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Visible light communication (VLC) allows the dual
use of light-emitting diodes (LEDs) for wireless
communication purposes in addition to their
primary purpose of illumination. As in any other
communication system, realistic channel modelling
is a key for VLC system design, analysis and testing.
In this paper, we present a comprehensive survey
of indoor VLC channel models. In order to set the
background, we start with an overview of infrared
(IR) channel modelling, which has received much
attention in the past, and highlight the differences
between visible and IR optical bands. In the light
of these, we present a comparative discussion of
existing VLC channel modelling studies and point
out the relevant advantages and disadvantages.
Then, we provide a detailed description of a site-
specific channel modelling approach based on
non-sequential ray tracing that precisely captures the
optical propagation characteristics of a given indoor
environment. We further present channel models
for representative deployment scenarios developed
through this approach that were adopted by the
Institute of Electrical and Electronics Engineering
(IEEE) as reference channel models. Finally, we
consider mobile VLC scenarios and investigate the
effect of receiver location and rotation for a mobile
indoor user.

This article is part of the theme issue ‘Optical
wireless communication’.

1. Introduction

It is estimated that around 70-80% of mobile data
traffic takes place in an indoor environment [1]. This
requires the development of low-cost, energy-efficient
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and high-speed indoor wireless access solutions. To release the pressure on the highly
congested radiofrequency (RF) spectrum, visible light communication (VLC) has emerged as a
complementary and/or alternative wireless access technology [2—4]. VLC is based on the principle
of modulating light-emitting diodes (LEDs) at very high speeds that are not noticed by human
eye. This allows the use of LED luminaires for wireless communication in addition to their
primary function of illumination. Operating at optical bands with large bandwidth capacity, VLC
can be used as a complementary technology where excess capacity demands of cellular or Wi-Fi
networks can be offloaded. VLC can be potentially used as an alternative in safety-critical and
hostile environments such as hospitals, airplanes, petrochemical plants, mines, where the use of
RF is prohibited or partially restricted.

In recent years, there has been a surge of research activities in VLC in both academic and
industrial circles which has led to a well-established literature on VLC, e.g. comprehensive
surveys [5-12]. Initial works mostly focused on point-to-point links and physical layer
development. VLC relies on intensity modulation and direct detection (IM/DD) where the
information is encoded in the intensity of LED light and then retrieved through a photodetector
(PD) at the receiver. In IM/DD, the information waveform that modulates the light intensity
must be non-negative and real valued. In order to satisfy these conditions, simple modulation
techniques such as on-off keying (OOK), pulse place modulation (PPM) and pulse width
modulations (PWM) have been studied in earlier works [13-15].

The multipath characteristics of VLC channel combined with the low-pass natures of LED
and front-end limit the available electrical bandwidth. To mitigate the effects of intersymbol
interference (ISI) over frequency-selective VLC channels, more recent works adopted multicarrier
transmission with a particular focus on orthogonal frequency division multiplexing (OFDM), e.g.
[16-19]. Several variants of optical OFDM were proposed to comply with the requirement that
the LED driving signal should be non-negative and real valued. Advanced techniques such as
adaptive transmission [20-22], relay-assisted transmission [23-25] and multiple-input multiple-
output (MIMO) communications [26-28] were further explored in the context of VLC. More recent
works focused on upper layer solutions to transform VLC into a multi-user, scalable and fully
networked wireless technology. These address medium access [29,30], interference management
[31], handover techniques [32] and resource allocation [33].

Similar to any wireless communication system, the propagation channel as well as the
characteristics of transmitter/receiver front-ends dictate the fundamental limits on the physical
layer performance of VLC system. Realistic propagation channel models are therefore of critical
importance for VLC system design, performance evaluation and testing and will be the focus of
our paper. While most of earlier works assumed simple line-of-sight (LOS) channel model, there
have been significant research efforts to develop more accurate VLC channel models [5,7,34]. In
this paper, we first present a comprehensive survey of the existing indoor VLC channel models
and then present some new results on the effect of photodetector location for an indoor mobile
VLC channel.

In order to set the background for VLC channel modelling, §2 starts with an overview of
infrared (IR) channel modelling which has received much attention in the past [35-46]. Both
recursive calculation methods [35-39] and geometric-based models [40-42] were used to obtain
IR channel models. As an alternative to deterministic methods, Monte Carlo ray tracing (MCRT)
and its modified version were also used in IR channel modelling [43-46]. Unlike monochromatic
IR sources, a white light LED source is inherently wideband. Furthermore, the reflectance of
most materials in the visible light (VL) spectrum significantly varies while this remains typically
constant within IR band. Owing to such fundamental differences, the IR channel models cannot
be applied to VLC channel modelling in a straightforward manner. This requires the development
of dedicated VLC channel models.

In §2, we further review earlier works in this area [47-57] which have built on some simplifying
yet idealistic assumptions, such as ideal Lambertian sources, purely diffuse reflections and empty
room. To address these issues, we have developed a site-specific channel modelling approach
in our earlier works [34,58,59] where accelerated ray tracing is used to obtain channel impulse
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responses (CIRs) for various indoor environments. In §3, we describe this approach in detail
which is able to obtain CIRs for any non-ideal source types as well as specular and mixed
specular-diffuse reflections. Furthermore, a large number of reflections (more than 10) can be
easily handled for better accuracy. Our approach represents the state of the art in the field and the
indoor VLC channel models developed through this approach were adopted by IEEE as reference
channel models [34] elaborated in §4.

