δij −
igsGμν

32π2(x − y)2

×
(
(�x−�y)σμν + σμν(�x−�y)

)
δij , (13)

where uμ and Θf
μν are, respectively, the four-velocity of

the heat bath and the fermionic part of the energy mo-
mentum tensor. In the rest frame uμ = (1, 0, 0, 0), i.e.,
u2 = 1, the temperature-dependent quark condensates are
parameterized in terms of vacuum condensates. We used
the normalized thermal quark condensate in ref. [40] by
fitting lattice data [41]

〈q̄q〉T = 〈0|q̄q|0〉f(T ). (14)

Here
f(T ) = (AeαT + B)3/2. (15)

In eq. (15) α = 0.0412MeV−1, A = −6.444 × 10−4,
and B = 0.994 are coefficients of the fit function. Also
the fermionic part of the energy density is parameterized
as [17]

〈Θ00〉 = T 4exp

×
(

113.867
[

1
GeV2

]
T 2 − 12.190

[
1

GeV

]
T

)

−10.141
[

1
GeV

]
T 5. (16)

After calculating the correlation function on the QCD
and physical sides, by equating the coefficients of struc-
tures

{
1
2 (gμαgνβ + gμβgνα)

}
, sum rules for K2(1820) are

obtained. In general, the spectral densities are parame-
terized as a single sharp pole representing the lowest state
hadron, and then the quark hadron duality

ρ(s)continuum = ρQCD(s)θ(s − s0(T )) (17)

is employed to isolate the ground state, where
ρ(s)continuum is the spectral density of the continuum
given in eq. (3) and s0(T ) is the temperature-dependent
continuum threshold which is related to continuum thresh-
old at vacuum as [21]

s0(T )
s0(0)

=
[
〈q̄q〉(T )
〈q̄q〉(0)

]2/3

, (18)

which follows from deconfinement, and also restoration of
chiral symmetry for light quarks, at critical temperature.

After this step, Borel transformation with respect to q2 is
applied to improve the matching between the physical and
QCD sides of the sum rules. After these straightforward
steps, the sum rules for K2(1820) are obtained as

f2
K2

(T )m6
K2

(T )e−m2
K2

(T )/M2
=∫ s0(T )

smin

dsρ(s)e−s/M2
+ B̂Γ′(q, T ), (19)

where B̂ denotes the Borel transformation with respect to
q2, and M2 is the Borel mass parameter. The sum rules
for the mass are derived following eq. (19) as

m2
K2

(T ) =

∫ s0(T )

smin
dsρ(s)se−s/M2

+ d
d(−1/M2) B̂Γ′(q, T )∫ s0(T )

smin
dsρ(s)e−s/M2 + B̂Γ′(q, T )

,

(20)
where smin = (md + ms)2. The spectral density and the
non-perturbative contributions to the correlation function
are obtained as

ρ(s) =
3s2 − 10smdms

80π2
, (21)

Γ′(q, T ) =
4〈uΘfu〉(q · u)2

3q2

+
m2

0(ms〈d̄d〉T + md〈s̄s〉T )
4q2

, (22)

where contributions of the gluon condensates are ne-
glected, since they are very small [42].

Numerical results and discussions. – The numeri-
cal values of the input parameters in order to analyze the
obtained sum rules are given in table 1. To assure the
reliability of the sum rules at finite temperature, the ob-
tained sum rules should be tested in vacuum, i.e., T = 0.
The expressions of the mass and decay constant, given in
eqs. (19) and (20), depend on two parameters arising from
the aforementioned discussions given in the previous sec-
tion. These parameters are the continuum threshold (s0),
and the Borel mass (M2). In general, s0 is related to mK2

via relation (mK2 + 0.3GeV)2 ≤ s0 ≤ (mK2 + 0.5GeV)2.
However, within this region, s0 should jointly satisfy the
following criteria, pole dominance and OPE convergence,
together with M2. In addition to these criteria, physical
results should be stable with respect to small variations of
s0 and M2.

In QCD sum rules, the contribution of the ground-state
hadron to the correlation function should be greater than
the contribution of the continuum. To analyze the pole
dominance, the variation of the ratio

Π(s0,M
2, T = 0)

Π(∞,M2, T = 0)

with respect to s0 and M2 is plotted in fig. 1, where pole
dominance of 50% is achieved in the region on the left of
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Fig. 1: The variation of the ratio of the pole to pole plus con-
tinuum with respect to s0 and M2 at T = 0 for K2(1820). Pole
dominance is achieved on the left of the dashed line.

Table 1: Input parameters used in numerical analysis [43–45].

