New Horizons on Campus ICT Infrastructure

Oktay ÖZGÜN
Software & Services Group
INTEL

oktay.ozgun@intel.com
About me…

• Working in IT & Telecom industry for 12 years
• A PhD candidate working on his thesis
• A frequent university campus visitor
An Outlook

• Digital Campus installations started early 90’s
• Science and technology information systems installed first
• Student affairs/HR automation, student labs, Web portals and user applications
• Campus backbones and integration
• Mobility support
• e-Learning environments
• HPC clusters/Grid
University IT Infrastructure Grouping

• Server farm
• Office Automation and Desktop applications
• Campus network
• Web portal and User applications
• Main IT room / control centre
• Wireless communications
• Campus backbone & cabling
• IT security
• Telephony and Unified messaging system (UMS)
• Public facilities - Kiosks and Displays
• Digital Surveillance
Differences from Enterprise IT Systems

<table>
<thead>
<tr>
<th></th>
<th>Campus</th>
<th>Company</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ultimate goal</td>
<td>To create knowledge value</td>
<td>To create economical value (profits)</td>
</tr>
<tr>
<td>Focus of information</td>
<td>Knowledge</td>
<td>Capital, Material flow</td>
</tr>
<tr>
<td>Key resource bank</td>
<td>Educational resource bank</td>
<td>Client and product resource bank</td>
</tr>
<tr>
<td>Typical systems</td>
<td>E-learning, E-campus</td>
<td>ERP/MRP/CRM</td>
</tr>
<tr>
<td>Main source of alteration</td>
<td>Teaching patterns</td>
<td>Marketing/production patterns</td>
</tr>
<tr>
<td>Relevant IT theories</td>
<td>Few</td>
<td>ERP/BPM/ValueChain, etc.</td>
</tr>
<tr>
<td>Time relativity</td>
<td>Each semester as a cycle; system load varying periodically.</td>
<td>Relatively stable</td>
</tr>
</tbody>
</table>
Differences from Enterprise IT Systems

<table>
<thead>
<tr>
<th></th>
<th>Campus</th>
<th>Company</th>
</tr>
</thead>
<tbody>
<tr>
<td>Service recipients</td>
<td>Teachers and students.</td>
<td>Employees</td>
</tr>
<tr>
<td>Capital investment</td>
<td>More attention to network construction, less to the application system construction.</td>
<td>More attention to the application system construction</td>
</tr>
<tr>
<td>Time relativity</td>
<td>Each semester as a cycle, work pressure and personnel alteration varying periodically.</td>
<td>Relatively stable</td>
</tr>
<tr>
<td>Cultural atmosphere</td>
<td>Campus culture characterized by freedom and open-mindedness</td>
<td>Company culture characterized by discipline and efficiency</td>
</tr>
</tbody>
</table>
Differences from Enterprise IT Systems

Organizational Characteristics

<table>
<thead>
<tr>
<th></th>
<th>Campus</th>
<th>Company</th>
</tr>
</thead>
<tbody>
<tr>
<td>Relation between</td>
<td>Relatively independent, loosely-connected</td>
<td>Closely connected</td>
</tr>
<tr>
<td>departments</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Number of personnel</td>
<td>Usually a lot, some with an enrollment of 60,000 students[7]</td>
<td>From very few to a great many</td>
</tr>
<tr>
<td>Knowledge structure</td>
<td>Many experts at computer in different departments</td>
<td>Few experts at computer in other departments</td>
</tr>
<tr>
<td>Personnel mobility</td>
<td>Noticeable periodical mobility (such as freshmen coming to and graduates leaving the school)</td>
<td>No noticeable periodical mobility</td>
</tr>
</tbody>
</table>
University ICT Systems & Processes

Reality

- Incompatible systems with weak levels of integration
- Fragmented data
- Fragmented processes and ownership
- Lacking in functionality

- Weak customer service
- Slow new service introduction
- Poor economies of scale
- High man-power costs
What we need?

• A framework for delivering highly flexible, low cost operations for:
 – Processes
 – Data architecture and information models
 – Integration architecture
ITIL Framework

Organizational Model

Process Model

ITIL Framework
Technology Model - 1

Towards Tighter Integration
Campus Application Integration Framework based on SOA
Technology Model - 2

An Ideal Information Model & Data Architecture

Georgia State Univ. Info. Model
Additional Recommendations

• Use COTS
• Build server farms as internal clouds
• Manageable clients
• Support Mobility
 – Structured, manageable WiFi (802.16n) networks
 – Power plugs for mobile users
 – Seamless – secure “outside campus” services
• Social collaboration services
• Empower users to develop new content/services/applications (i.e. internal marketplaces)
e-Science

- Data sharing and integration
 - Life sciences, sharing standard data-sets, combining collaborative data-sets
 - Medical informatics, integrating hospital information systems for better care and better science
 - Sciences, high-energy physics

- Simulation-based science and engineering
 - Earthquake simulation

- Capability computing
 - Life sciences, molecular modeling, tomography
 - Engineering, materials science
 - Sciences, astronomy, physics

- High-throughput, capacity computing for
 - Life sciences: BLAST, CHARMM, drug screening
 - Engineering: aircraft design, materials, biomedical
 - Sciences: high-energy physics, economic modeling

Source: Hiro Kishimoto GGF17 Keynote May 2006
e-Science Recommendations

• University Cluster

• Deskside Clusters for research groups

• Grid Infrastructure collaborating with other universities
 – Internet-2 like network
Towards “Digital Campus” – A Dream University

A multipurpose Digital Campus facilitating for a better e-Learning environment by Kansai University

- Unified spaces of both virtual and real
 - Visualisation of resources via Web3D

- Metamodel to utilize resources over the Internet
 - Contents retrieval and integration from multiple resources, data storage according to location information, and its utilization

- Campus amenity and educational contents among individuals
 - Avatar appearance, objects and links allocation
Intel® Software

Software Developers

Independent Software Vendors

OEMs and System Integrators

Developer Resources: SW Tools, Engineering
Platform SW: OSes, VMMs, MRTEs, DBMSes
SW Infrastructure: Platform to Datacenter management
Intel® Software Partner Program

www.intel.com/partner
Intel® ATOM™ Developer Program

http://appdeveloper.intel.com
Welcome to MeeGo!
MeeGo's common core supports development for a variety of devices.

The Big Merge: A message from the MeeGo Technical Steering Group
An interview with Imad Sousou and Valtteri Halla

MeeGo blog
Latest news from the team

What's new
Interesting bits about MeeGo
Intel Software Curriculum Adaptation Programs*

Multicore Programming
- Intel Software Tools
- Modular Course Content

High Performance Tools
- Qualifiers
- Developing for Windows*, Linux*, Mac* OS or a combination
- C/C++/Fortran
- Want the most performance

Intel® Parallel Studio
- Qualifiers
- Developing for Windows
- C/C++
- Want simplest path to multicore

Intel® Atom™ Tools
- Qualifiers
- Developing for Moblin, RTOS, Windows, or Linux
- C/C++
- Developing for Intel Atom Processor

* Embedded Development is on the way
Thank You!