Most of the existing works in VLC channel modelling assume static scenarios where
transmitter and receiver are located at fixed points. In practice, user mobility should be taken
into account as well as the effect of photodetector location/orientation. Towards this, in §5, we
consider a mobile receiver terminal in the form of a cell phone. Seven possible locations are
considered for the photodetector. Five of these are on the top edge and two of them are on the
top round corners of the device. For each possible location of photodetector, we obtain CIRs and
corresponding path loss. To further demonstrate the effects of user location, we present the spatial
distribution of channel gain within the room. We present concluding remarks in §6.

2. Optical channel modelling

In this section, we first provide an overview of IR channel modelling which has been the
inspiration point for most works in VLC. Then, we discuss the differences between VL and IR
bands highlighting the need for the development of dedicated VLC channels.

(a) Deterministic and non-deterministic modelling

Optical channel modelling approaches can be roughly categorized in two main classes as
deterministic and non-deterministic. Recursive calculation [35-39] and geometric-based models
[40-42] are the most widely used deterministic techniques while MCRT [43-46] represents the
non-deterministic approach.

In recursive method [36], the surfaces of indoor environment (i.e. walls, floor and ceiling)
are discretized into reflecting elements that act as point sources. A single ray from the source
is emitted and the ray’s bounces are tracked until it reaches detector (figure 1). For each
reflection, the received power and corresponding delay are calculated which yields the CIR for
that specific reflection. The overall CIR can be then obtained as the summation of CIRs for all
reflections. Define f as the normal to the surface at position r. Let S = {rg, fig,n} denote the
arbitrary source with position of rg, orientation of ng and mode number of n. Furthermore, let
R = {rg, fir, Ar, FOV} denote the arbitrary receiver with position of rg, orientation of fig, area of
ARg and field of view of FOV. The CIR can be expressed as [36]

N
WO S, Ry~ > hO(E S, &) @ K V(t; 1, R)
i=1

_ntl % picos(9) cos(®) oy <§> A <t — di;{r, ﬁ,1},R> AA, (21)

2m 4 d? T v
i=1

where k is the order of reflection; €; is the ith reflecting element; p; is the reflectivity of the
ith reflecting element; AA is the area of reflecting element; N is the total number of reflecting
elements; ¢ is the irradiance angle; 6 is the incident angle; d is the distance between source and
receiver and v is the speed of light. In (2.1), ® denotes convolution and rect (.) is defined by

1 |x<1

. 2.2
0 |x]>1 @2)

rect(x) = {

Owing to the contribution of multiple reflections, this approach models multipath dispersion
with reasonable accuracy [35-39]. However, for reflections of order higher than three, this model
proves to be prohibitively expensive in terms of computer memory requirements and total
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Figure 1. Recursive method. (Online version in colour.)

computation time. To address this issue, several variants of recursive methods were further
proposed [37-39]. For example, the DUSTIN algorithm [37] reduces the computational complexity
as well as memory requirements by slicing the recursive operations into time steps rather than
into a number of reflections. Another alternative is an iterative-based algorithm [39] where
CIR calculation follows the basic methodology outlined in [36] with extensions for an arbitrary
number of objects inside the environment. It was reported in [39] that the iterative method is more
than 90 times faster compared with the recursive method when three reflections are considered.

Another widely used approach is geometric-based modelling, where a closed-form expression
for the CIR is constructed by assuming specific transmitter, receiver and reflector geometries. For
example, in the so-called ceiling bounce model [40], the transmitter and receiver are co-located
in panels parallel to the floor towards the ceiling (figure 2). A closed-form CIR is presented
by considering geometric parameters of the room as well as the reflectance values. This model
translates the effect of multiple reflections into loss of optical power at the receiver (i.e. path
loss) and the delay spread of the signal arriving at the receiver after multiple reflections. In
[41], an empty room is considered where the transmitter was placed at the centre of the ceiling
and the receiver was placed at a height of 1m. The indoor CIR is defined as a combination
of diffuse components and a direct LOS component. It is shown that at lower frequencies,
the diffuse component of the impulse response can be approximated by first-order low-pass
frequency response of Ulbricht’s integrating sphere. In [42], an empty room is considered where
the transmitter and receiver were placed on the floor upward to the ceiling with inter-distance
of up to 10m. As the distance between the source and the receiver increases, the primary
reflection impulse responses changes from a sharp shape to a smooth convex shape. As a good
match based on curve fitting, the Gamma probability density function is selected in [42] to
model the primary reflection impulse response while a spherical model is used to calculate the
impulse response associated with higher order reflections. It was further demonstrated that the
bandwidth characteristics are dominated by the response of the primary reflection rather than the
higher-order reflections.

As an alternative to deterministic methods, MCRT can be employed [43—46]. This approach
relies on repeated random sampling to obtain numerical results. In contrast with deterministic
methods discussed so far, the Monte Carlo approach allows for the evaluation of the impulse
response for environments with complex geometries, especially when a large number of
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Figure 2. Ceiling bounce model. (Online version in colour.)

reflections are considered. This method involves discretization of room surfaces (i.e. walls,
floors, ceiling) into reflecting elements, ray generation based on a given statistical distribution
(distribution type depends on the source) and then tracking of each ray until it reaches detector to
calculate the detected power and associated delay. In conventional ray tracing algorithms, there
is no limitation on the number of reflections that can be considered. However, the probability
that the rays will reach the receiver is not high, and so a very large number of rays (i.e. in the
order of millions) needs to be traced. To address this issue, accelerated ray tracing algorithms
were introduced. For example, in [44], each reflection of the rays is used to calculate an LOS
contribution to the receiver from the reflecting point, thus using each ray multiple times instead
of only once. This leads to a lower number of generated rays from the source to calculate an
impulse response.