Parameters Values

md (4.8+0.5
−0.3)MeV

ms (95.0 ± 5)MeV
m2

0 (0.8 ± 0.2)GeV2

〈0|uu|0〉 = 〈0|dd|0〉 −(0.24 ± 0.01)3 GeV3

〈0|ss|0〉 −0.8(0.24 ± 0.01)3 GeV3

the dashed line. Following this discussion, we chose the
working regions for s0 and M2 as

1.8GeV2 ≤ M2 ≤ 2.2GeV2,

2.14M2 + 0.24GeV2 ≤ s0 ≤ 5.4GeV2,

where the lower limit of s0 is found by applying a lin-
ear fit to the dashed line in fig. 1. In addition to pole
dominance, the obtained sum rules should satisfy the con-
vergence of OPE, which is generally characterized by the
ratio of the contribution of the highest-order condensate
to all contributions to correlation function, i.e., the ra-
tio Π(D5)/Πtotal, where Π(D5) denotes the contribution
coming from operators with dimension five. In order to
have reliable sum rules, the aforementioned ratio should
be smaller than 20%. Within the obtained working re-
gions, the sum rules obtained for the K2(1820) meson at
T = 0 yield a ratio which is smaller than 5%, thus OPE
convergence is also satisfied. Finally, M2 and s0 depen-
dences of the mass and the decay constant at vacuum are
plotted in fig. 2, where the dependences of hadronic pa-
rameters to M2 and s0 are observed to be weak. Thus, the
obtained sum rules are reliable in predicting the mass and
the decay constant, and also for exploring their thermal

Fig. 2: Dependence of the mass (top) and the decay con-
stant (bottom) of the axial-tensor K2(1820) meson to M2.

Table 2: Mass and decay constant values of the axial-tensor
K2(1820), obtained in this work at T = 0 and comparison of
the findings with the other theoretical estimations and experi-
mental results.

Mass (MeV) Decay constant

This Work 1800+47
−49 (6.59+0.08

−0.07) × 10−2

QSSTE [35] 1817 −
GIM [30] 1804 −
MGI [31] 1789 −
RQM [37] 1824 −
QCDSR [38] 1850 ± 140 (6.2 ± 0.4) × 10−2

Experiment [43] 1819 ± 12 −

behaviors. Our estimations for the mass and the decay
constant of the axial-tensor K2(1820) meson at vacuum
are presented in table 2, together with corresponding un-
certainties. These results are in good agreement with the
ones appearing in the literature. However due to the dif-
ferent input parameters, our numerical results for the mass
and decay constant are slightly different from ref. [37].

After obtaining reliable QCD sum rules for K2(1820)
at vacuum, the analysis is extended to explore the

51001-p4
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Fig. 3: The normalized thermal behavior of the mass (top) and
decay constant (bottom) of the K2(1820) meson.

temperature dependence of the mass and the decay con-
stant. Following eqs. (19) and (20), variations of the mass
and the decay constant with respect to temperature are
plotted in fig. 3. It is seen that the mass of K2(1820)
remains unchanged until T ∼= 0.115GeV while the decay
constant is stable until T ∼= 0.135GeV. However after
this temperature, they begin to decrease with increasing
temperature. Near the critical temperature, the mass and
decay constant of K2(1820) approach to 66% and 90%
of their values in vacuum, respectively. These patterns
show that the mass and the decay constant of the light
axial-tensor K2(1820) meson dissolve at the critical tem-
perature.

One of the most noteworthy works in the literature simi-
lar to this study is in ref. [46] where numerical calculations
in Thermal QCDSR indicate that the mass of the ρ meson
and its coupling with the vector current remain almost un-
affected by the rise of temperature up to about 125MeV.
On the other hand, at higher temperatures the results,
particularly for the mass shift of ρ meson appears unstable.
Also in ref. [10] the leptonic decay constant of both pseu-
doscalar and vector mesons decreases with increasing T
and vanishes at a critical temperature Tc. Conversely, the
masses show little dependence on the temperature, except
very close to Tc, where the pseudoscalar meson masses rise

slightly by (10–20)%, and the vector meson masses dimin-
ish by some (20–30)%. In other works, the Ds0(2317) me-
son mass decreases with increasing temperature and loses
approximately (10–15)% of its mass and also the de-
cay constant decreases with growing temperature and
vanishes approximately when the critical temperature
is assumed to be 150MeV in ref. [47]. Moreover, in
ref. [48] the heavy pseudoscalar mesons (Bc, ηc and ηb)
masses and decay constants remain unchanged under
T ∼= 100MeV, but after this point, they start to decrease
with increasing the temperature. At deconfinement
temperature, the decay constants arrive approximately at
38% of their values in the vacuum, while the masses are
decreased about 5%, 10% and 2% for Bc, ηc and ηb states,
respectively. Additionally, in ref. [49] as the current
coupling has fallen by half of its vacuum value for the
ρ meson, mass exhibits a dramatic growth of roughly
30% near Tc, although it remains non-zero at T = Tc

being Tc = 197MeV. In another work, vector Υ and
pseudoscalar ηb bottonium ground states are studied at
finite temperature [50]. In this study, the decay width
increases with rising temperature, similarly to the case of
light and heavy-light-quark systems, but close to the crit-
ical temperature, Tc for T/Tc = 0.9 with Tc = 200MeV.
The leptonic decay constant is basically a monotonically
increasing function of the temperature, while their results
for the thermal mass in both bottonium channels show a
very slight decrease with increasing temperature.

We hope that the findings of all these studies and our
results can be tested in the future, both by theoretical and
experimental researches, and might help us to explore the
nature of strong interactions in a hot medium.
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EPJ Web of Conferences, 199 (2019) 03007.
[21] Andronic A., Braun-Munzinger P., Redlich K. and

Stachel J., Nature, 561 (2018) 7723321.
[22] HotQCD Collaboration (Steinbrecher P.), Nucl.

Phys. A, 982 (2019) 847.
[23] Bazavov A. et al., Phys. Rev. D, 95 (2017) 5054504.
[24] Becattini F., Bleicher M., Kollegger T.,

Schuster T., Steinheimer J. and Stock R., Phys.
Rev. Lett., 111 (2013) 082302.

[25] Rajagopal K., Acta Phys. Pol. B, 31 (2000) 3021.
[26] CP-PACS Collaboration (Khan A. A. et al.), Phys.

Rev. D, 63 (2001) 034502.
[27] Karsch F., Nucl. Phys. Proc. Suppl., 83 (2000) 14.
[28] Wuppertal-Budapest Collaboration (Borsanyi S.

et al.), JHEP, 09 (2010) 073.
[29] Aoki Y., Endrodi G., Fodor Z., Katz S. D. and

Szabo K. K., Nature, 443 (2006) 675.

[30] Godfrey S. and Isgur N., Phys. Rev. D, 32 (1985)
189.

[31] Pang C. Q., Wang J. Z., Liu X. and Matsuki T., Eur.
Phys. J. C, 77 (2017) 861.

[32] Chen W., Cai Z. X. and Zhu S. L., Nucl. Phys. B, 887
(2014) 201.

[33] Wang B., Pang C. Q., Liu X. and Matsuki T., Phys.
Rev. D, 91 (2015) 014025.

[34] Roca L., Phys. Rev. D, 84 (2011) 094006.
[35] Chen J. K., Eur. Phys. J. C, 78 (2018) 648.
[36] Monterio A. P. and Kumar K. B. V., Indian J. Pure

Appl. Phys., 48 (2010) 240.
[37] Ebert D., Faustov R. N. and Galkin V. O., Phys.

Rev. D, 79 (2009) 114029.
[38] Aliev T. M., Bilmis S. and Yang K. C., Nucl. Phys.

B, 931 (2018) 132.
[39] Shifman M. A., Vainshtein A. I. and Zakharov V. I.,

Nucl. Phys. B, 147 (1979) 385.
[40] Dominguez C. A. and Hernandez L. A., Mod. Phys.

Lett. A, 31 (2016) 361630042.
[41] Bali G. S., Bruckmann F., Endrodi G., Fodor Z.,

Katz S. D. and Schafer A., Phys. Rev. D, 86 (2012)
071502.

[42] Aliev T. M. and Shifman M. A., Phys. Lett. B, 112
(1982) 401.

[43] Particle Data Group (Tanabashi M. et al.), Phys.
Rev. D, 98 (2018) 030001.

[44] Ioffe B. L., Prog. Part. Nucl. Phys., 56 (2006) 232.
[45] Narison S., Phys. Lett. B, 605 (2005) 319.
[46] Mallik S. and Mukherjee K., Phys. Rev. D, 58 (1998)

096011.
[47] Veliev E. V. and Kaya G., Acta Phys. Pol. B, 41 (2010)

1905.
[48] Veliev E. V., Azizi K., Sundu H. and Aksit N.,

J. Phys. G, 39 (2012) 015002.
[49] Ayala A., Dominguez C. A., Loewe M. and Zhang Y.,

Phys. Rev. D, 86 (2012) 114036.
[50] Dominguez C. A., Loewe M. and Zhang Y., Phys.

Rev. D, 88 (2013) 054015.

51001-p6