(b) Overview of indoor visible light communication channel models

There exist significant differences between VL and IR bands and the IR communication channel
models discussed within the previous subsection cannot be applied to VLC channel modelling in
a straightforward manner. For example, an IR source can be approximated as a monochromatic
emitter while a white light LED source is inherently wideband (380-780nm) (figure 3). This
calls for the inclusion of wavelength dependency of the source in VLC channel modelling
[58]. Furthermore, in IR communication, the reflectance of materials is typically modelled as a
constant. On the other hand, the reflectance of some materials in the VL spectrum significantly
varies (figure 4). Therefore, wavelength dependency should be considered for realistic channel
modelling in VLC.

In the early literature, various VLC channel modelling studies were carried out, mainly
adopted from earlier works on IR channel modelling including both deterministic [47-54] and
non-deterministic approaches [55-57]. For example, in [47], the recursive method proposed
in [36] was used to obtain CIR in VL band, but fixed reflectance was assumed. In [48], in
an effort to reflect the effect of wavelength dependency in channel modelling, the reflectance
values were calculated as the average of wavelength-dependent coefficients over the VL band.
In [49], the wavelength dependency, explicitly was taken into account in the recursive method to
determine the CIR of an empty room. However, similar to [47,48], the work in [49] was also limited
to the assumptions of only purely diffuse reflections and ideal Lambertian source which might
not hold true for many practical cases. In [50], a modified version of the recursive method was
proposed to integrate the non-ideal Lambertian source with distinct source radiation patterns. In
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Figure 4. Spectral reflectance of various materials in VL and IR bands. (Online version in colour.)

contrast with time-domain methods, a frequency-domain method was adopted in [51] and the
channel transfer functions of diffuse components and LOS component were obtained. Then, a
recursive linear time-invariant system was constructed based on the transfer functions.

Geometric-based models were also proposed for VLC channels. Particularly, in [52], a non-
line-of-sight (NLOS) analytical channel model for a cuboid room was proposed. In [53], a field of
view (FOV) geometry-based single bounce (GBSB) model for VLC channels was developed. Fixed
reflectance values with purely diffuse reflections and ideal Lambertian source were assumed in
[52,53]. In [54], a regular-shaped geometry-based multiple bounce (RS-GBMB) model for VLC
channels was proposed. The proposed model employs a combined two-ring model and ellipse
model (see fig. 3 of [54]), where the received signal is constructed as a sum of the LOS, single-,
double- and triple bounced rays of different powers.
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As an alternative to deterministic methods, MCRT was further adopted in an effort to more
accurately capture the VLC channel characteristics. In [55], the wavelength dependency was
explicitly taken into account in addition to the effect of mixed diffuse and specular reflections
modelled with Phong’s model. In this model, the surfaces are defined by three parameters for
each wavelength: the reflection coefficient, the percentage of incident signal that is reflected
diffusely, and the directivity of the specular component of the reflection (see eqn. (6) of [55]).
The computational efficiency of ray tracing simulations is improved by first dividing the
simulation environment into subcubes of equal size and second with parallelizing the simulation
algorithm based on an equal and static distribution of the rays generated at the emitter among
the available processors, i.e. assigning the rays to each processor by means of a uniform
distribution.

While the Phong model is sufficiently accurate for most practical purposes, advanced
models might be required to model surfaces with multiple reflection patterns. For this purpose,
the bidirectional scatter distribution function (BSDFs) can be used, which basically includes
the bidirectional reflectance distribution function (BRDF) and the bidirectional transmittance
distribution function (BTDF) [60]. For most typical objects with opaque features, the BSDF model
reduces to BRDF which assumes a solid, opaque sample surface and measures the reflectance of a
target as a function of illumination geometry and viewing geometry [61]. Commonly used BRDF
models are Lambertian, Phong, Retroreflective Phong, Blinn and Lafortune. The simplest BRDF
model is obviously Lambertian [62] to model purely diffuse reflections, while the Phong BRDF
[62], as discussed above, can take into account the effect of mixed diffuse and specular reflections.
Retroreflective Phong BRDF [62] introduces a new reflection component in the direction of
the incident ray (retroreflective specular component). Blinn BRDF [62] is another improvement
over Phong’s model and introduces a highly specular reflection component for incident angles
away from the normal. Lafortune BRDF [62] is a composite model building on the previous
models and defines four types of possible reflection components: the diffuse one (based on
the Lambertian model) and three types of specular reflections (based on the Phong, Blinn and
retroreflective models). To address the effect of adopted reflection models in ray tracing, the
study in [56] investigated different BRDF models. It was shown that these models produce CIRs
quite different from the basic Lambertian. These differences may imply variations of tens of MHz
in bandwidth.

To decrease the computational complexity of ray tracing methods, a photon modelling method
was proposed in [57]. Whereas the number of ray directions in traditional ray tracing techniques
increases on each diffuse reflection, the number of directions in which each photon scatters is only
one that is chosen to satisfy the surface property statistically. A comparison table of these works
on VLC channel modelling can be found in table 1.

3. Site-specific channel modelling

In a series of papers [34,58,59], we have developed a site-specific channel modelling approach
based on non-sequential ray tracing features of Zemax®. In this software, there are two modes
of ray tracing. In sequential ray tracing [63], rays are traced through a sequence of surfaces,
hitting each surface only once, while travelling from the transmitter to the receiver. This property
makes sequential mode ideal for imaging systems. On the other hand, non-sequential ray tracing
[63] allows rays to propagate through the environment in any order and allows rays to be
scattered and reflected back to an object that they have already encountered. This property
makes the non-sequential mode ideal for impulse response modelling which is also adopted in
our study.

Our approach is able to obtain CIRs for various indoor environments with different shapes
and sizes where any realistic light sources be easily integrated in the simulation environment.
Furthermore, a large number of reflections (more than 10) can be easily handled for better
accuracy including specular and mixed specular-diffuse reflections. Figure 5 provides an overall
summary of major steps followed in the adopted channel modelling methodology. In the first step,
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Figure 5. Main steps in site-specific channel modelling approach.

we create a three-dimensional (3D) simulation environment where we can specify the geometry of
the indoor environment, the objects within, the reflection characteristics of the surface materials,
and the specifications of the light sources and detectors. In the second step, we use non-sequential
ray tracing to calculate the detected power and path lengths from source to detector for each ray.
In the third step, we import these data to Matlab® and obtain the CIRs for the environment under
consideration. Further details for each step are elaborated in the following.

(a) Modelling of the indoor environment

To model the simulation environment, we need to specify the dimensions and shape of the
indoor environment, furniture and objects within, type of surface materials (coating), as well
as the properties and locations of the transmitter (LED) and receiver (photodiode). The indoor
environment (i.e. office room, living room, etc.) is created using Zemax® ‘Part Designer’, which
is an interface that allows one to create and manipulate user-defined 3D geometries. The
CAD objects can be imported in the software to model furniture and any other objects within
the indoor environment. ‘Table Coating Method” in the software further allows defining the
wavelength-dependent reflectance of surface coating for each material.

Another important parameter in modelling of surface materials (walls, ceiling, furniture,
etc.) is the type of reflections and opaqueness of object. As an example, figure 6 shows three
different types where purely diffuse, specular and mixed reflections are observed. In our ray
tracing approach, we can take into account the specific type of reflection by “scatter fraction (SF)’
parameter that determines the value of diffuse reflections in materials. This parameter changes
between 0 and 1 such that zero indicates the purely specular reflections and unity indicates purely
diffuse case. We adopt Phong BRDF model in our study to take into account the effect of mixed
diffuse and specular reflections. In addition to realistic modelling of surface materials, our ray
tracing approach also allows the use of realistic light sources. Several commercially available light
sources are available in the Radiant Source Model (RSM) database [64]. The RSM file for a light
source contains the measured radiant intensity (i.e. the radiant power of a source emitted in a
certain direction) or luminous intensity (i.e. the luminous flux emitted by a source in a certain
direction) of the source as a function of wavelength, position and angle. As such, this file can be
accurately used to characterize the behaviour of the light source in both near- and far-fields.

In Zemax®, detectors can be modelled as planar surfaces, curved surfaces or 3D volumes
which store the different data types such as radiant intensity and radiance (i.e. the intensity of
optical radiation emitted or reflected from a certain location on an emitting or reflecting surface
in a particular direction). Moreover, the data are available in radiometric and photometric units
such as watts, lumens, lux, phot and footcandles. In our simulations, we use a rectangular surface
with specified dimensions as a receiving element (i.e. ‘Detector Rectangle” function in Zemax®).
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Figure 6. (a) Purely diffuse reflections, (b) specular reflections and (c) mixed reflections. (Online version in colour.)

(b) Non-sequential ray tracing

After we create the simulation environment, we use its non-sequential ray tracing feature to
determine the CIR. In the ray tracing approach, rays are traced along a physically realizable
path until they intercept an object. The LOS response is straightforward to obtain and depends
upon the LOS distance. Besides the LOS component, there are a large number of reflections
among ceiling, walls and floor, as well as any other objects within the environment. The way
that non-sequential rays are traced depends on the source properties including polarization state,
coherence length, initial phase, position and direction of rays of light emanating from non-
sequential sources. The random ray tracing methods used in our approach are mainly based
on Monte Carlo analysis [65] and Sobol sampling, the latter of which is used for speeding up
ray tracing [66,67]. The main parameters in ray tracing are the number of rays and the number
of reflections. The number of reflections our ray tracing approach is adjusted through ‘Relative
Minimum Intensity’. For example, if this parameter is set to 107>, the software runs until the ratio
of the intensity of last segment with respect to the first segment becomes 107°.

(c) Channelimpulse response construction and characterization

From non-sequential ray tracing, we obtain the detected power and path lengths from source to
detector for each ray. We import this file to Matlab®, and using this information we can construct
the CIR as

NV
h(t) =Y Pjs(t — 17), (3.1)
j=1

where P; is the optical power of the jth ray, 7; is the propagation time of the jth ray, §(¢) is the
Dirac delta function and N, is the number of rays received at the detector.

Once we obtain CIRs, we can calculate fundamental channel parameters such as DC gain and
delay spread. Channel DC gain is calculated as

Hy= J:o h(t)dt. (3.2)

Based on (3.2), the path loss can be calculated as [68]
PL = —-101log;, Ho. (3.3)

The time dispersion parameters of channel, RMS delay spread and mean excess delay are,
respectively, given by [58]

TRMS = /J:o(t — 10)2 h(t) dt / J:o h(t)dt. (3.4)

and

0= J:o th(t)dt / J:o h(t)dt . (3.5)
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Figure7. (a) Three-dimensional environment and (b) emission pattern of source. (Online version in colour.)

(d) Numerical results

In this section, we consider an empty room size of 5m x 5m x 3 m where four LED luminaires are
located on the ceiling and the detector is located at the corner of the floor as illustrated in figure 7a
[58]. An LED luminaire consists of 100 LED chips and each chip radiates 0.45 W with a full angle
of half power of 120°. The FOV and area of the detector are 85° and 1cm?, respectively. We use
Cree Xlamp® MC-E White LED ( figure 7b) which has nearly ideal Lambertian pattern [58]. The

simulation parameters are summarized in table 2.

In figure 8, only LOS is considered, i.e. k=0. It is observed that three peaks exist in CIR which
are related to four LED lightings. The largest one corresponds to the nearest LED (S2). The second
peak is the joint contribution of two LEDs (S1 and S3) which are at the same distance from the

PD. The third peak is related to the further LED (S4).
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Figure 8. CIR for k = 0 (only LOS is considered). (Online version in colour.)

Table 2. Simulation parameters.

size of room (m) 5x5x%x3
...................................... t|mereso|ut|on(At)02(ns)
...................................... numberofl|ght|ng4
"""""""""""""""""""" number of chips per each lghting 0
...................................... powerofeachch|p045(W)
..................................... ||ght|ngpos|t|ons(m) (15153)“5353)
35153),3.53.53)
................................... PDpos|t|on(m)(0510)
...................................... fu||angleofhalfpowerofhghtmg120°
..................................... T
...................................... areaofPD1(cm2)
,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, matenalspurelyd|ffusereﬂect|ons

In figure 9, we investigate the effect of first-order reflections. Figure 9a presents the first-order
reflection terms, while figure 9b is the aggregated CIR where both LOS and first-order reflections
are considered simultaneously. It is observed that first-order reflections contribute some non-
negligible increase in both amplitude and delay spread. Mathematically speaking, the channel
DC gain increases from 4.82 x 107> to 6.03 x 107> and RMS delay spread increases from 2.10
to 3.33ns.

In figure 10, we investigate the effect of second-order reflections. It is observed that second-
order reflections make a very slight increase in the amplitudes but effectively increases the delay
spread of CIR. Specifically, the channel DC gain increases from 6.03 x 107> to 7.06 x 107>, while
RMS delay spread increases from 3.33 to 6.60ns.

In figure 11, we present the CIR where we assume k= 3 reflections. As a benchmark, we
include the CIR of [49] obtained through the recursive method. Since the results in [49] are
also obtained for k= 3 reflections, this gives an opportunity to make a one-to-one comparison.
It is observed from figure 11 that two CIRs are almost identical confirming the accuracy of our
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Figure 9. (a) CIR for first-order reflections and (b) CIR for k = 1(i.e. LOS and first-order reflections). (Online version in colour.)
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Figure 10. (a) CIR for second-order reflections and (b) CIR for k = 2 (i.e. LOS, first- and second-order reflections). (Online version
in colour.)

approach. Some small differences between the tails of two CIRs are observed. This is due to the
fact that our light source is a commercial light source and does not behave exactly as a Lambertian
source ( figure 7b) unlike the ideal source assumed in [49].

In an effort to have a better understanding of the impact of higher order reflections, figure 12
presents the channel DC gain and RMS delay spread with respect to reflection numbers. It is
observed that there is no notable change for values larger than k=4 in an empty room under
consideration.

In figure 13, we investigate the effect of reflection types. Most existing works [47-54] build
upon the assumption of purely diffuse reflections. In contrast, our approach can handle other
type of reflections. In the following, we assume mixed reflections ( figure 132) and mostly specular
reflections ( figure 13b) where SF is set to 0.5 and 0.2, respectively. It is observed from figure 13a,b
that the presence of specular components creates fluctuations in CIR and results in deviations
from the purely diffuse case. This is particularly evident in figure 13b where mostly specular case
is considered. In diffuse case, when one ray reflects from the surface, the power of ray decays
by reflection coefficient and that power is divided among scattering rays. On the other hand, in
specular case, the power of ray just decays by reflection coefficient and there is no division of
power among scattering rays. By considering specular components for materials, the power of
rays decays slowly which results in fluctuations of CIR.

06107 i85 4 sund g mseanagsiosunsindaposeior [



4l e FECUTSiVE method [49]
e proposed approach

power (W)

0 10 20 30 40 50
time (ns)

Figure 11. CIR for k = 3 and comparison with recursive method in [49] for the same number of reflections. (Online version in
colour.)
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Figure 12. (a) Channel DC gain and (b) RMS delay spread versus number of reflections assuming diffuse reflections. (Online
version in colour.)

Finally, figure 14 presents the DC gain and RMS delay spread with respect to the number of
reflections for mixed and mostly specular reflection cases. It is observed from figure 14 that, in the
mixed case, the value of channel DC gain saturates after three reflections while the saturation of
RMS delay spread occurs after four reflections. In the mostly specular case, there is no significant
change in channel DC gain after eight reflections while RMS delay spread becomes constant after
nine reflections.

4, |EEE reference channel models

In line with the growing attention on VLC, the IEEE has initiated relevant standardization
activities. In December 2014, the Task Group 802.15.7r1 (later named 802.15.m) ‘Short Range
Optical Wireless Communications” was formed. This task group was responsible for the
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Figure 13. Comparison of CIRs (a) purely diffuse versus mixed and (b) purely diffuse versus mostly specular. (Online version in
colour.)
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Figure 14. (a) Channel DC gain and (b) RMS delay spread versus number of reflections assuming mixed reflections and mostly
specular reflections. (Online version in colour.)

development of both optical camera communication (OCC) and high-speed VLC where
smartphone cameras and photodetectors are, respectively, used as receivers. In March 2017, a
spin-off group dedicated on high-speed VLC was established and named as IEEE 802.15.13.

In standardization works, to make a fair performance comparison between various system
proposals, a critical issue is to establish reference channel models. Based on the methodology
described in §3, CIRs were obtained for typical indoor environments including home, office and
manufacturing cell and these were endorsed by the IEEE as VLC reference channel models [69,70].
The four scenarios under consideration include workplace (open office floor and cubicles), office
room with secondary light, living room and manufacturing cell. In the following, we describe
each of these scenarios, present associated CIRs and discuss the relevant channel parameters.

(a) Scenario descriptions

In the first reference scenario, two workplaces are considered where six office desks with working
personnel are located. Both workplaces have identical sizes with dimensions of 14 m x 14m x 3m.
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(a) workplace with open office concept (b) workplace with cubicles

(c) office room with secondary light (d) enlarged version of (c) showingsecondary light,
i.e. desklight

(e) living room (f) manufacturing cell

Figure 15. Indoor reference scenarios. (Online version in colour.)

The first one has an open office layout (figure 15a) while the second one (figure 15b) has cubicles.
Thirty-two luminaires are uniformly located in a rectangular grid at the ceiling. The luminaires
used in simulations are commercially available (Cree® LR24-385KA35). They have a non-ideal
Lambertian pattern, a semi-angle of half power of 40° and luminous efficacy (i.e. the ratio of
luminous flux to optical power) of 73 lumens per watt. The illumination levels are provided
in figure 16a. It can be readily checked that the minimum, maximum and average values of
illumination are 2781x, 7121x and 5331x, respectively. It can be noted that the average value
satisfies the required typical illumination level of 500 Ix for workplaces [71].

In the second scenario, an office room with a size of 5m x 5m x 3 m is considered (figure 15c). It
is assumed that there are two light sources. One of them is the main ceiling light, while the other
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Figure 16. lllumination levels for (a) workplace, (b) office room with secondary light and (c) living room. (Online version in
colour.)

Figure 17. Emission pattern of cubic transmitter with six LEDs in manufacturing cell scenario assuming scanning angles of 45°
and 90°, respectively, indicated by green and red colour. (Online version in colour.)
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one is a desk light. Such a scenario is particularly useful to evaluate the performance of relay-
assisted (cooperative) VLC systems [25] where the ceiling light acts as the source and the desk
light serves as the relay ( figure 15d). The destination receiver is on the desk next to the laptop.
This might, for example, take the form of a USB device connected to laptop. The relay receiver
is on the top of desk light with 45° rotation towards the source on the ceiling. As illustrated in
figure 16b, the minimum, maximum and average values of illumination are calculated as 1191x,
902 1x and 2701x, respectively. The average value satisfies the required typical illumination level
of 250 Ix for easy office work [71].

In the third scenario, a living room of size 6m x 6m x 3m is considered (figure 15¢). Four
persons are present in the room: two sitting on the couch with other two standing. Nine
luminaires (Cree® CR6-800L) are uniformly located in a rectangular grid at the ceiling. They
have a semi-angle of half power of 40° and 67 lumens per watt efficacy. The minimum, maximum
and average values of illumination are 1391x, 169 Ix and 153 1x, respectively ( figure 16c). It can be
noted that this average illumination level satisfies typical illumination level requirement of 150 Ix
for living rooms [71].

In the fourth scenario, a manufacturing cell of size 8.03m x 9.45m x 6.8 m is considered
(figure 15f). The other details of manufacturing cell can be found in [69]. Six LED transmitters are
located at the head of the robotic arm which has a form of cube. Each face of the cube is equipped
with one transmitter ensuring 360° coverage. The LEDs are commercially available (Cree® MC-E)
with non-ideal Lambertian pattern and a semi-angle of half power of 60°. The FOV and the area
of the detector are 35° and 1cm?, respectively. The illumination level is not of concern for this
type of application. It should, however, be noted that the cubic transmitter design provides an
omni-directional coverage as illustrated in figure 17.

(b) Channelimpulse responses for reference scenarios

In the first scenario, 24 different test points are selected (denoted by black circles in figure 15a)
and the corresponding CIRs can be found in [69]. Table 3 summarizes the channel DC gains and
RMS delay spreads for these CIRs. With respect to an open office, channel DC gains in the office
with cubicles decrease. Specifically, a 7.6% decrease in the average value of DC gains over 24 test
points is observed. This decrease is a result of the presence of cubicles. The rays within cubicles
hit the cubicle walls and decay more rapidly than those rays in the open office. Since the rays
cannot pass through cubicle walls (i.e. the cubicle walls are sufficiently thick) and, delay spread
values in the office with cubicles are also smaller, i.e. 16.9% decrease.

In the second scenario, two test points are considered which correspond to relay and
destination. The CIRs are provided in [69] and table 4 summarizes the main channel
characteristics. It can be observed that the relay to destination (R — D) channel is stronger than
the source to destination (S— D) channel since the relay transmitter is closer to the destination
and therefore experiences smaller path loss. It is also observed that the S — D channel has more
scattering components inducing a larger delay spread. Since the distance between source and
destination is larger than the distance between relay and destination, the rays coming out from the
source hit more surfaces (i.e. wall, floor and objects inside the room) and result in more scattering.

In the third scenario, eight different test points are selected. The corresponding CIRs can be
found in [69] and channel parameters are summarized in table 5. It is observed that the channel
DC gains in the living room are smaller than those observed in the workplace since the room
dimensions are now smaller.

In the fourth scenario, eight different test points (denoted by Dn, n=1, ... ,8in figure 15f) are
considered on top of the cell boundaries and relevant channel parameters are provided in table 6.
It is observed that the amplitude of D4 is much larger than that of D7 because this detector is
closer to the set of transmitters. Since D7 is located at the corner of the cell boundary, it receives
more scattering from boundaries. On the other hand, the RMS delay spread of D7 is much larger
than that of D4.
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Table 3. Channel parameters for workplace.

open office office with cubicles

Ty (ns) Ho T (ns) Ho
D1 13.30 100 x 103 11.26 955 x 10~*

Table 4. Channel parameters for office room with secondary light.

Ty (ns) Ho
R—D 137 130 x 10~
I g
e h L

As a final remark, we need to point to out that IR sources are typically used in the uplink, e.g.
current product offerings from different companies [72,73]. In an effort to give an idea about the
uplink channels, we further provide CIRs for the uplink assuming IR light sources in the second
scenario. We assume that each USB hub of source terminal (in the form of laptop) is equipped with
four IR LEDs (figure 18b). The separation between adjacent IR LEDs is taken as 5 cm. The distance
between adjacent USB hubs is 12.5 cm. The IR LED has a full angle of half power of 120°. We equip
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Table 5. Channel parameters for living room.

Tgus (nS) Ho
D1 13.48 116 x 107°
.................................................. D
................................................... T
................................................... Sy L
................................................... o
................................................... e
................................................... G ST
................................................... S

each of 16 luminaires on the ceiling with one PD ( figure 184). The FOV and area of PD are 85° and
1cm?, respectively. The corresponding CIRs are provided in [74]. Table 7 summarizes the main
channel characteristics. It is observed that DC gains and RMS delay spreads of VL channels are
smaller than those in IR channels. This is mainly due to the reason that reflectivity values in the
IR band are larger than those in the VL band.

5. Mobile visible light communication channels

As discussed in the previous sections, most works on VLC channel modelling focus on scenarios
where transmitter and receiver are located at fixed points. In practice, user mobility should
be taken into account that will have important implications for system design issues such as
handover. There are only sporadic works which consider mobility in VLC channel modelling
[75-78]. In [78], the shadowing effect caused by the human body was considered for VLC channel
characteristics. This, however, builds on some simplifying assumptions such as ideal Lambertian
source and purely diffuse reflections. Another simplifying assumption in [75,76,78] was fixed
reflectance values for surface materials (i.e. wall, floor, etc.). In [68], we adopted our ray tracing
channel modelling approach in [58] to obtain the CIRs over different user movement trajectories.
The comparison of these works is presented in table 8.

The work in [68] builds upon the assumption of a single PD and a specific orientation between
transmitter and receiver. In practice, to ensure an omni-directional coverage, the mobile receiver
will be likely equipped with multiple PDs. To address such issues of practical importance, we
investigate the effect of photodetector location/orientation within this section. We consider a
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LED16 LEDIS / LEDI2 LEDI1

Figure 18. (a) Arrangement of PDs on the ceiling and (b) top view of the desk with laptop and IR LEDs. (Online version
in colour.)

mobile receiver terminal in the form of a cell phone. Seven possible locations are considered for
the photodetector. Five of these are on the top edge and two of them are on the top round corners
of the device. For each possible location of a photodetector, we obtain CIRs and corresponding
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Table 7. Channel parameters of uplink IR channels as seen by PD1.

Tqus (ns) Hy
LED1 8.69 1.56 % 10~
................................................... o
................................................... gy
................................................... 0
................................................ g g
................................................... D
................................................... g
................................................... g g
................................................... g
................................................... S
................................................... e
................................................... e
................................................... s
................................................... D B
................................................... e
............................................... g

path loss. To further demonstrate the effects of user location, we present the spatial distribution
of channel gain within the room.

We consider a room with a size of 6m x 6m x 3m as illustrated in figure 19 with plaster
ceiling/walls and a pinewood floor. We assume nine luminaires on the ceiling with equidistance
spacing. These are commercially available LEDs (Cree® CR6-800L) with 40° semi-angle of half
power. The optical power for each luminaire is 11 W. This yields an average illumination level of
153 Ix which satisfies typical illumination levels for home environment [71].

We consider a user with a height of 1.8m and model the human body as a CAD object
(https:/ / grabcad.com/library /28376) (figure 20a) with absorbing property [77]. The cell phone
has a size of 5.5 cm x 10.5cm x 0.5 cm and is equipped with a single photodetector. The user holds
the phone in his hand next to his ear with 45° rotation upward and at a height of 1.65m. We
consider seven possible locations for the photodetectors denoted as Dn, n=1, ... ,7 (figure 20b).
D1, ... ,D5 are placed on the top edge of the cell phone, while D6 and D7 are placed on the top
two round corners of the cell phone. The FOV and the area of each detector are 85° and 1cm?,
respectively.

To further investigate the effects of user locations, we consider 100 cells with equidistant
spacing of 0.6m in x and y directions. The user is assumed to be standing in the middle of the
cell where his/her body is perpendicular to the floor and he/she always stands parallel to y
direction. As case study, we consider 10 example locations for the user denoted as Py3, Pog,
P31, Py, P59, Pes, P72, Pg7, Pg1o and Pige (ie. indicated with yellow squares in figure 19).
For the sake of simplicity and without loss of generality, the effective channel responses as seen
by photodetector D5 are illustrated in figure 21 assuming cut-off frequency of fut—off =20 MHz
[79]. It is observed that the low-pass characteristics of LED result in some attenuation towards
higher frequencies. It is also observed that in the effective channel responses of P1 3, P19, and P9 19
frequency selectivity is more pronounced. It is a result of the fact that these locations are close to
the walls ( figure 19) and, therefore, more reflected rays are received. It might be also interesting
to observe somehow different channel characteristics observed for P; 3 and P31, although these
locations are symmetrical in space. This is mainly due to the position of the user who stands
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Figure 19. Room under consideration with green circles denoting luminaires and yellow squares denoting the example

locations of the user. (Online version in colour.)
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Figure 20. (a) Human model and (b) location and rotation of PDs on the cell phone. (Online version in colour.)
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Figure 21. Effective channel responses as seen by photodetector D5 for the sample locations of the user. (Online version in
colour.)

Table 9. Channel parameters for scenario under consideration.

T (ns) Ho
D1 13.92 0.60 x 107>
___________________________________________________ s
................................................... s
................................................... g
___________________________________________________ Y
___________________________________________________ e
................................................... G

parallel to the y direction and holds the cell phone in his right hand. When the user stands in P31,
the received signal is mainly dominated by the LOS component from luminaire 1. On the other
hand, there is no LOS signal in P; 3 and the received signal mainly depends on reflected signals.

In figure 22, we illustrate the spatial distribution of channel gain as seen by the individual
photodetectors Dn, n=1, ... ,7.Itis observed that as the user moves within the room, the spatial
distributions of channel gain seen by photodetectors D1, ... , D6 follow the sinusoidal pattern in
x and y directions. When the user approaches to a luminaire, the signal strength increases. The
maximum signal strength (i.e. maximum value of channel gain) occurs when the user is right
under the luminaire. When the user walks away, the signal strength decreases. On the other hand,
the spatial distribution of channel gain seen by photodetector D7 is almost flat (i.e. the same
channel gain for all cells). This is a result of the fact that this detector is oriented towards the floor
and the detector only captures reflected rays, i.e. there is not LOS component.

Table 9 presents the average channel gains and RMS delay spreads (i.e. averaged over 100 cells
in the room) for D1, D2, D3, D4, D5, D6 and D7. It is observed from table 9 that the best location of
photodetector (i.e. minimum path loss) is D5. It can also be noted that D1, D2, D3, D4, D5 and D6
have similar channel gain values in the range of 6 x 107°-7.19 x 10°. In comparison to them, D7
has about 2.95 x 107°-4.41 x 10~ less channel gain on average since there is no LOS component.

In figure 23, we present the cumulative distribution function (CDF) of path loss as seen by
the individual photodetectors Dn, n=1, ... ,7. This defines the probability that path loss will
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Figure 22. Spatial distributions of path loss as seen by the individual photodetectors Dn, n=1, ... , 7. (Online version in
colour.)
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Figure 23. CDF of path loss as seen by the individual photodetectors Dn, n =1, ... , 7. (Online version in colour.)
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take less than or equal to a specific value. The figure further confirms the similar performance
behaviours of D1, D2, D3, D4, D5 and D6 locations.

6. Conclusion and discussions

The propagation channel dictates the fundamental limits on the performance of any
communication system. Realistic channel modelling is therefore a critical step for design, analysis
and testing of VLC systems. In the first part of the paper, we provided an overview of channel
modelling approaches including both deterministic and non-deterministic approaches in an
effort to provide a tutorial discussion in the relatively new field of VLC channel modelling. A
comparative discussion of various recursive, geometric-based and MCRT studies was presented
emphasizing the underlying assumptions and pointing out advantages/disadvantages of each
approach.

In the second part of the paper, we elaborated on the site-specific channel modelling approach
based on non-sequential ray tracing. Using this approach, we obtained sample CIRs for a typical
indoor environment with multiple light sources. It was observed that multiple LOS components
might be present in the CIR due to the availability of multiple sources. Based on the distances
between light sources and receiver locations, some of these LOS components are not resolvable.
We further investigated the effect of higher-order reflections, which highly depends on the type
of reflections. Our results demonstrated that while higher order reflections larger than four is
negligible for a typical room size assuming diffuse reflections, up to eight reflections should
be considered for a more precise characterization under the assumption of mostly specular
reflections.

We further presented reference channel models for representative scenarios such as workplace,
living room and manufacturing cell developed through this approach and endorsed by the
IEEE. These models were used as guidelines for physical layer design in the ongoing IEEE
standardization work on VLC (IEEE 802.15.13) [34]. For example, large variations in channel
gains with respect to test point locations are observed in reference scenario 1. Such changes
necessitate the use of link adaptation techniques (i.e. transmission parameters such as modulation
type/size, transmit power etc. are selected according to channel conditions) which are now part
of the IEEE 802.15.13 standard draft [34]. It was also observed that RMS delay spreads in these
reference scenarios vary between 10 and 15ns. If high data rates (in the order of tens of MHz)
are considered, this will result in ISI and requires the use of either time-domain equalization or
OFDM-based multicarrier transmission techniques. That has indeed become the motivation for
the selection of DCO-OFDM as the mandatory PHY layer design choice in IEEE 802.15.13 [34].

In the third and last part, we investigated the effect of photodetector location/orientation for a
mobile user. For this purpose, we considered a mobile receiver terminal in the form of a cell phone
with seven possible locations for the photodetector. Five of these are on the top edge and two of
them are on the top round corners of the device. The user holds the phone in his hand next to his
ear with 45° rotation upward. Our results demonstrated that as user moves within the room, the
spatial distributions of channel gain follow sinusoidal-like patterns. When the user approaches
a luminaire, the signal strength increases and the maximum value of channel gain occurs when
the user is right under the luminaire. When the user walks away, the signal strength decreases.
Our results further provide insight on the choice of photodetector location for maximizing the
signal strength. It was particularly observed that the top side of the phone is most favourable as
PD location due to the fact that the channel DC gain is maximized.
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